Thai Journal of Mathematics Volume 16 (2018) Number 3 : 591-597
http://thaijmath.in.cmu.ac.th

On Some Inequalities for Different Kinds of Convexity

Merve Avcı Ardıç ${ }^{\dagger}{ }^{1}$ and M. Emin Özdemir ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science and Art
Adiyaman University, Adiyaman 02040, Turkey
e-mail : mavci@posta.adiyaman.edu.tr
\ddagger Department of Mathematics Education, Education Faculty
Uludağ University, Görükle Campus, Bursa, Turkey
e-mail : eminozdemir@uludag.edu.tr

Abstract

In this paper, we examined the character of the function $f \circ \varphi$ according to character of f and φ functions and we obtained some inequalities for φ_{s}-convex function, φ-Godunova-Levin function, $\varphi-P$-function and $\log -\varphi$-convex function.

Keywords : h-convex function; $\log -\varphi$-convex function; φ-convex function; φ_{h}-convex function.
2010 Mathematics Subject Classification : 26D10; 26 D15.

1 Introduction

In [1], S. Varošanec defined the h-convex functions as below:
Definition 1.1. Let I, J are intervals in $\mathbb{R},(0,1) \subseteq J$ and $h: J \rightarrow(0, \infty)$ be a non-negative function. We say that $f: I \rightarrow \mathbb{R}$ is an h-convex function, or that f belongs to $S X(h, I)$, if f is non-negative and for all $x, y \in I, \alpha \in(0,1)$ we have

$$
f(\alpha x+(1-\alpha) y) \leq h(\alpha) f(x)+h(1-\alpha) f(y)
$$

Obviously, if $h(\alpha)=\alpha$, then all non-negative convex functions belong to $S X(h, I)$; if $h(\alpha)=\frac{1}{\alpha}$, then $S X(h, I)=Q(I)$; if $h(\alpha)=1$, then $S X(h, I) \supseteq P(I)$;

[^0]and if $h(\alpha)=\alpha^{s}$ where $s \in(0,1)$, then $S X(h, I) \supseteq K_{s}^{2}$. Here Godunova-Levin class functions, P-functions and s-convex functions in the second sense are denoted by $Q(I), P(I)$ and K_{s}^{2} respectively.

For some results about Godunova-Levin class functions, P-functions and $s-$ convex functions in the second sense, see $2 \mathbf{2}-5$.
E. A. Youness defined the generalized φ-convex sets and functions in [6. G. Cristescu and L. Lupşa took into account the improved version of the definition of Youness in (7].

Let us consider a function $\varphi:[a, b] \rightarrow[a, b]$ where $[a, b] \subset \mathbb{R}$.
Definition 1.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be φ-convex on $[a, b]$ if for every two points $x \in[a, b], y \in[a, b]$ and $t \in[0,1]$ the following inequality holds:

$$
f(t \varphi(x)+(1-t) \varphi(y)) \leq t f(\varphi(x))+(1-t) f(\varphi(y))
$$

In [8] and 9], M. Z. Sarikaya defined the following classes:
Definition 1.3. Let I be an interval in \mathbb{R} and $h:(0,1) \rightarrow(0, \infty)$ be a given function. We say that a function $f: I \rightarrow[0, \infty)$ is φ_{h}-convex if

$$
\begin{equation*}
f(t \varphi(x)+(1-t) \varphi(y)) \leq h(t) f(\varphi(x))+h(1-t) f(\varphi(y)) \tag{1.1}
\end{equation*}
$$

for all $x, y \in I$ and $t \in(0,1)$. If inequality 1.1) is reversed, then f is said to be φ_{h}-concave. In particular if f satisfies 1.1 with $h(t)=t, h(t)=t^{s}(s \in(0,1))$, $h(t)=\frac{1}{t}$ and $h(t)=1$, then f is said to be φ-convex, $\varphi_{s}-$ convex, $\varphi-$ GodunovaLevin function and $\varphi-P$-function, respectively.

Definition 1.4. Let us consider a $\varphi:[a, b] \rightarrow[a, b]$ where $[a, b] \subset \mathbb{R}$ and I stands for a convex subset of \mathbb{R}. We say that a function $f: I \rightarrow \mathbb{R}^{+}$is a $\log -\varphi$-convex if

$$
f(t \varphi(x)+(1-t) \varphi(y)) \leq[f(\varphi(x))]^{t}[f(\varphi(y))]^{1-t}
$$

for all $x, y \in I$ and $t \in[0,1]$.
In this paper, we examined the character of the function $f \circ \varphi$ according to character of f and φ functions and we obtained inequalities for $\log -\varphi$-convex function, $\varphi_{s}-$ convex function, φ-Godunova-Levin function and $\varphi-P$-function.

2 Main Results

Theorem 2.1. Let f be φ_{s}-convex function. Then
i) If φ is linear, then $f \circ \varphi$ is s-convex in the second sense.
ii) If f is increasing and φ is convex, then $f \circ \varphi$ is s-convex in the second sense.

Proof. i) From φ_{s}-convexity of f and linearity of φ, we have

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & =f[\varphi(\lambda x+(1-\lambda) y)] \\
& =f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq \lambda^{s} f(\varphi(x))+(1-\lambda)^{s} f(\varphi(y)),
\end{aligned}
$$

which completes the proof for first case.
ii) From convexity of φ, we have

$$
\varphi[\lambda x+(1-\lambda) y] \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

Since f is increasing, we can write

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & \leq f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq \lambda^{s} f(\varphi(x))+(1-\lambda)^{s} f(\varphi(y))
\end{aligned}
$$

This completes the proof for this case.
Theorem 2.2. Let f be $\varphi_{s}-$ convex and let $\sum_{i=1}^{n} t_{i}=T_{n}=1, t_{i} \in(0,1), i=$ $1,2, \ldots, n, s \in(0,1)$, then

$$
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right) \leq \sum_{i=1}^{n} t_{i}^{s} f\left(\varphi\left(x_{i}\right)\right)
$$

Proof. From the above assumptions, we can write

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right) & =f\left(T_{n-1} \sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)+t_{n} \varphi\left(x_{n}\right)\right) \\
& \leq\left(T_{n-1}\right)^{s} f\left(\sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)\right)+t_{n}^{s} f\left(\varphi\left(x_{n}\right)\right) \\
& =\left(T_{n-1}\right)^{s} f\left(\frac{T_{n-2}}{T_{n-1}} \sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)+\frac{t_{n-1}}{T_{n-1}} \varphi\left(x_{n-1}\right)\right)+t_{n}^{s} f\left(\varphi\left(x_{n}\right)\right) \\
& \leq\left(T_{n-2}\right)^{s} f\left(\sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)\right)+t_{n-1}^{s} f\left(\varphi\left(x_{n-1}\right)\right)+t_{n}^{s} f\left(\varphi\left(x_{n}\right)\right) \\
& \vdots \\
& \leq \sum_{i=1}^{n} t_{i}^{s} f\left(\varphi\left(x_{i}\right)\right)
\end{aligned}
$$

This completes the proof.

Theorem 2.3. Let f be φ-Godunova-Levin function. Then
i) If φ is linear, then $f \circ \varphi$ belongs to $Q(I)$.
ii) If f is increasing and φ is convex, then $f \circ \varphi \in Q(I)$.

Proof. i) Since f is φ-Godunova-Levin function and from linearity of φ, we have

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & =f[\varphi(\lambda x+(1-\lambda) y)] \\
& =f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq \frac{f \circ \varphi(x)}{\lambda}+\frac{f \circ \varphi(y)}{1-\lambda},
\end{aligned}
$$

which completes the proof.
ii) From convexity of φ, we have

$$
\varphi[\lambda x+(1-\lambda) y] \leq \lambda \varphi(x)+(1-\lambda) \varphi(y) .
$$

Since f is increasing we can write

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & \leq f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq \frac{f \circ \varphi(x)}{\lambda}+\frac{f \circ \varphi(y)}{1-\lambda} .
\end{aligned}
$$

This completes the proof.
Theorem 2.4. Let f be φ-Godunova-Levin function and let $\sum_{i=1}^{n} t_{i}=T_{n}=1$, $t_{i} \in(0,1), i=1,2, \ldots, n$, then

$$
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right) \leq \sum_{i=1}^{n} \frac{f\left(\varphi\left(x_{i}\right)\right)}{t_{i}} .
$$

Proof. From the above assumptions, we can write

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right) & =f\left(T_{n-1} \sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)+t_{n} \varphi\left(x_{n}\right)\right) \\
& \leq \frac{f\left(\sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)\right)}{T_{n-1}}+\frac{f\left(\varphi\left(x_{n}\right)\right)}{t_{n}} \\
& =\frac{1}{T_{n-1}} f\left(\frac{T_{n-2}}{T_{n-1}} \sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)+\frac{t_{n-1}}{T_{n-1}} \varphi\left(x_{n-1}\right)\right)+\frac{f\left(\varphi\left(x_{n}\right)\right)}{t_{n}} \\
& \leq \frac{f\left(\sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)\right)}{T_{n-2}}+\frac{f\left(\varphi\left(x_{n-1}\right)\right)}{t_{n-1}}+\frac{f\left(\varphi\left(x_{n}\right)\right)}{t_{n}} \\
& \vdots \\
& \leq \sum_{i=1}^{n} \frac{f\left(\varphi\left(x_{i}\right)\right)}{t_{i}} .
\end{aligned}
$$

This completes the proof.

Theorem 2.5. Let f be $\varphi-P$-convex function. Then
i) If φ is linear, then $f \circ \varphi$ belongs to $P(I)$.
ii) If f is increasing and φ is convex, then $f \circ \varphi \in P(I)$.

Proof. i) From $\varphi-P$-convexity of f and linearity of φ, we have

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & =f[\varphi(\lambda x+(1-\lambda) y)] \\
& =f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq f(\varphi(x))+f(\varphi(y))
\end{aligned}
$$

which completes the proof.
ii) From convexity of φ, we have

$$
\varphi[\lambda x+(1-\lambda) y] \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

Since f is increasing, we can write

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & \leq f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq f(\varphi(x))+f(\varphi(y))
\end{aligned}
$$

This completes the proof.
Theorem 2.6. Let f be $\varphi-P$-convex and let $\sum_{i=1}^{n} t_{i}=T_{n}=1, t_{i} \in(0,1)$, $i=1,2, \ldots, n$, then

$$
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right) \leq \sum_{i=1}^{n} f\left(\varphi\left(x_{i}\right)\right)
$$

Proof. From the above assumptions, we can write

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} t_{i} \varphi\left(x_{i}\right)\right)= & f\left(T_{n-1} \sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)+t_{n} \varphi\left(x_{n}\right)\right) \\
\leq & f\left(\sum_{i=1}^{n-1} \frac{t_{i}}{T_{n-1}} \varphi\left(x_{i}\right)\right)+f\left(\varphi\left(x_{n}\right)\right) \\
= & f\left(\frac{T_{n-2}}{T_{n-1}} \sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)+\frac{t_{n-1}}{T_{n-1}} \varphi\left(x_{n-1}\right)\right)+f\left(\varphi\left(x_{n}\right)\right) \\
\leq & f\left(\sum_{i=1}^{n-2} \frac{t_{i}}{T_{n-2}} \varphi\left(x_{i}\right)\right)+f\left(\varphi\left(x_{n-1}\right)\right)+f\left(\varphi\left(x_{n}\right)\right) \\
& \vdots \\
\leq & \sum_{i=1}^{n} f\left(\varphi\left(x_{i}\right)\right)
\end{aligned}
$$

This completes the proof.

Theorem 2.7. Let f be $\log -\varphi$-convex function. Then
i) If φ is linear, then $f \circ \varphi$ is $\log -$ convex.
ii) If f is increasing and φ is convex, then $f \circ \varphi$ is \log - convex function.

Proof. i) From $\log -\varphi$-convexity of f and linearity of φ, we have

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & =f[\varphi(\lambda x+(1-\lambda) y)] \\
& =f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq[f(\varphi(x))]^{\lambda}[f(\varphi(y))]^{1-\lambda},
\end{aligned}
$$

which completes the proof for first case.
ii) From convexity of φ, we have

$$
\varphi[\lambda x+(1-\lambda) y] \leq \lambda \varphi(x)+(1-\lambda) \varphi(y) .
$$

Since f is increasing, we can write

$$
\begin{aligned}
f \circ \varphi[\lambda x+(1-\lambda) y] & \leq f[\lambda \varphi(x)+(1-\lambda) \varphi(y)] \\
& \leq[f(\varphi(x))]^{\lambda}[f(\varphi(y))]^{1-\lambda} .
\end{aligned}
$$

This completes the proof for this case.
Theorem 2.8. Let $\varphi:[a, b] \rightarrow[a, b]$ be a function where $[a, b] \subset \mathbb{R}$ and I stands for a convex subset of \mathbb{R}. If $f: I \rightarrow \mathbb{R}^{+}$is a $\log -\varphi$-convex function where $a, b \in I$ with $a<b$, for $\lambda \in[0,1]$ and $\varphi(b) \neq \varphi(a)$, then

$$
\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} G(f(x), f(\varphi(a)+\varphi(b)-x)) d x \leq G(f(\varphi(a)), f(\varphi(b)))
$$

holds, where $G($,$) is the geometric mean.$
Proof. Since f is $\log -\varphi$-convex function, we have that

$$
\begin{gathered}
f(\lambda \varphi(a)+(1-\lambda) \varphi(b)) \leq[f(\varphi(a))]^{\lambda}[f(\varphi(b))]^{1-\lambda}, \\
f((1-\lambda) \varphi(a)+\lambda \varphi(b)) \leq[f(\varphi(a))]^{1-\lambda}[f(\varphi(b))]^{\lambda}
\end{gathered}
$$

for all $\lambda \in[0,1]$.
If we multiply the above inequalities and take square roots, we obtain

$$
G(f(\lambda \varphi(a)+(1-\lambda) \varphi(b)), f((1-\lambda) \varphi(a)+\lambda \varphi(b))) \leq G(f(\varphi(a)), f(\varphi(b))) .
$$

Integrating this inequality over λ on $[0,1]$, and changing the variable $x=\lambda \varphi(a)+$ $(1-\lambda) \varphi(b)$, we have

$$
\begin{gathered}
\quad \int_{0}^{1} G(f(\lambda \varphi(a)+(1-\lambda) \varphi(b)), f((1-\lambda) \varphi(a)+\lambda \varphi(b))) d \lambda \\
\leq G(f(\varphi(a)), f(\varphi(b))), \\
\frac{1}{\varphi(b)-\varphi(a)} \int_{\varphi(a)}^{\varphi(b)} G(f(x), f(\varphi(a)+\varphi(b)-x)) d x \leq G(f(\varphi(a)), f(\varphi(b)))
\end{gathered}
$$

which completes the proof.

References

[1] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311.
[2] C.E.M. Pearce, A.M. Rubinov, P-Functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1999) 92-104.
[3] D.S. Mitrinović, J. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12 (1990) 33-36.
[4] D.S. Mitrinović, J. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[5] M. Avci, H. Kavurmaci, M.E. Özdemir, New inequalities of HermiteHadamard type via s-convex functions in the second sense with applications, Applied Mathematics and Computation 217 (12) 5171-5176.
[6] E.A. Youness, E-Convex sets, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications 102 (2) (1999) 439450.
[7] G. Cristescu, L. Lupşa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.
[8] M.Z. Sarikaya, On Hermite Hadamard-type inequalities for φ_{h}-convex functions, RGMIA Res. Rep. Coll. 15 (37) (2012).
[9] M.Z. Sarikaya, On Hermite Hadamard inequalities for product of two $\log -\varphi$-convex functions, arXiv:1203.5495v1 (2012) 1-7.
(Received 5 May 2013)
(Accepted 20 October 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

