Thai Journal of Mathematics Volume 16 (2018) Number 3 : 563–575

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Generalized $\tau_1 \tau_2$ -Closed Sets in Ideal **Bitopological Spaces**

Chalongchai Klanarong and Chawalit Boonpok¹

Department of Mathematics, Faculty of Science, Mahasarakham University Mahasarakham, 44150, Thailand Mathematics and Applied Mathematics Research Unit e-mail: chalongchai1001@gmail.com chawalit.b@msu.ac.th

Abstract : This paper deals with the concept of \mathscr{I} -g- $\tau_1\tau_2$ -closed sets in ideal bitopological spaces. \mathscr{I} -g- $\tau_1\tau_2$ -normal and \mathscr{I} -g- $\tau_1\tau_2$ -regular spaces are introduced and various characterizations are given. Several characterizations of \mathscr{I}^{**} - R_0 -spaces are discussed.

Keywords : \mathscr{I} -g- $\tau_1\tau_2$ -closed set; \mathscr{I} -g- $\tau_1\tau_2$ -normal space; \mathscr{I} -g- $\tau_1\tau_2$ -regular space; $\mathscr{I}^{\star\star}$ - R_0 -space.

2010 Mathematics Subject Classification : 54A05; 54D10; 54D15.

Introduction 1

The notion of ideals in topological spaces has been studied by Kuratowski [1] and Vaidyanathaswamy [2] which is one of the important areas of research in the branch of mathematics. In 1990, Janković and Hamlett [3] further studied ideal topological spaces and their applications to various fields. Levine [4] introduced the notion of generalized closed sets in topological spaces. Donthey et al. [5] introduced and investigated the notion of \mathscr{I} -g-closed sets in ideal topological spaces as a modification of generalized closed sets due to Levine. Navaneethakrishnan and Josep [6] investigated generalized closed sets in ideal topological spaces. Mandal and Mukherjee [7] introduced the concept of \star -q-closed sets in ideal topological

Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

spaces and obtained several characterizations of \star -g-closed sets. Navaneethakrishnan et al. [8] introduced the concepts of \mathscr{I}_g -normal, $g\mathscr{I}$ -normal and \mathscr{I}_g -regular spaces and investigated several characterizations of such spaces. Ozbakir and Yildirim [9] introduced ideal minimal spaces and investigated the relationships between minimal spaces and ideal minimal spaces. Recently, Noiri and Popa [10] introduced the notion of \mathscr{I} -mg-closed sets and obtained the unified characterizations for certain families of subsets between \star -closed sets and \mathscr{I} -g-closed sets in an ideal topological spaces. In this paper, we introduce the concept of \mathscr{I} -g- $\tau_1\tau_2$ -closed sets in ideal bitopological spaces and investigate some properties of \mathscr{I} -g- $\tau_1\tau_2$ -closed sets. Moreover, we define \mathscr{I} -g- $\tau_1\tau_2$ -normal and \mathscr{I} -g- $\tau_1\tau_2$ -regular spaces using \mathscr{I} -g- $\tau_1\tau_2$ -open sets and give characterizations of such spaces. Finally, several characterizations of \mathscr{I}^{**} -R₀-spaces are investigated.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) (or simply X) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopolgical space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -closed [11] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed is said to be $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets containing A is called $\tau_1 \tau_2$ -closure of A and denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets contained in A is called $\tau_1 \tau_2$ -interior of A and denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 2.1. [11] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

An ideal \mathscr{I} on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X, τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X, τ, \mathscr{I}) . For an ideal topological space (X, τ, \mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows: $A^*(\mathscr{I}) = \{x \in X : U \cap A \notin \mathscr{I} \text{ for every open neighborhood } U \text{ of } x\}$. In case there is no chance for confusion, $A^*(\mathscr{I})$ is simply written as A^* . In [1], A^* is called the local function of A with respect to \mathscr{I} and τ and $Cl^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said Generalized $au_1 au_2$ -Closed Sets in Ideal Bitopological Spaces

to be *-closed [3] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $Int^*(A)$. A bitopological space $(X, \tau_1, \tau_2,)$ with an ideal \mathscr{I} on X is called an ideal bitopological space and is denoted by $(X, \tau_1, \tau_2, \mathscr{I})$.

3 Generalized $\tau_1 \tau_2$ -Closed Sets

We begin this section by introducing the notion of (τ_1, τ_2) -local functions.

Given a bitopological space (X, τ_1, τ_2) with an ideal \mathscr{I} on X, the (τ_1, τ_2) -local function of A with respect to τ_1, τ_2 and \mathscr{I} by

 $A^{\star\star}(\tau_1, \tau_2, \mathscr{I}) = \{x \in X \mid A \cap U \notin \mathscr{I} \text{ for every } \tau_1 \tau_2 \text{-open set containing } x\}.$ In this case there is no confusion $A^{\star\star}(\tau_1, \tau_2, \mathscr{I})$ is briefly denoted by $A^{\star\star}$.

Proposition 3.1. For subsets A, B of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties hold:

- (1) If $A \subseteq B$, then $A^{\star\star} \subseteq B^{\star\star}$.
- (2) $A^{\star\star} = \tau_1 \tau_2 Cl(A^{\star\star}) \subseteq \tau_1 \tau_2 Cl(A).$
- (3) $(A^{\star\star})^{\star\star} \subseteq A^{\star\star}$.
- (4) $(A \cup B)^{\star\star} = A^{\star\star} \cup B^{\star\star}.$

Proof. (1). Suppose that $A \subseteq B$ and $x \notin B^{\star\star}$. Then, there exists a $\tau_1 \tau_2$ -open set U containing x such that $U \cap B \in \mathscr{I}$. Since $A \subseteq B$, we have $U \cap A \in \mathscr{I}$ and so $x \notin A^{\star\star}$. This shows that $A^{\star\star} \subseteq B^{\star\star}$.

(2). Let $x \in \tau_1 \tau_2$ -Cl($A^{\star\star}$). Then $A^{\star\star} \cap U \neq \emptyset$ for every $\tau_1 \tau_2$ -open set U containing x. Therefore, there exists $y \in A^{\star\star} \cap U$. Since U containing y and $y \in A^{\star\star}$, we have $U \cap A \notin \mathscr{I}$ and so $x \in A^{\star\star}$. Hence, $\tau_1 \tau_2$ -Cl($A^{\star\star}$) $\subseteq A^{\star\star}$. Consequently, we obtain $\tau_1 \tau_2$ -Cl($A^{\star\star}$) = $A^{\star\star}$. Again, let $x \in \tau_1 \tau_2$ -Cl($A^{\star\star}$) = $A^{\star\star}$, then $U \cap A \notin \mathscr{I}$ for every $\tau_1 \tau_2$ -open set U containing x. This implies that $U \cap A \neq \emptyset$ for every $\tau_1 \tau_2$ -open set U containing x. Therefore, we have $x \in \tau_1 \tau_2$ -Cl(A). This proves $A^{\star\star} = \tau_1 \tau_2$ -Cl($A^{\star\star}$) $\subseteq \tau_1 \tau_2$ -Cl(A).

(3). Let $x \in (A^{\star\star})^{\star\star}$. Then for every $\tau_1 \tau_2$ -open set U containing $x, U \cap A^{\star\star} \notin \mathscr{I}$ and so $U \cap A^{\star\star} \neq \emptyset$. Therefore, there exists $y \in U \cap A^{\star\star}$. Since U containing yand $y \in A^{\star\star}$, we have $U \cap A \notin \mathscr{I}$ and so $x \in A^{\star\star}$. This shows that $(A^{\star\star})^{\star\star} \subseteq A^{\star\star}$.

(4). By (1), we have $A^{\star\star} \cup B^{\star\star} \subseteq (A \cup B)^{\star\star}$. For the reverse inclusion, suppose that $x \notin A^{\star\star} \cup B^{\star\star}$. Then, we have $x \notin A^{\star\star}$ and $x \notin B^{\star\star}$. There exist $\tau_1 \tau_2$ -open set U containing x and $\tau_1 \tau_2$ -open set V containing x such that $U \cap A \in \mathscr{I}$ and $V \cap B \in \mathscr{I}$. Therefore, $(U \cap V) \cap (A \cup B) = [(U \cap V) \cap A] \cup [(U \cap V) \cap B] \subseteq (U \cap A) \cup (V \cap B) \in \mathscr{I}$ and so $x \notin (A \cup B)^{\star\star}$. This implies that $(A \cup B)^{\star\star} \subseteq A^{\star\star} \cup B^{\star\star}$. Consequently, we obtain $(A \cup B)^{\star\star} = A^{\star\star} \cup B^{\star\star}$.

Definition 3.2. Let $(X, \tau_1, \tau_2, \mathscr{I})$ be an ideal bitopological space. For any subset A of X, we put $\operatorname{Cl}^{\star\star}(A) = A \cup A^{\star\star}$. The operator $\operatorname{Cl}^{\star\star}$ is a Kuratowski closure

operator. The topology generated by $Cl^{\star\star}$ is denoted by $\tau^{\star\star}$, that is

$$\tau^{\star\star} = \{ U \subseteq X \mid \operatorname{Cl}^{\star\star}(X - U) = X - U \}.$$

The elements of $\tau^{\star\star}$ are called $\star\star$ -open sets and the complement of a $\star\star$ -open set is called $\star\star$ -closed. The closure and the interior of A with respect to $\tau^{\star\star}$ are denoted by $\text{Cl}^{\star\star}(A)$ and $\text{Int}^{\star\star}(A)$, respectively.

Proposition 3.3. For subsets A and B of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties hold:

- (1) $A \subseteq Cl^{\star\star}(A)$.
- (2) $Cl^{\star\star}(\emptyset) = \emptyset$ and $Cl^{\star\star}(X) = X$.
- (3) If $A \subseteq B$, then $Cl^{\star\star}(A) \subseteq Cl^{\star\star}(B)$.
- (4) $Cl^{\star\star}(A) \cup Cl^{\star\star}(B) \subseteq Cl^{\star\star}(A \cup B).$

Remark 3.1. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is $\star\star$ -closed if and only if $A^{\star\star} \subseteq A$.

Definition 3.4. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is called $\star\star$ -dense in itself (resp. $\star\star$ -perfect) if $A \subseteq A^{\star\star}$ (resp. $A^{\star\star} = A$).

Lemma 3.5. If A is $\star\star$ -dense in itself in $(X, \tau_1, \tau_2, \mathscr{I})$, then $A^{\star\star} = \tau_1 \tau_2$ -Cl $(A^{\star\star}) = \tau_1 \tau_2$ -Cl $(A) = Cl^{\star\star}(A)$.

Proof. Suppose that A is **-dense in itself. Then, we have $A \subseteq A^{**}$ and so $\tau_1\tau_2$ -Cl(A) $\subseteq \tau_1\tau_2$ -Cl(A^{**}). By Proposition 3.1, $\tau_1\tau_2$ -Cl(A) $\subseteq \tau_1\tau_2$ -Cl(A^{**}) $\subseteq \tau_1\tau_2$ -Cl(A) and hence $A^{**} = \tau_1\tau_2$ -Cl(A^{**}) $= \tau_1\tau_2$ -Cl(A). Since $A^{**} = \tau_1\tau_2$ -Cl(A), we have Cl^{**}(A) $= \tau_1\tau_2$ -Cl(A). Consequently, we obtain $A^{**} = \tau_1\tau_2$ -Cl(A^{**}) $= \tau_1\tau_2$ -Cl(A).

Proposition 3.6. For an ideal bitopologial space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties hold:

- (1) If G is $\tau_1 \tau_2$ -open, then $Int^{\star\star}(G) = G$.
- (2) If F is $\tau_1 \tau_2$ -closed, then $Cl^{\star\star}(F)$ is $\tau_1 \tau_2$ -closed.

Proof. (1). Let G be a $\tau_1\tau_2$ -open set. Then X - G is $\tau_1\tau_2$ -closed, by Proposition 3.1, we have $(X - G)^{\star\star} \subseteq \tau_1\tau_2$ -Cl(X - G) = X - G and so Cl $^{\star\star}(X - G) = X - G$. This implies that G is a $\star\star$ -open set and hence $\operatorname{Int}^{\star\star}(G) = G$.

(2). Let F be a $\tau_1 \tau_2$ -closed set. Then, we have

$$\tau_{1}\tau_{2}\text{-}\mathrm{Cl}(\mathrm{Cl}^{\star\star}(F)) = \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{\star\star} \cup F)$$
$$= \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{\star\star}) \cup \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F)$$
$$= \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F)$$
$$= F \subseteq \mathrm{Cl}^{\star\star}(F).$$

Consequently, $\tau_1 \tau_2$ -Cl(Cl^{**}(F)) = Cl^{**}(F) and so Cl^{**}(F) is $\tau_1 \tau_2$ -closed.

Generalized $au_1 au_2$ -Closed Sets in Ideal Bitopological Spaces

Definition 3.7. A subset A of a bitopological space (X, τ_1, τ_2) is said to be *generalized* $\tau_1\tau_2$ -closed(briefly g- $\tau_1\tau_2$ -closed) if $\tau_1\tau_2$ -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ -open. The complement of a generalized $\tau_1\tau_2$ -closed set is said to be generalized $\tau_1\tau_2$ -open (briefly g- $\tau_1\tau_2$ -open).

Definition 3.8. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is called \mathscr{I} -g- $\tau_1\tau_2$ -closed if $A^{\star\star} \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ -open. The complement of a \mathscr{I} -g- $\tau_1\tau_2$ -closed set is called \mathscr{I} -g- $\tau_1\tau_2$ -open.

Remark 3.2. From the definitions one may deduce the following implications:

$$\begin{array}{ccc} \tau_1 \tau_2 \text{-} closed & \Longrightarrow & g \text{-} \tau_1 \tau_2 \text{-} closed \\ & \downarrow & & \downarrow \\ \star \star \text{-} closed & \Longrightarrow & \mathscr{I} \text{-} g \text{-} \tau_1 \tau_2 \text{-} closed \end{array}$$

However, none of these implications is reversible as shown by the following examples:

Example 3.3. Let $X = \{1, 2, 3\}$ with topologies $\tau_1 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}, \tau_2 = \{\emptyset, \{1\}, X\}$ and an ideal $\mathscr{I} = \{\emptyset, \{1, 2\}\}$. Then $\{1, 2\}$ is $\star\star$ -closed but $\{1, 2\}$ is not $\tau_1 \tau_2$ -closed. $\{2\}$ is \mathscr{I} -g- $\tau_1 \tau_2$ -closed but $\{2\}$ is not $\star\star$ -closed. $\{1, 3\}$ is g- $\tau_1 \tau_2$ -closed but $\{1, 3\}$ is g- $\tau_1 \tau_2$ -closed.

Example 3.4. Let $X = \{1, 2, 3\}$ with topologies $\tau_1 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}, \tau_2 = \{\emptyset, \{1\}, X\}$ and an ideal $\mathscr{I} = \{\emptyset, \{1\}\}$. Then $\{1\}$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed but $\{1\}$ is not g- $\tau_1\tau_2$ -closed.

Proposition 3.9. If A is \mathscr{I} -g- $\tau_1\tau_2$ -closed and $\star\star$ -dense in itself in $(X, \tau_1\tau_2, \mathscr{I})$, then A is g- $\tau_1\tau_2$ -closed.

Proof. Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -closed and $\star\star$ -dense in itself. Let $A \subseteq U$ and U be $\tau_1\tau_2$ -open. Then, we have $A^{\star\star} \subseteq U$. Since A is $\star\star$ -dense in itself, by Lemma 3.6, $\tau_1\tau_2$ -Cl(A) $\subseteq U$ and so A is g- $\tau_1\tau_2$ -closed.

Proposition 3.10. If A and B are \mathscr{I} -g- $\tau_1\tau_2$ -closed in $(X, \tau_1, \tau_2, \mathscr{I})$, then $A \cup B$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

Proof. Suppose that A and B are \mathscr{I} -g- $\tau_1\tau_2$ -closed. Let $A \cup B \subseteq U$ and U be $\tau_1\tau_2$ -open. Then $A \subseteq U$ and $B \subseteq B$. Since A and B are \mathscr{I} -g- $\tau_1\tau_2$ -closed, $A^{\star\star} \subseteq U$ and $B^{\star\star} \subseteq U$. By Proposition 3.1, we have $(A \cup B)^{\star\star} = A^{\star\star} \cup B^{\star\star} \subseteq U$. Therefore, $A \cup B$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

Remark 3.5. The intersection of two \mathscr{I} -g- $\tau_1\tau_2$ -closed sets need not be a \mathscr{I} -g- $\tau_1\tau_2$ -closed set as shown by the following example.

Example 3.6. Consider an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, where $X = \{1, 2, 3\}, \tau_1 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}, \tau_2 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, X\}$ and $\mathscr{I} = \{\emptyset\}$. Then $\{1, 2\}$ and $\{1, 3\}$ are \mathscr{I} -g- $\tau_1 \tau_2$ -closed but $\{1, 2\} \cap \{1, 3\} = \{1\}$ is not \mathscr{I} -g- $\tau_1 \tau_2$ -closed. **Proposition 3.11.** If B is $\tau_1\tau_2$ -closed and A is \mathscr{I} -g- $\tau_1\tau_2$ -closed in $(X, \tau_1, \tau_2, \mathscr{I})$, then $A \cap B$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

Proof. Suppose that B is $\tau_1\tau_2$ -closed and A is \mathscr{I} -g- $\tau_1\tau_2$ -closed. Let $A \cap B \subseteq V$ and V be $\tau_1\tau_2$ -open. Then, we have $A \subseteq V \cup (X - B)$. Since $V \cup (X - B)$ is $\tau_1\tau_2$ -open, $A^{\star\star} \subseteq V \cup (X - B)$ and so $A^{\star\star} \cap B \subseteq V \cap B \subseteq V$. By Proposition 3.1, $B^{\star\star} \subseteq B$ and $(A \cap B)^{\star\star} \subseteq A^{\star\star} \cap B^{\star\star} \subseteq A^{\star\star} \cap B \subseteq V$. This shows that $A \cap B$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

The following theorem gives some characterizations of \mathscr{I} -g- $\tau_1\tau_2$ -closed sets.

Theorem 3.12. For a subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) A is \mathscr{I} -g- $\tau_1\tau_2$ -closed.
- (2) $Cl^{\star\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \tau_2$ -open.
- (3) $Cl^{\star\star}(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is $\tau_1 \tau_2$ -closed.

Proof. (1) \Rightarrow (2): Let $A \subseteq U$ and U be $\tau_1 \tau_2$ -open. Then, by (1) $A^{\star\star} \subseteq U$ and $\operatorname{Cl}^{\star\star}(A) = A^{\star\star} \cup A \subseteq U$.

(2) \Rightarrow (3): Let $A \cap F = \emptyset$ and F be $\tau_1 \tau_2$ -closed. Then $A \subseteq X - F$ and X - F is $\tau_1 \tau_2$ -open. By (2), we have $\operatorname{Cl}^{\star\star}(A) \subseteq X - F$ and so $\operatorname{Cl}^{\star\star}(A) \cap F = \emptyset$.

 $(3) \Rightarrow (1): \text{ Let } A \subseteq U \text{ and } U \text{ be } \tau_1 \tau_2 \text{-open. Then } A \cap (X - U) = \emptyset \text{ and } X - U \text{ is } \\ \tau_1 \tau_2 \text{-closed. By } (3), \text{ we have } \operatorname{Cl}^{\star\star}(A) \cap (X - U) = \emptyset \text{ and hence } A^{\star\star} \subseteq \operatorname{Cl}^{\star\star}(A) \subseteq U. \\ \text{Therefore, } A \text{ is } \mathscr{I} \text{-} g \text{-} \tau_1 \tau_2 \text{-closed.} \qquad \Box$

Proposition 3.13. If A is \mathscr{I} -g- $\tau_1\tau_2$ -closed in $(X, \tau_1, \tau_2, \mathscr{I})$ and $A \subseteq B \subseteq Cl^{**}(A)$, then B is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

Proof. Let $B \subseteq U$ and U be $\tau_1 \tau_2$ -open. Since $A \subseteq U$ and A is \mathscr{I} -g- $\tau_1 \tau_2$ -closed, we have $\operatorname{Cl}^{\star\star}(A) \subseteq U$ and so $\operatorname{Cl}^{\star\star}(B) \subseteq \operatorname{Cl}^{\star\star}(\operatorname{Cl}^{\star\star}(A)) = \operatorname{Cl}^{\star\star}(A) \subseteq U$. Therefore, B is \mathscr{I} -g- $\tau_1 \tau_2$ -closed.

Corollary 3.14. If A is \mathscr{I} -g- $\tau_1\tau_2$ -open in $(X, \tau_1, \tau_2, \mathscr{I})$ and $Int^{**}(A) \subseteq B \subseteq A$, then B is \mathscr{I} -g- $\tau_1\tau_2$ -open.

Proof. This follows from Proposition 3.19.

Definition 3.15. [11] Let A be a subset of a bitopological space (X, τ_1, τ_2) . The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{ -open}\}$ is called the $\tau_1 \tau_2 \text{-kernel}$ of A and is denoted by $\tau_1 \tau_2 \text{-ker}(A)$.

Theorem 3.16. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed if and only if $Cl^{\star\star}(A) \subseteq \tau_1\tau_2$ -ker(A).

Generalized $\tau_{1}\tau_{2}\text{-}\mathsf{Closed}$ Sets in Ideal Bitopological Spaces

Proof. Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -closed. If $x \notin \tau_1\tau_2$ -ker(A), then there exists a $\tau_1\tau_2$ -open set U such that $A \subseteq U$ and $x \notin U$. Since A is \mathscr{I} -g- $\tau_1\tau_2$ -closed, by Theorem 3.18, $\operatorname{Cl}^{**}(A) \subseteq U$ and so $x \notin \operatorname{Cl}^{**}(A)$. Consequently, we obtain $\operatorname{Cl}^{**}(A) \subseteq \tau_1\tau_2$ -ker(A).

Conversely, suppose that $\operatorname{Cl}^{\star\star}(A) \subseteq \tau_1 \tau_2\operatorname{-ker}(A)$. Let $A \subseteq U$ and U be $\tau_1 \tau_2$ -open. Then $\operatorname{Cl}^{\star\star}(A) \subseteq \tau_1 \tau_2\operatorname{-ker}(A) \subseteq U$. Therefore, by Theorem 3.18, A is \mathscr{I} -g- $\tau_1 \tau_2$ -closed.

Theorem 3.17. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed if and only if $\tau_1\tau_2$ -cl($\{x\}$) $\cap A \neq \emptyset$ for each $x \in Cl^{\star\star}(A)$.

Proof. Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -closed and $\tau_1\tau_2$ -Cl($\{x\}$) $\cap A = \emptyset$ for some $x \in \operatorname{Cl}^{\star\star}(A)$. Then, we have $A \subseteq X - \tau_1\tau_2$ -Cl($\{x\}$). Since A is \mathscr{I} -g- $\tau_1\tau_2$ -closed and $X - \tau_1\tau_2$ -Cl($\{x\}$) is $\tau_1\tau_2$ -open, by Theorem 3.18, $\operatorname{Cl}^{\star\star}(A) \subseteq X - \tau_1\tau_2$ -Cl($\{x\}$) $\subseteq X - \{x\}$. This contradicts that $x \in \operatorname{Cl}^{\star\star}(A)$. Therefore, $\tau_1\tau_2$ -Cl($\{x\}$) $\cap A \neq \emptyset$ for each $x \in \operatorname{Cl}^{\star\star}(A)$.

Conversely, suppose that A is not \mathscr{I} -g- $\tau_1\tau_2$ -closed. Then, by Theorem 3.18, we have $\operatorname{Cl}^{\star\star}(A) - U \neq \emptyset$ for some $\tau_1\tau_2$ -open set U containing A. There exists $x \in \operatorname{Cl}^{\star\star}(A) - U$. Since $x \notin U$, we have $\tau_1\tau_2$ -Cl($\{x\}) \cap U = \emptyset$ and hence

$$\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap A \subseteq \tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap U = \emptyset.$$

This shows that $\tau_1 \tau_2$ -Cl($\{x\}$) $\cap A = \emptyset$ for some $x \in$ Cl^{**}(A).

Lemma 3.18. For a subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties hold:

- (1) $x \in Cl^{\star\star}(A)$ if and only if $A \cap V \neq \emptyset$ for every $\star\star$ -open set V containing x.
- (2) $Cl^{\star\star}(X-A) = X Int^{\star\star}(A)$ and $Int^{\star\star}(X-A) = X Cl^{\star\star}(A)$.

Theorem 3.19. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is \mathscr{I} -g- $\tau_1\tau_2$ -open if and only if $F \subseteq Int^{**}(A)$ whenever $F \subseteq A$ and F is $\tau_1\tau_2$ -closed.

Proof. Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -open. Let $F \subseteq A$ and F be $\tau_1\tau_2$ -closed. Then $X - A \subseteq X - F$. Since X - F is $\tau_1\tau_2$ -open and X - A is \mathscr{I} -g- $\tau_1\tau_2$ -closed, we have $\operatorname{Cl}^{\star\star}(X - A) \subseteq X - F$ and hence $X - \operatorname{Int}^{\star\star}(A) = \operatorname{Cl}^{\star\star}(X - A) \subseteq X - F$. Consequently, we obtain $F \subseteq \operatorname{Int}^{\star\star}(A)$.

Conversely, let $X - A \subseteq U$ and U be $\tau_1 \tau_2$ -open. Then $X - U \subseteq A$ and X - U is $\tau_1 \tau_2$ -closed. By the hypothesis, we have $X - U \subseteq \text{Int}^{\star\star}(A)$ and so

$$\operatorname{Cl}^{\star\star}(X - A) = X - \operatorname{Int}^{\star\star}(A) \subseteq U.$$

Therefore, X - A is \mathscr{I} -g- $\tau_1 \tau_2$ -closed and so A is \mathscr{I} -g- $\tau_1 \tau_2$ -open.

Theorem 3.20. For a subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

(1) A is \mathscr{I} -g- $\tau_1\tau_2$ -closed.

- (2) $A^{\star\star} A$ contains no non-empty $\tau_1 \tau_2$ -closed set.
- (3) $A^{\star\star} A$ is \mathscr{I} -g- $\tau_1 \tau_2$ -open.
- (4) $A \cup (X A^{\star\star})$ is \mathscr{I} -g- $\tau_1 \tau_2$ -closed.
- (5) $Cl^{\star\star}(A) A$ contains no non-empty $\tau_1 \tau_2$ -closed set.

Proof. (1) \Rightarrow (2): Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -closed. Let $F \subseteq A^{\star\star} - A$ and F be $\tau_1\tau_2$ -closed. Then $A \subseteq X - F$ and X - F is $\tau_1\tau_2$ -open. Since X - F is $\tau_1\tau_2$ -open and A is \mathscr{I} -g- $\tau_1\tau_2$ -closed, we have $A^{\star\star} \subseteq X - F$ and hence $F \subseteq X - A^{\star\star}$. This implies that $F \subseteq A^{\star\star} \cap (X - A^{\star\star}) = \emptyset$.

 $(2) \Rightarrow (3)$: Let $F \subseteq A^{\star\star} - A$ and F be $\tau_1 \tau_2$ -closed. By (2), we have $F = \emptyset$ and $F \subseteq \operatorname{Int}^{\star\star}(A^{\star\star} - A)$. It follows from Theorem 3.25 that $A^{\star\star} - A$ is \mathscr{I} -g- $\tau_1 \tau_2$ -open.

 $\begin{array}{l} (3) \Rightarrow (1): \mbox{ Let } A \subseteq U \mbox{ and } U \mbox{ be } \tau_1 \tau_2 \mbox{-open. Then } A^{\star \star} \cap (X-U) \subseteq A^{\star \star} - A \mbox{ and } by \ (3) \ A^{\star \star} - A \mbox{ is } \mathscr{I} \mbox{-} g \mbox{-} \tau_1 \tau_2 \mbox{-} open. \mbox{ Since } A^{\star \star} \cap (X-U) \mbox{ is } \tau_1 \tau_2 \mbox{-} closed \mbox{ and } A^{\star \star} - A \mbox{ is } \mathscr{I} \mbox{-} g \mbox{-} \tau_1 \tau_2 \mbox{-} open. \mbox{ Since } A^{\star \star} \cap (X-U) \mbox{ is } \tau_1 \tau_2 \mbox{-} closed \mbox{ and } A^{\star \star} - A \mbox{ is } \mathscr{I} \mbox{-} g \mbox{-} \tau_1 \tau_2 \mbox{-} open. \mbox{ by Theorem 3.25, we obtain } A^{\star \star} \cap (X-U) \mbox{ Int}^{\star \star} (A^{\star \star} - A). \mbox{ Now, we have } \mbox{Int}^{\star \star} (A^{\star \star} - A) = \mbox{Int}^{\star \star} (A^{\star \star} \cap (X-A)) \mbox{ \subseteq } A^{\star \star} \cap (X-\mbox{ cl}^{\star \star} (A)) = \emptyset. \mbox{ Therefore, } A^{\star \star} \cap (X-U) = \emptyset \mbox{ and hence } A^{\star \star} \mbox{ U. This shows that } A \mbox{ is } \mathscr{I} \mbox{-} g \mbox{-} \tau_1 \tau_2 \mbox{-} closed. \end{array}$

(3) \Leftrightarrow (4): This follows from the fact that $X - (A^{\star\star} - A) = (X - A^{\star\star}) \cup A$. (2) \Leftrightarrow (5): This is obvious by the fact that

$$Cl^{\star\star}(A) - A = (A^{\star\star} \cup A) \cap (X - A)$$
$$= (A^{\star\star} \cap (X - A)) \cup (A \cap (X - A))$$
$$= A^{\star\star} - A.$$

Corollary 3.21. Let A be a \mathscr{I} -g-bilosed set of $(X, \tau_1, \tau_2, \mathscr{I})$. Then, the following are properties equivalent:

- (1) A is a $\star\star$ -closed set.
- (2) $Cl^{\star\star}(A) A$ is a $\tau_1\tau_2$ -closed set.
- (3) $A^{\star\star} A$ is a $\tau_1 \tau_2$ -closed set.

Proof. (1) \Rightarrow (2): Suppose that A is a **-closed set. Then $\operatorname{Cl}^{**}(A) - A = \emptyset$ and so $\operatorname{Cl}^{**}(A) - A$ is $\tau_1 \tau_2$ -closed.

(2) \Rightarrow (3): This follows from the fact that $\operatorname{Cl}^{\star\star}(A) - A = A^{\star\star} - A$.

(3) \Rightarrow (1): Suppose that $A^{\star\star} - A$ is $\tau_1 \tau_2$ -closed. Since A is \mathscr{I} -g- $\tau_1 \tau_2$ -closed, by Theorem 3.26(2), we have $A^{\star\star} - A = \emptyset$ and so A is $\star\star$ -closed. \Box

Theorem 3.22. A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is \mathscr{I} -g- $\tau_1\tau_2$ -closed if and only if A = F - N, where F is **-closed and N contains no non-empty $\tau_1\tau_2$ -closed set.

Proof. Suppose that A is \mathscr{I} -g- $\tau_1\tau_2$ -closed. Let $F = \operatorname{Cl}^{\star\star}(A)$ and $N = A^{\star\star} - A$. Then F is $\star\star$ -closed and by, Theorem 3.26(2), N contains no non-empty $\tau_1\tau_2$ -closed set. Moreover, we have

$$F - N = (A^{**} \cup A) - (A^{**} - A)$$

= $(A^{**} \cup A) \cap [X - (A^{**} - A)]$
= $(A^{**} \cup A) \cap [(X - A^{**}) \cup A]$
= $[A^{**} \cap (X - A^{**})] \cup A = A.$

Conversely, suppose that A = F - N, where F is **-closed and N contains no non-empty $\tau_1\tau_2$ -closed set. Let $A \subseteq U$ and U be $\tau_1\tau_2$ -open. Then, we have $F-N \subseteq U$ and $F \cap (X-U) \subseteq F \cap [X-(F-N)] = F \cap [(X-F) \cup N] = F \cap N \subseteq N$. By Proposition 3.1, A^{**} is $\tau_1\tau_2$ -closed and $A^{**} \cap (X-U)$ is $\tau_1\tau_2$ -closed. Since $A \subseteq F$ and $F^{**} \subseteq \operatorname{Cl}^{**}(F) = F$, $A^{**} \cap (X-U) \subseteq F^{**} \cap (X-U) \subseteq F \cap (X-U) \subseteq N$. Therefore, $A^{**} \cap (X-U) = \emptyset$ and so $A^{**} \subseteq U$. This shows that A is \mathscr{I} -g- $\tau_1\tau_2$ closed.

Corollary 3.23. For a subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) A is \mathscr{I} -g- $\tau_1\tau_2$ -open.
- (2) $A Int^{\star\star}(A)$ contains no non-empty $\tau_1 \tau_2$ -closed set.
- (3) $\tau_1 \tau_2 Cl(\{x\}) \cap (X A) \neq \emptyset$ for each $x \in X Int^{\star \star}(A)$.

Proof. This follows from Theorem 3.23 and 3.26.

4 Some Separation Axioms

In this section, we introduce the notions of \mathscr{I} -g- $\tau_1\tau_2$ -normal, \mathscr{I} -g- $\tau_1\tau_2$ -regular and $\mathscr{I}^{\star\star}$ - R_0 spaces. Moreover, several interesting characterizations of these spaces are discussed.

Definition 4.1. An ideal bitopological space (X, τ_1, τ_2) is said to be \mathscr{I} -g- $\tau_1\tau_2$ normal if for every pair of disjoint $\tau_1\tau_2$ -closed sets A and B, there exist disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.2. For an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) X is \mathscr{I} -g- $\tau_1\tau_2$ -normal.
- (2) For every $\tau_1\tau_2$ -closed set F and every $\tau_1\tau_2$ -open set V containing F, there exists a \mathscr{I} -g- $\tau_1\tau_2$ -open set U such that $F \subseteq U \subseteq Cl^{**}(U) \subseteq V$.

Proof. (1) \Rightarrow (2): Let F be a $\tau_1\tau_2$ -closed set and V be a $\tau_1\tau_2$ -open set containing F. Since F and X - V are disjoint $\tau_1\tau_2$ -closed sets, there exist disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets U and W such that $F \subseteq U$ and $X - V \subseteq W$. Again, $U \cap W = \emptyset$ implies that $U \cap \operatorname{Int}^{**}(W) = \emptyset$ and so $\operatorname{Cl}^{**}(U) \subseteq X - \operatorname{Int}^{**}(W)$. Since X - V is $\tau_1\tau_2$ -closed and W is \mathscr{I} -g- $\tau_1\tau_2$ -open, $X - V \subseteq W$ implies that $X - V \subseteq \operatorname{Int}^{**}(W)$ and so $X - \operatorname{Int}^{**}(W) \subseteq V$. Thus, we have $F \subseteq U \subseteq \operatorname{Cl}^{**}(U) \subseteq X - \operatorname{Int}^{**}(W) \subseteq V$ which proves (2).

 $(2) \Rightarrow (1)$: Let A and B be two disjoint $\tau_1 \tau_2$ -closed sets. By hypothesis, there exists a \mathscr{I} -g- $\tau_1 \tau_2$ -open set U such that $A \subseteq U \subseteq \operatorname{Cl}^{\star\star}(U) \subseteq X - B$. Put $W = X - \operatorname{Cl}^{\star\star}(U)$, then U and W are the required disjoint \mathscr{I} -g- $\tau_1 \tau_2$ -open sets containing A and B, respectively. This shows that X is \mathscr{I} -g- $\tau_1 \tau_2$ -normal. \Box

Theorem 4.3. For an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) X is \mathscr{I} -g- $\tau_1 \tau_2$ -normal.
- (2) For every $\tau_1\tau_2$ -closed set A and every g- $\tau_1\tau_2$ -closed set B such that $A \cap B = \emptyset$, there exists disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof. (1) \Rightarrow (2): Let A be a $\tau_1\tau_2$ -closed set and B be a \mathscr{I} -g- $\tau_1\tau_2$ -closed set such that $A \cap B = \emptyset$. Then, we have $B \subseteq X - A$ and X - A is $\tau_1\tau_2$ -open. Therefore, by hypothesis, $\tau_1\tau_2$ -Cl(B) $\subseteq X - A$ and so $\tau_1\tau_2$ -Cl(B) $\cap A = \emptyset$. Since X is \mathscr{I} -g- $\tau_1\tau_2$ -normal, there exist disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets U and V such that $B \subseteq \tau_1\tau_2$ -Cl(B) $\subseteq U$ and $A \subseteq V$.

 $(2) \Rightarrow (1)$: This is obvious.

Proposition 4.4. For an \mathscr{I} -g- $\tau_1\tau_2$ -normal space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties hold:

- (1) For every $\tau_1\tau_2$ -closed set F and every g- $\tau_1\tau_2$ -open set U containing F, there exists a \mathscr{I} -g- $\tau_1\tau_2$ -open set V such that $F \subseteq Int^{\star\star}(V) \subseteq V \subseteq U$.
- (2) For every \mathscr{I} -g- $\tau_1\tau_2$ -closed set F and every $\tau_1\tau_2$ -open set U containing F, there exists a \mathscr{I} -g- $\tau_1\tau_2$ -closed set H such that $F \subseteq H \subseteq Cl^{\star\star}(H) \subseteq U$.

Proof. (1). Let F be a $\tau_1\tau_2$ -closed set and U be a g- $\tau_1\tau_2$ -open set containing F. Then $F \cap (X - U) = \emptyset$, where F is $\tau_1\tau_2$ -closed and X - U is \mathscr{I} -g- $\tau_1\tau_2$ -closed. By Theorem 4.3, there exist disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets V and W such that $F \subseteq V$ and $X - U \subseteq W$. Since $V \cap W = \emptyset$, we have $V \subseteq X - W$. By Theorem 3.25, we have $F \subseteq \operatorname{Int}^{**}(V)$. Therefore, $F \subseteq \operatorname{Int}^{**}(V) \subseteq V \subseteq X - W \subseteq U$. This proves (1).

(2). Let F be a \mathscr{I} -g- $\tau_1\tau_2$ -closed set and U be a $\tau_1\tau_2$ -open set containing F. Then X - U is a $\tau_1\tau_2$ -closed set contained in the \mathscr{I} -g- $\tau_1\tau_2$ -open set X - F. By (1), there exists a \mathscr{I} -g- $\tau_1\tau_2$ -open set V such that $X - U \subseteq \operatorname{Int}^{\star\star}(V) \subseteq V \subseteq X - F$. Therefore, $F \subseteq X - V \subseteq \operatorname{Cl}^{\star\star}(X - V) \subseteq U$. Put H = X - V, then $F \subseteq H \subseteq$ $\operatorname{Cl}^{\star\star}(H) \subseteq U$ and so H is the required \mathscr{I} -g- $\tau_1\tau_2$ -closed set. \Box Generalized $au_1 au_2$ -Closed Sets in Ideal Bitopological Spaces

Definition 4.5. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is said to be \mathscr{I} -g- $\tau_1\tau_2$ -regular if for each $\tau_1\tau_2$ -closed set F and each $x \notin F$, there exist disjoint \mathscr{I} -g- $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 4.6. For an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) X is \mathscr{I} -g- $\tau_1 \tau_2$ -regular.
- (2) For each $x \in X$ and each $\tau_1 \tau_2$ -open set V containing x, there exists a \mathscr{I} -g- $\tau_1 \tau_2$ -open set U such that $x \in U \subseteq Cl^{\star\star}(U) \subseteq V$.

Proof. (1) \Rightarrow (2): For each $x \in X$ and any $\tau_1 \tau_2$ -open set V containing x, there exist disjoint \mathscr{I} -g- $\tau_1 \tau_2$ -open sets U and W such that $x \in U$ and $X - V \subseteq W$. Now, $X - V \subseteq W$ implies that $X - V \subseteq \operatorname{Int}^{**}(W)$ and so $X - \operatorname{Int}^{**}(W) \subseteq V$. Again, $U \cap W = \emptyset$ implies that $U \cap \operatorname{Int}^{**}(W) = \emptyset$ and so $\operatorname{Cl}^{**}(U) \subseteq X - \operatorname{Int}^{**}(W)$. Therefore, $x \in U \subseteq \operatorname{Cl}^{**}(U) \subseteq V$. This proves (2).

 $(2) \Rightarrow (1)$: Let $x \in X$ and F be a $\tau_1 \tau_2$ -closed set not containing x. Then by (2), there exists a \mathscr{I} -g- $\tau_1 \tau_2$ -open set U such that $x \in U \subseteq \operatorname{Cl}^{**}(U) \subseteq X - F$. Put $W = X - \operatorname{Cl}^{**}(U)$, then U and W are disjoint \mathscr{I} -g- $\tau_1 \tau_2$ -open sets such that $x \in U$ and $F \subseteq W$. This proves (1).

Definition 4.7. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is said to be $\mathscr{I}^{\star\star}$ - R_0 -space if for each $\tau_1\tau_2$ -open set U and each $x \in U, \{x\}^{\star\star} \subseteq U$.

The following theorem gives some characterizations of $\mathscr{I}^{\star\star}$ - R_0 -spaces.

Theorem 4.8. For an ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$, the following properties are equivalent:

- (1) X is a $\mathscr{I}^{\star\star}$ -R₀-space.
- (2) For each $\tau_1 \tau_2$ -open set U and each $x \in U$, $Cl^{\star\star}(\{x\}) \subseteq U$.
- (3) For each $\tau_1\tau_2$ -closed set F and each $x \in X F$, there exists a $\star\star$ -open set U such that $F \subseteq U$ and $x \notin U$.
- (4) For each $\tau_1 \tau_2$ -closed set F and each $x \in X F$, $Cl^{\star\star}(\{x\}) \cap F = \emptyset$.
- (5) For any two distinct points x and y of X, $x \notin \tau_1 \tau_2$ -Cl({y}) implies

$$Cl^{\star\star}(\{x\}) \cap \tau_1\tau_2 - Cl(\{y\}) = \emptyset.$$

Proof. (1) \Rightarrow (2): Let U be any $\tau_1 \tau_2$ -open set and $x \in U$. Then by (1), we have $\{x\}^{\star\star} \subseteq U$, Thus, $\operatorname{Cl}^{\star\star}(\{x\}) = \{x\}^{\star\star} \cup \{x\} \subseteq U$.

 $(2) \Rightarrow (3)$: Let F be any $\tau_1 \tau_2$ -closed set and $x \notin F$. Then $x \in X - F$. By (2), we have $\operatorname{Cl}^{\star\star}(\{x\}) \subseteq X - F$ and so $F \subseteq X - \operatorname{Cl}^{\star\star}(\{x\})$. Put $U = X - \operatorname{Cl}^{\star\star}(\{x\})$. Then U is a $\star\star$ -open set such that $F \subseteq U$ and $x \notin U$.

(3) \Rightarrow (4): Let *F* be any $\tau_1\tau_2$ -closed set and $x \notin F$. Then by (4), there exists a ******-open set *U* such that $F \subseteq U$ and $x \notin U$. Therefore, we obtain $\operatorname{Cl}^{**}(\{x\}) \cap U = \emptyset$ and so $\operatorname{Cl}^{**}(\{x\}) \cap F = \emptyset$.

 $(4) \Rightarrow (5)$: The proof is obvious.

 $(5) \Rightarrow (1)$: Let U be any $\tau_1 \tau_2$ -open set and $x \in U$. Then for each $y \in X - U$, we have $x \notin \tau_1 \tau_2$ -Cl($\{y\}$). Therefore by (5), Cl^{**}($\{x\}$) $\cap \tau_1 \tau_2$ -Cl($\{y\}$) = \emptyset for each $y \in X - U$. Since X - U is $\tau_1 \tau_2$ -closed, $y \in \tau_1 \tau_2$ -Cl($\{y\}$) $\subseteq X - U$ and so $\cup_{y \in X - U} \tau_1 \tau_2$ -Cl($\{y\}$) = X - U. Therefore,

$$Cl^{\star\star}(\{x\}) \cap (X - U) = Cl^{\star\star}(\{x\}) \cap [\cup_{y \in X - U} \tau_1 \tau_2 - Cl(\{y\})]$$

= $\cup_{y \in X - U} [Cl^{\star\star}(\{x\}) \cap \tau_1 \tau_2 - Cl(\{y\})] = \emptyset.$

Consequently, we obtain $\operatorname{Cl}^{\star\star}(\{x\}) \subseteq U$. This shows that X is a $\mathscr{I}^{\star\star}-R_0$ -space.

Acknowledgement : This research was financially supported by the Faculty of Science, Mahasarakham University.

References

- [1] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [2] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indean Acad. Sci. Sect A, 20 (1944) 51–61.
- [3] D. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990) 295–310.
- [4] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 2 (19) (1970) 89–96.
- [5] J. Dontchev, M. Ganster, T. Noiri, Unified operations approach of generalized closed sets via topological ideals, Math. Japon. 49 (1999) 395–401.
- [6] M. Navaneethakrishnan, J. Paulraj Joseph, g-Closed sets in ideal topological spaces, Acta Math. Hungar. 119 (2008) 365–371.
- [7] D. Mandal, M.N. Mukherjee, Certain new lasses of generalized closed sets and their applications in ideal topological spaces, Filomat 29 (2015) 1113–1120.
- [8] M. Navaneethakrishnan, J. Paulraj Joseph, D. Sivaraj, *Ig*-Normal and *Ig*regular spaces, Acta Math. Hungar. 125 (2009) 327–340.
- [9] O.B. Ozbakir, E.D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar. 125 (2009) 227–235.
- [10] T. Noiri, V. Popa, Between *-closed sets and *I-g*-closed sets in ideal topologial spaces, Rend. Circ. Mat. Palermo 59 (2010) 251–260.

Generalized $\tau_{1}\tau_{2}\text{-}\mathsf{Closed}$ Sets in Ideal Bitopological Spaces

[11] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci. 18 (2018) 282–293.

(Received 19 June 2018) (Accepted 31 August 2018)

 $\mathbf{T}_{\mathrm{HAI}}$ J. MATH. Online @ http://thaijmath.in.cmu.ac.th