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1 Introduction and Preliminaries

Throughout this paper, all rings are associative rings with identity and all
modules are unitary right R-modules. Let R be a ring and M , a right R-module.
Denote S =EndR(M), the endomorphism ring of the module M . A submodule X
of M is called a fully invariant submodule if f(X) ⊂ X for any f ∈ S. Especially,
a right ideal of R is a fully invariant submodule of RR if it is a two-sided ideal
of R. The class of all fully invariant submodules of M is non-empty and closed
under intersections and sums. A right R-module M is called a self-generator if it
generates all its submodules. Following [1], a fully invariant proper submodule X
of M is called a prime submodule of M if for any ideal I of S =EndR(M), and any
fully invariant submodule U of M , if I(U) ⊂ X, then either I(M) ⊂ X or U ⊂ X.
A fully invariant submodule X of M is called a strongly prime submodule of M
if for any φ ∈ S =EndR(M) and m ∈ M , if φ(m) ∈ X, then either φ(M) ⊂ X or
m ∈ X. The basic Theorem 2.1 in [1] shows that the class of prime submodules of
a given module has some properties similar to that of prime ideals in an associative
ring. Following that theorem, a fully invariant proper submodule X of M is prime
if and only if for any φ ∈ S and m ∈ M, φSm ⊂ X implies that φ(M) ⊂ X or
m ∈ X. Using this property one can see that every strongly prime submodule is
prime.

Definition 1.1. [2, Definition 2.1] A submodule of a right R-module M is said to
have insertion factor property (briefly, an IFP-submodule) if for any endomorphism
φ of M and any element m ∈ M , if φ(m) ∈ X, then φSm ∈ X. A right ideal
I is an IFP-right ideal if it is an IFP-submodule of RR, that is for any a, b ∈ R,
if ab ∈ I, then aRb ⊆ I. A right R-module M is called an IFP-module if 0 is an
IFP-submodule of M . A ring R is IFP if 0 is an IFP-ideal.

Definition 1.2. [1, Definition 2.1] A fully invariant submodule X of a right R-
module M is called a semiprime submodule if it is an intersection of prime submod-
ules of M . A right R-module M is called a semiprime module if 0 is a semiprime
submodule of M . Consequently, the ring R is a semiprime ring if RR is semiprime.
By symmetry, the ring R is a semiprime ring if RR is a semiprime left R-module.

Proposition 1.3. [3, Proposition 2.3] Let M be a right R-module which is a
self-generator and X, a fully invariant submodule of M . Then X is a semiprime
submodule if and only if whenever f ∈ S with fSf(M) ⊂ X, then f(M) ⊂ X.

In what follows, by Z,Q,Zn and Z/nZ we denote, respectively, integers, ratio-
nal numbers, the ring of integers modulo n and the Z-module of integers modulo
n.
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2 Completely Semiprime Modules and
Submodules

In this section, we investigate the properties of completely semiprime sub-
modules and modules by our definition. We now give the notion of a completely
semiprime submodule.

Definition 2.1. A fully invariant proper submodule X of M is called completely
semiprime if for any ψ ∈ S and m ∈M, ψ2(m) ∈ X implies ψSm ⊆ X.

We provide a relationship between a completely semiprime submodule and
semiprime submodule as follows.

Remark 2.2. Every completely semiprime submodule is semiprime.

Proof. Suppose that X is a completely semiprime submodule of M. It follows
from Proposition 1.3 that X will be semiprime if we can prove that for every
f ∈ S =EndR(M), fSf(M) ⊆ X implies f(M) ⊆ X. So, let f ∈ S =EndR(M)
such that fSf(M) ⊆ X. Therefore, f2(m) ∈ X for every m ∈ M. Since X is
a completely semiprime submodule of M , we have fSm ⊆ X for every m ∈ M.
Hence, f(M) ⊆ fS(M) ⊆ X and we are done.

An R-module M is completely semiprime if the zero submodule of M is a com-
pletely semiprime submodule of M . In general, an R-module M/P is a completely
semiprime module if and only if P is a completely semiprime prime submodule of
M . To illustrate, we give an example of completely semiprime module.

Example 2.3. Let p be any prime integer and M = (Z/pZ) ⊕ Q a Z-module.
Then the endomorphism ring S of the module M is isomorphic to the matrix

ring

{[
a 0
0 b

]
: a ∈ Zp, b ∈ Q

}
. It is evident that M is a completely semiprime

module.

We provide a characterization of completely semiprime submodules as follows.

Proposition 2.4. Let M be a right R-module and S =EndR(M) be a reduced ring,
i.e., S has no nonzero nilpotent elements. Assume that for each element m ∈M ,
there exists g ∈ S such that mR = gM . Then M is completely semiprime.

Proof. Let f ∈ S and m ∈ M such that f2(m) = 0. From our assumption there
exists g ∈ S such that mR = gM. Hence 0 = f2(mR) = f2g(M). Hence f2g =
0. Since S is reduced, we have fg = 0 and consequently fSg = 0. Thus 0 =
fSg(M) = fS(mR) and we can see that fS(m) = 0.

The following corollary is a direct consequence of Proposition 2.4.

Corollary 2.5. A free R-module is completely semiprime if S =EndR(M) is a
reduced ring.
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Proof. Let F be a free R-module. Clearly for every m ∈ F there exists f ∈
S =EndR(M) such that fF = Rm. By Proposition 2.4, F is completely semiprime.

Some characterizations of completely semiprime submodules are given in the
following result.

Proposition 2.6. Let M be a right R-module and S =EndR(M). For a fully
invariant proper submodule X of M , the followings are equivalent:

1. X is completely semiprime.

2. For all a ∈ S and m ∈M, if am ∈ X, then Sm ∩ aM ⊆ X.

3. (a) For all a ∈ S and m ∈M such that am ∈ X, we have aSm ⊆ X and

(b) a2m ∈ X implies am ∈ X.

Proof. 1. ⇒ 2. Assume that a2m ∈ X. Then aSm ⊆ X. Let a ∈ S and m ∈ M
such that am ∈ X and x ∈ Sm ∩ aM. Now, x = bm = am1, for b ∈ S and
m1 ∈M. Since am ∈ X and X is a fully invariant submodule, a2m ∈ X. From our
assumption, we have aSm ⊆ X. From am1 ∈ Sm, we can see that a2m1 ∈ aSm ⊆
X. Again, by our assumption, aSm1 ⊆ X. It implies that x = am1 ∈ aSm1 ⊆ X.
Hence, Sm ∩ aM ⊆ X.

2. ⇒ 3. Let a ∈ S and m ∈ M such that am ∈ X. From (2), we have
aSm ⊆ Sm∩ aM ⊆ X and (3a) is satisfied. Now, let a ∈ S and m ∈M such that
a2m = a(am) ∈ X. From (2), we have am ∈ S(am) ∩ aM ⊆ Sm ∩ aM ⊆ X and
(3b) is proved.

3.⇒ 2. Let a ∈ S and m ∈ M such that am ∈ X. If x ∈ Sm ∩ aM, then x =
bm = an for some b ∈ S and n ∈ M. From (3a), we have abm ∈ aSm ⊆ X. Since
a2n = ax = abm ∈ X, applying (3b), we have x = an ∈ X. Hence, Sm ∩ aM ⊆ X
and (2) is proved.

3.⇒ 1. Let a ∈ S and m ∈M such that a2m ∈ X. From (3b), we have am ∈ X
and from (3a), we have aSm ⊆ X.

We consider the relationship between completely semiprime and IFP submod-
ules in the following lemma.

Lemma 2.7. If a fully invariant submodule X of a right R-module M is completely
semiprime, then

1. X is an IFP-submodule of M.

2. If α, β ∈ S and m ∈M such that αβ(m) ∈ X, then βα(m) ∈ X.

Proof. 1. Let α(m) ∈ X. Since X is a fully invariant submodule, we have
α2(m) ∈ X. Now, since X is a completely semiprime submodule of M , we
have αS(m) ⊆ X.
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2. Let α, β ∈ S and m ∈M such that αβ(m) ∈ X. It implies that (βαβ)2(m) ∈
X. Because X is completely semiprime, we have βαβS(m) ⊆ X. Hence
(βα)2(m) ∈ X and again, since X is completely semiprime, we have βαS(m)
⊆ X and consequently βα(m) ∈ X.

It is well known from [4] that a strongly prime submodule is prime. The fol-
lowing result shows that a strongly prime submodule is also completely semiprime.

Proposition 2.8. If a fully invariant submodule X of M is a strongly prime
submodule of M , then it is completely semiprime.

Proof. Let ψ ∈ S and m ∈ M such that ψ2(m) ∈ X. Since X is a strongly
prime submodule of M , we have ψ(M) ⊆ X or ψ(m) ∈ X. If ψ(M) ⊆ X, then
ψS(M) = ψ(M) ⊆ X and we have ψS(m) ⊆ X. If ψ(m) ∈ X, then since X is a
strongly prime submodule of M , we have ψ(M) ⊆ X or m ∈ X. We only have to
show that if m ∈ X, then ψS(m) ⊆ X. Now g(m) ∈ X for every g ∈ S. Hence
S(m) ⊆ X and consequently ψS(m) ⊆ X.

As for a semiprime submodule in [1] we now define strongly semiprime sub-
module as follows:

Definition 2.9. A fully invariant submodule X of a right R-module M is called a
strongly semiprime submodule if it is an intersection of strongly prime submodules
of M . A right R-module M is called a strongly semiprime module if 0 is a strongly
semiprime submodule of M.

Similar to a prime submodule, the following shows that if X is a strongly
semiprime submodule, then IX is a completely semiprime ideal of S. The converse
is aslo considered.

Proposition 2.10. Let M be a right R-module.

1. If X is a strongly semiprime submodule of M , then IX is a completely
semiprime ideal of S.

2. If M is a self-generator and P is a completely semiprime ideal of S, then
X := P (M) is a strongly semiprime submodule of M and IX = P.

Proof. 1. Since X is a strongly semiprime submodule of M , we can write X =⋂
P∈F

P , where each P is a strongly prime submodule of M .

So IX = I ⋂
P⊆M,P∈F

P =
⋂

P⊆M,P∈F
IP . By [4, Theorem 2.13] it is easy to see

that IX is a completely semiprime ideal of S.

2. Since M is a self-generator, we can write P = IP (M) = IX , which is a com-
pletely semiprime ideal of S. Hence
IX =

⋂
K⊂S,K completely prime

K =Hom(M, (
⋂

K⊂S,K completely prime

K)(M)). Let
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X = P (M), where P is a completely semiprime ideal of S. Since M is a self-
generator, we have P = IP (M) = IX and by our assumption P =

⋂
K∈Λ

K, for

some set Λ of completely prime ideals of S. Thus IX = Hom(M, IX(M))
= Hom(M ,

⋂
K∈Λ

K(M)). Thus (
⋂
K∈Λ

K)(M) =
⋂
K∈Λ

K(M), and therefore

X =
⋂
K∈Λ

K(M). Since K is a completely prime ideal of S, K(M) is a

strongly prime submodule of M , proving that X is a strongly semiprime
submodule of M.

The following result provides an important property of completely semiprime
submodules.

Proposition 2.11. Let M be a right R-module which is a self-generator and X a
fully invariant submodule of M. Then X is a completely semiprime submodule of
M if and only if it is strongly semiprime submodule of M.

Proof. Let X be a completely semiprime submodule of M. We prove that IX is
a completely semiprime ideal of S. Let a ∈ S such that a2 ∈ IX . Hence a2(M) ⊆
X. Now for all m ∈ M we have a2m ∈ X. Since X is a completely semiprime
submodule of M, we have aSm ⊆ M. Hence aM = aSM ⊆ X and a ∈ IX . Thus
IX is a completely semiprime ideal of S. From Proposition 2.10, X is a strongly
semiprime submodule of M.

For the converse, suppose X =
⋂

P⊆M,P∈Λ

P , where Λ is a family of strongly

prime submodules of M. Let f ∈ S and m ∈M such that
f2m ∈ X =

⋂
P⊆M,P∈Λ

P. Hence f2m ∈ P for every P ∈ Λ. Since P is strongly

prime and f(m) ∈ M, we have f(M) ⊆ P or f(m) ∈ P for every P ∈ Λ. If
f(M) ⊆ P for every P ∈ Λ, then fS(m) ⊆ P for every P ∈ Λ. Hence fS(m) ⊆ X.
If f(m) ∈ P for every P ∈ Λ, then since every P is strongly prime, we have
f(M) ⊆ P or m ∈ P. Now m ∈ P implies that g(m) ∈ P for all g ∈ S. Hence
S(m) ⊆ P and consequently fS(m) ⊆ P for every P ∈ Λ. Thus fS(m) ⊆ X and
we are done.

We consider the quotient module of a completely semiprime submodule as
follows.

Lemma 2.12. Let X be a submodule of a right R-module M . If X is a com-
pletely semiprime submodule and M is quasi-projective, then M/X is a completely
semiprime module. Conversely, if M/X is completely semiprime and X is fully
invariant, then X is a completely semiprime submodule of M .

Proof. Suppose X is a completely semiprime submodule of M and φ
2
(m) = 0

where φ ∈ S =EndR(M/X) and m ∈M/X. By the quasi-projectivity of M , there
is a φ ∈ S such that vφ = φv, where v : M →M/X is the natural epimorphism. It
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follows that φ2(m) ∈ X. Let η be any element of S. As above there is a η ∈ S such
that vη = ηv. Since X is completely semiprime φS(m) ⊆ X. Hence vφη(m) = 0
and thus φη(m) = φηv(m) = φvη(m) = vφη(m) = 0. Thus φS(m) = 0 and
consequently M/X is a completely semiprime module. For the converse, suppose
X is a fully invariant submodule of M with M/X completely semiprime. Let
φ2(m) ∈ X with φ ∈ S and m ∈M. Since M is quasi-projective, there is a φ ∈ S
such that vφ = φv. Now φ2(m) ∈ X implies vφ2(m) = 0. Hence φ

2
(m) = φ

2
v(m) =

vφ2(m) = 0. Let η ∈ S. Using the fact that M is quasi-projective, there is a µ ∈ S
such that vη = µv. Since M/X is completely semiprime, we have that φS(m) = 0
. Now φη(m) = φηv(m) = φvη(m) = vφη(m) = 0. Hence φη(m) ∈ X for every η
∈ S. Thus φS(m) ⊆ X and therefore X is a completely semiprime submodule of
M .

The following theorem can be considered as a generalization of [2, Proposition
2.4].

Theorem 2.13. Let X be a fully invariant submodule of a right R-module M . X
is strongly prime if and only if it is prime and completely semiprime.

Proof. From [4] and Proposition 2.8, if X is strongly prime, then X is prime and
completely semiprime.

For the converse, let X be prime and completely semiprime. From Lemma
2.7, X has IFP and from [2, Proposition 2.4] X is strongly prime.

We give the relationship between a completely semiprime submodule and its
endomorphism ring.

Proposition 2.14. Let M be a right R-module and S =EndR(M). If M is com-
pletely semiprime, then S is reduced. The converse is true if M is a self generator.

Proof. Let φ2 = 0 ∈ S. Then φ2(m) = 0 for all m ∈ M . If M is completely
semiprime, then φS(m) = 0 for all m ∈ M . Hence φS(M) = φ(M) = 0. Thus
φ = 0 and S is reduced.

Conversely, since I0 = {f ∈ S|f(M) = 0 ⊂M} = 0 is a completely semiprime
ideal, it follows from Proposition 2.10 that 0 is a completely semiprime submodule.
Hence, M is completely semiprime.

We provide a method to examine when an R-module is completely semiprime.

Proposition 2.15. Let M be a right R-module and S = EndR(M). If M is quasi-
projective, then the followings are equivalent:

1. M is completely semiprime.

2. For any φ ∈ S, ker(φ) is a completely semiprime submodule of M.

3. M/ker(I) is a completely semiprime module for any subset I of S.
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Proof. 1.⇒ 2. Let ψ2(m) ∈ ker(φ). If φ is any element from S, then φψ2(m) = 0.
From Lemma 2.7, we have ψφψ(m) = 0. Hence φψφψ(m) = 0 and since M is
completely semiprime, we have φψS(m) = 0. Thus ψS(m) ⊆ ker(φ) and therefore
ker(φ) is a completely semiprime submodule of M.

2. ⇒ 3. We note that ker(I) =
⋂
f∈I

ker(f) and each ker(f) is a completely

semiprime submodule of M. Hence, ker(I) is a completely semiprime submodule of
M . Since M is quasi-projective, by applying Lemma 2.12, we have that M/ker(I)
is a completely semiprime module.

3. ⇒ 1. This part is clear by taking I = {1M}, 1M is the identity map of
M .

By Proposition 2.15, we can check that M is completely semiprime if and only
if for any φ ∈ S, ker(φ) is a completely semiprime submodule of M. The following
result provides another method to check when M is completely semiprime.

Theorem 2.16. Let M be a right R-module which is a self-generator and
S =EndR(M). The followings are equivalent:

1. M is completely semiprime.

2. For any m ∈M , lS(m) is a completely semiprime ideal of S.

3. S/lS(A) is a reduced ring for any subset A ⊂M .

Proof. 1. ⇒ 2. Let α2 ∈ lS(m). Hence α2(m) = 0. Since M is completely
semiprime, we have αS(m) = 0. Thus α(m) = 0 and α ∈ lS(m).

2.⇒ 3. lS(A) =
⋂
α∈A

lS(a). Since each lS(a) is a completely semiprime ideal of

S, lS(A) is a completely semiprime ideal of S. Hence, S/lS(A) is a reduced ring.
3. ⇒ 1. Taking A = M , then it is clear that S is a reduced ring. Since M

is a self-generator, by applying Theorem 2.13, we can see that M is a strongly
semiprime module.

3 Completely Prime Radical

We start this section by the following lemma.

Lemma 3.1. Let M be a quasi-projective module and A a fully invariant submod-
ule of M . If P ⊂ M/A is a strongly prime submodule of M/A, then v−1(P ) is a
strongly prime submodule of M

Proof. Put M = M/P (M). Let P = v−1(P ). Suppose f ∈ S and m ∈ M such
that f(m) ∈ P. Since M is quasi-projective, there is f ∈ S such that fv = vf ,
where v : M → M/A is the canonical projection. From f(m) ∈ P , we have
vf(m) ∈ v(P ) = P or fv(m) ∈ P. From our assumption f(M) ⊆ P or v(m) ∈ P .
If f(M) ⊆ P , we have fv(M) ⊆ P or vf(M) ⊂ P , that is f(M) ⊂ P . If v(m) ∈ P ,
then m ∈ P. Hence, P is strongly prime.
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Lemma 3.2. Let M be a quasi-projective module and P a strongly prime submod-
ule of M. If A ⊂ P is a fully invariant submodule of M , then P/A is a strongly
prime submodule of M/A.

Proof. Let S =EndR(M/A) and let f ∈ S and f(m + A) ∈ M/A such that
f(m + A) ∈ P/A. Since M is quasi-projective, we can find f ∈ S such that fv
= vf, where v : M → M/A is the canonical projection. Then vf(m) = fv(m) =
f(m + A) ∈ P/A. Hence f(m) ∈ P. Now, since P is a strongly prime submodule
of M, we have f(M) ⊆ P or m ∈ P. It implies that (f(M) + A)/A ⊂ P/A or
(m+A) ∈ P/A. Thus f(M/A) ⊂ P/A or (m+A) ∈ P/A. Hence P/A is a strongly
prime submodule of M/A.

For a right R-module M , let C(M) be the intersection of all strongly prime
prime submodules of M . By our definition, M is a strongly semiprime module if
C(M) = 0. We want to get some properties similar to that of completely prime
radicals of rings and as first step, the following theorem is true for quasi-projective
modules.

Theorem 3.3. Let M be a quasi projective module. Then M/C(M) is a strongly
semiprime module, that is C(M/C(M)) = 0.

Proof. Put M = M/C(M). By Lemma 3.1 and Lemma 3.2, we have
C(M) =

⋂
X⊂M , X is strongly prime

X =
⋂

X⊂M,X is strongly prime

X/C(M)

= (
⋂

X⊂M,X is strongly prime

X)/C(M) = C(M)/C(M) = 0. This shows that M/C(M)

is a strongly semiprime module.

4 Multiplicative Systems

The following proposition offers several other characterizations of strongly
prime submodules.

Proposition 4.1. Let M be a right R module and S =EndR(M). For a proper
fully invariant submodule P of M , the following are equivalent:

1. P is a strongly prime submodule of M.

2. For all a ∈ S and every m ∈ M , if 〈am〉 ⊆ P then either 〈m〉 ⊆ P or
aM ⊆ P.

Proof. 1. ⇒ 2. Let a ∈ S and m ∈ M such that 〈am〉 ⊆ P. Since am ∈ P, it
follows from 1. that m ∈ P or aM ⊆ P, i.e. 〈m〉 ⊆ P or aM ⊆ P.

2. ⇒ 1. Let a ∈ S and m ∈ M such that am ∈ P . Now 〈am〉 ⊆ P and it
follows from 2. that 〈m〉 ⊆ P or aM ⊆ P. Hence m ∈ 〈m〉 ⊆ P or aM ⊆ P and
we are done.

The notion of multiplicative systems of rings is generalized to modules as
follows.
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Definition 4.2. Let MR be a module and S =EndR(M). A nonempty set X ⊆
M\{0} is called a multiplicative system of MR if for each a ∈ S, m ∈ M and for
all submodules K of M such that (K + 〈m〉) ∩X 6= φ and (K + 〈am〉)∩ X 6= φ,
then (K + 〈aM〉) ∩X 6= φ.

Using multiplicative systems, we can check when a proper fully invariant sub-
module is strongly prime.

Lemma 4.3. Let M be a right R module and S =EndR(M). A proper fully invari-
ant submodule P of M is strongly prime if and only if X = M\P is a multiplicative
system of M.

Proof. ⇒ Put X = M\P . Let a ∈ R and m ∈ M . If K is a submodule of M,
then (K + 〈m〉) ∩X 6= φ and (K + 〈aM〉)∩ X 6= φ. If (K + 〈am〉) ∩X = φ, then
〈am〉 ⊆ P . since P is strongly prime, we have either 〈m〉 ⊆ P or aM ⊆ P . Thus,
(K + 〈m〉) ∩X = φ or (K + 〈aM〉)∩ X = φ, a contradiction.

⇐ Let a ∈ S and m ∈ M such that 〈am〉 ⊆ P but 〈m〉 * P and aM * P .
Then, 〈m〉)∩X 6= φ and aM∩ X 6= φ. By the definition of a multiplicative system,
〈am〉 ∩X 6= φ such that 〈am〉 * P , a contradiction.

The following is a property of strongly prime submodules.

Lemma 4.4. Let M be an R-module, X ⊆ M a multiplicative system of M and
P a fully invariant submodule of M maximal with respect to the property that
P ∩X = φ. Then P is a strongly prime submodule of M .

Proof. Suppose a ∈ S and m ∈M such that 〈am〉 ⊆ P . If 〈m〉 * P and aM * P
then (P+〈m〉)∩ X 6= φ and (P+aM)∩ X 6= φ. Since X is a multiplicative system
of M, (〈am〉+P )∩X 6= φ. Since 〈am〉 ⊆ P , we have P ∩X 6= φ, a contradiction.
Hence, P must be a strongly prime submodule.

We give the definition of st(N), where st(N) is the intersection of all strongly
prime submodules containing N .

Definition 4.5. Let R be a ring and M an R-module. For a fully invariant
submodule N of M , if there is a strongly prime submodule containing N , we define
st(N) := {m ∈M : every multiplicative system containing m meets N}. We write
st(N) = M when there are no strongly prime submodules of M containing N .

Using definition above, we have the following result.

Theorem 4.6. Let M be a right R-module and N a fully invariant submodule of
M . Then, either st(N) = M or st(N) equals the intersection of all strongly prime
submodules containing N , which is denoted by βst(N).
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Proof. Suppose st(N) 6= M . Then, βst(N) 6= φ. Both st(N) and N are contained
in the same strongly prime submodules. By definition of st(N), it is clear that
N ⊆ st(N). Hence, any strongly prime submodule of M which contains st(N)
must necessarily contain N . Suppose P is a strongly prime submodule of M such
that N ⊆ P , and let t ∈ st(N). If t /∈ P , then the complement of P , C(P ) in M is
a multiplicative system containing t and therefore we would have C(P ) ∩N 6= φ.
However, since N ⊆ P, C(P ) ∩ P = φ and this contradiction shows that t ∈ P .
Hence st(N) ⊆ P as we wished to show. Thus, st(N) ⊆ βst(N). Conversely,
assume s /∈ st(N), then there exists a multiplicative system X such that s ∈ X and
X ∩N = φ. From Zorn’s Lemma, there exists a fully invariant submodule P ⊇ N
which is maximal with respect to P ∩X = φ. From Lemma 4.4, P is a strongly
prime submodule of M and s /∈ P . Therefore, we have st(N) = βst(N).

Let I be an ideal of a ring R. Recall from [5, Theorem 3] that, if there exists a
completely prime ideal of R containing I, then we define N (I) is the intersection
of all completely prime ideals of R containing I. If there is no completely prime
ideal containing I, we put N (I) = R.

Proposition 4.7. Let M be a right R-module and N a fully invariant submodule
of M . Then N (IN )(M) ⊆ st(N).

Proof. If st(N) = M, then the result is immediate. Otherwise, if T is any strongly
prime submodule of M that contains N, then IT is a completely prime ideal
of S and IT ⊃ IN . Thus N (IN ) ⊆ IT and hence N (IN )(M) ⊆ IT (M) ⊆ T.
Since T is an arbitrary strongly prime submodule of M containing N, we have
N (IN )(M) ⊆ st(N).

Applying Proposition 4.7, we have the following proposition.

Proposition 4.8. Let M be a quasi-projective finitely generated right R-module
which is a self-generator. Let N be a fully invariant submodule of M. Then
N (IN )(M) = st(N).

Proof. By Proposition 4.7, we have N (IN )(M) ⊆ st(N). Now, we write st(N)
= Ist(N)(M) and we will show that Ist(N) ⊆ N (IN ). Let P be a completely prime
ideal of S such that IN ⊆ P. Then PM is a strongly prime submodule of M and
PM ⊃ IN (M) = N. Hence PM ⊃ st(N). Since Ist(N) =Hom(M, st(N))
⊆Hom(M,PM) = P, we have Ist(N) ⊆ N (IN ). It follows that st(N) ⊆ N (IN )(M).

5 Dr Prime Submodules

In a more recent paper, S. I. Bilavska and B. V. Zabavsky studied dr-prime
right ideals of rings and they suggested a version of Kaplansky-Cohen’s theorem
for noncommutative rings (see [6] for more details). Many authors studied Cohen’s
theorem and Kaplansky-Cohen’s theorem for noncommutative rings. Some of them
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also extended these results for modules. For example, in [6], S. I. Bilavska and
B. V. Zabavsky gave a noncommutative version of the Kaplansky-Cohen theorem.
Following them, a right ideal P of R is called a dr-prime right ideal if P ⊆ cR,
where c is a duo element and for any p ∈ P the condition p = cx implies x ∈ P .
It is easy to verify that any maximal right ideal J of a ring R is a dr-prime right
ideal. This result is introduced in [6].

Theorem 5.1. [6, Theorem 2] If every dr-prime right ideal of a ring R is principal,
then every right ideal of R is principal.

We now give the defnition of dr-prime submodules as an extension of dr-prime
right ideals for rings.

Definition 5.2. A submodule X of M is called a dr-prime submodule if X ⊆
ϕS(M) where ϕ is a duo-element of S and if η ∈ S such that ϕη(M) ⊆ X then
η(M) ⊆ X.

It is easy to see that if M = R, then the defnition of dr-prime right ideals and
dr-prime submodules coincide.

Proposition 5.3. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then X is a dr-prime submodule if and only if IX is a
dr-prime right ideal of S.

Proof. Suppose that X is a dr-prime submodule of M and IX ⊆ ηS where η ∈ S
is a duo-element of S. We have X ⊆ ηS(M). If ρ ∈ S such that ηρ ∈ IX , then
ηρ(M) ⊆ X. Since is X is a dr-prime submodule of M, we have ρ(M) ⊆ X i.e.
ρ ∈ IX .

For the converse, assume that IX is a dr-prime right ideal of S and X ⊆
ϕS(M), where ϕ is a duo-element of S. Hence IX ⊆ ϕS. If η ∈ S such that
ϕη(M) ⊆ X, then ϕη ∈ IX . Since IX is a dr-prime right ideal of S, we have
η ∈ IX i.e. η(M) ⊆ X.

Recall that a module N is said to be M -generated if there is an epimorphism
M (I) −→ N for some index set I. If I is finite, then N is called a finitely M -
generated module. In particular, a module N is called M -cyclic if there is an
epimorphism from M −→ N.

Proposition 5.4. Let M be a quasi-projective module and X an M -cyclic sub-
module of M. Then IX is a principal right ideal of S.

Proof. Since M is M -cyclic, there exists an epimorphism ϕ : M −→ X such that
X = ϕ(M). It follows that ϕS ⊂ IX . By the quasi-projectivity of M, for any
f ∈ IX , we can find a α ∈ S such that f = ϕα, proving that IX = ϕS, as
required.

We finish this section by providing another version of the Kaplansky-Cohen
theorem for modules. To do that, we give the following proposition.
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Proposition 5.5. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If every dr-prime submodule of M is M -cyclic, then S
is a right principal ideal ring.

Proof. Assume that S is not a right principal ideal ring. Then there exists a non-
principal right ideal I of S. From [6, Corollary 6], I is contained in a maximal
non-principal right ideal N and from [6, Proposition 2], N is a dr prime right
ideal of S. Let X = N(M). Since M is a quasi-projective finitely generated right
R-module, we have N = IX . Now, since IX. is a dr-prime right ideal, we have X
is a dr prime submodule. Since N = IX is a non-principal right ideal, it follows
from [7, Lemma 2.3] that X is a dr-prime submodule of M which is not M−cyclic.
This is a contradiction. Hence, S is a principal right ideal ring.

We now have the following theorem, that can be considered as a new version
of the Kaplansky-Cohen theorem for modules.

Theorem 5.6. Let M be a quasi-projective finitely generated right R-module which
is a self-generator. If every dr-prime submodule of M is M-cyclic, then every
submodule of M is M-cyclic.

Proof. Using Proposition 5.5, we see that S is a right principal ideal ring. Assume
that X is a submodule of M . Then we have IX(M) = X. Hence, X is M -cyclic,
proving that every submodule of M is M -cyclic.
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