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1 Introduction

In [1], S. Varosanec defined the h—convex functions as below:

Definition 1.1. Let I, J are intervals in R, (0,1) € J and h : J — (0,00) be a
non-negative function. We say that f : I — R is an h—convex function, or that f
belongs to SX(h,I), if f is non-negative and for all z,y € I, a € (0,1) we have

floax+ (1 —a)y) <h(a) fz) +h(1-a) f(y)

Obviously, if h(a) = «, then all non-negative convex functions belong to
SX(h,I);if h(a) = 5 then SX(h,I) = Q(I);if h () = 1, then SX(h,I) D P(I);
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and if h (o) = o® where s € (0,1), then SX (h, I) O K2. Here Godunova-Levin class
functions, P—functions and s—convex functions in the second sense are denoted
by Q(I), P(I) and K? respectively.

For some results about Godunova-Levin class functions, P—functions and
s—convex functions in the second sense, see |2H5].

E. A. Youness defined the generalized p—convex sets and functions in [6]. G.
Cristescu and L. Lupsa took into account the improved version of the definition
of Youness in [7].

Let us consider a function ¢ : [a,b] — [a,b] where [a,b] C R.

Definition 1.2. A function f : [a,b] — R is said to be p—-convez on [a,b] if for
every two points x € [a,b], y € [a,b] and t € [0, 1] the following inequality holds:

fto(@) + (1 =t)e(y)) < tfle(x) + (1 —1t) f (oY)
In [8] and [9], M. Z. Sarikaya defined the following classes:

Definition 1.3. Let I be an interval in R and h : (0,1) — (0,00) be a given
function. We say that a function f : I — [0, 00) is ¢p—convex if

flte(@) + (1 =t)e(y) < h(t)f(p(x)) +h(1 —1)f (2(y)) (1.1)

for all z,y € I and t € (0, 1). If inequality is reversed, then f is said to be
pp—concave. In particular if f satisfies (1.1]) with h(t) = ¢, h(t) =¢° (s € (0,1)),
h(t) = + and h(t) = 1, then f is said to be ¢—convez, ,— convez, — Godunova-
Levin function and ¢ — P—function, respectively.

Definition 1.4. Let us consider a ¢ : [a,b] — [a,b] where [a,b] C R and I stands
for a convex subset of R. We say that a function f : I — RY is a log —¢— convex

if
f () + (1= )p(y)) < (o@D [f ()]
for all z,y € I and ¢ € [0,1].

In this paper, we examined the character of the function f o ¢ according to
character of f and ¢ functions and we obtained inequalities for log —p—convex
function, ¢s—convex function, ¢—Godunova-Levin function and ¢ — P—function.

2 Main Results

Theorem 2.1. Let [ be ps—conver function. Then
i) If ¢ is linear, then f o @ is s—convex in the second sense.

it) If f is increasing and ¢ is conver, then f o ¢ is s—convex in the second
sense.
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Proof. 1) From ¢s—convexity of f and linearity of ¢, we have

foePe+ (1 -yl = fleQz+(1—-Ny)]
fe(z) + (1= Ne(y)]
A fp(@) + (1= f(e(y)),

which completes the proof for first case.
ii) From convexity of ¢, we have

oA+ (1 =Nyl < Ao(x) + (1= N)e(y).

IN

Since f is increasing, we can write

fopz+(1-Ny] Fe(@) + (1= Ne(y)]

<
< N Sfle(@) + (1= X)° fey).
This completes the proof for this case. O

Theorem 2.2. Let f be p,—conver and let > -, t;
1,2,...,n, s € (0,1), then

Il
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Proof. From the above assumptions, we can write

f (ZQ@(%)) = f(

Iz + tn@(xn)>

n—1
< (T (Z Tj_ 1so<xi>> A ple)
= (Tu)'f @‘j > 2¢<xi>+;jjllw(xn_1>> (o)
n—2
< (Tn—z)s f (Z TinS"@%‘)) + tfz—lf(‘;o(mnfl)) + t;f(@(xn))
< DSl

This completes the proof. O
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Theorem 2.3. Let f be o— Godunova-Levin function. Then
i) If p is linear, then f o belongs to Q(I).
it) If f is increasing and o is convex, then f o € Q(I).
Proof. 1) Since f is ¢p—Godunova-Levin function and from linearity of ¢, we have
Fogeha+(1-Nyl = flpOa+(1—-\y)
(@) + (1= A)e(y)]

fop(x)  fowly)
S

IN

which completes the proof.
ii) From convexity of ¢, we have

oA+ (1 =Nyl < Ap(z) + (1 = Ne(y).

Since f is increasing we can write

fop[Az+ (1 -y

A
~
~
5
8
S~—
+
=
S
=

IN

This completes the proof. O

Theorem 2.4. Let f be ¢o— Godunova-Levin function and let Y t; =T, = 1,
t; €(0,1),i=1,2,...,n, then

Proof. From the above assumptions, we can write
n n—1 L
f <Z ti@(xi)> = f (Tn—l Z T : L @(xz) + tn@(mn)>
i=1 i=1 """
n=1_t .
O ) D)

= Tn—l - tn

B 1 Th_o w2 t; . tpn—1 f(¢($n))
B Th—1 ! (Tn—l i=1 Th-o 90(56‘1) - T (p(mnl)> ' T
o (S S) | pe@a) | fot)

Th—o ln—1 tn

< Zl f(@t(;ﬂi)).

This completes the proof. O
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Theorem 2.5. Let f be ¢ — P—convex function. Then
i) If v is linear, then f o belongs to P(I).
it) If f is increasing and ¢ is convex, then f oy € P(I).
Proof. 1) From ¢ — P—convexity of f and linearity of ¢, we have
feez+ (1 =Nyl = Flez+(1-A)y)]

Fo(@) + (1= Ne(y)]
flo(x)) + fle(y)),

IN

which completes the proof.
ii) From convexity of ¢, we have

oA+ (1 =Nyl < Ao(x) + (1= N)e(y).

Since f is increasing, we can write

fop[z+ (1 -y

INIA
=
5
-

This completes the proof. O

Theorem 2.6. Let f be ¢ — P—conver and let Y . t; = T,

i=1,2,...,n, then
f <Zti<ﬁ(xi)> < Zf(@(ﬂfi))-

Proof. From the above assumptions, we can write

n n—1
f (Z tz‘@(%)) =/ <Tn1 > th
i=1 i=1 " "

I
—_
~

S
m
—
=
—_
~—

-1

ple:) + tw(%))

IN
~

b 90(9%)> + Fp(zm))

Tn—2 Tn—l

IN
~

= f (T”‘2 ‘_ li p(xi) + b1 w($n1)> + fe(zn)

w(ﬂh)) + flp(en)) + f(@(2n))

< Zf(@(%))

This completes the proof. O
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Theorem 2.7. Let f be log —p—convex function. Then
i) If p is linear, then f o ¢ is log —convez.
it) If f is increasing and o is convex, then f o ¢ is log —convex function.
Proof. 1) From log —p—convexity of f and linearity of ¢, we have
foea+(1=Nyl = [flp(Az+ 1=y
= D)+ 1= Ney)]
(@ @ [l )],

IN

which completes the proof for first case.
ii) From convexity of ¢, we have

A+ (1 =Nyl < Ap(z) + (1= Ne(y).

Since f is increasing, we can write
feeAz+(1—=A)y] (@) + (1= A)e(y)]

e @) e )

This completes the proof for this case. O

<
<

Theorem 2.8. Let ¢ : [a,b] — [a,b] be a function where [a,b] C R and I stands
for a convex subset of R. If f : I — R is a log —p— convex function where a,b € I
with a < b, for A € [0,1] and ¢(b) # p(a), then

@ (b)

S L, G Fela) + olt) ~ 0z <GS (0(a) F (610)
p(a

holds, where G(,) is the geometric mean.

Proof. Since f is log —¢p—convex function, we have that
F la) + (1= Ne(b) < [f (p(@)] [f (p(®)]' ™,

F((1=Npla) + Xo(0) < [f (p(@)]' " [f ()
for all A € [0,1].
If we multiply the above inequalities and take square roots, we obtain

G (f (Ap(a) + (1= A)p(b)), f (1 = Ng(a) + Ap(b))) < G(f (#(a)), f (9(b)))-

Integrating this inequality over A on [0, 1], and changing the variable z = Ap(a) +
(1 = X)p(b), we have

1
/O G (f (Ap(a) + (1= N)p (b)), [ (1 = A)p(a) + Ap(D))) dA
< G(f(w(a), f (#(0)));

»(b)
i /. G J((0) +plb) ) < GUJ (pla) S (2(0)

which completes the proof. U
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