Thai Journal of Mathematics Volume 16 (2018) Number 3: 577-590
http://thaijmath.in.cmu.ac.th

On Strongly Semiprime Modules and Submodules

Hai. Q. Dinh ${ }^{\dagger, \ddagger} 1$, Nguyen T. Bac ${ }^{\$, \xi, \Phi}$, N. J. Groenewald ${ }^{£}$ and D. T. H. Ngoc ${ }^{\S}$
${ }^{\dagger}$ Division of Computational Mathematics and Engineering Institute for Computational Science, Ton Duc Thang University Ho Chi Minh City, Vietnam e-mail : dinhquanghai@tdtu.edu.vn
\ddagger Faculty of Mathematics and Statistics, Ton Duc Thang University Ho Chi Minh City, Vietnam,
${ }^{\$}$ Nguyen Tat Thanh University, 300 A Nguyen Tat Thanh street, Ho Chi Minh city, Vietnam e-mail : bacnt2008@gmail.com
${ }^{\S}$ Department of Basic Sciences, Thai Nguyen University of Economics and Business Administration, Thai Nguyen Province, Vietnam
『Department of Mathematics, Faculty of Sciences, Mahidol University Bangkok, 10400, Thailand
${ }^{£}$ Department of Mathematics and Applied Mathematics
Nelson Mandela University, Province of Eastern Cape, South Africa e-mail: Nico.Groenewald@mandela.ac.za

Abstract

We provide the notion of strongly semiprime submodules of a given right R-module M and describe properties of them as a generalization of completely semiprime ideals in associative rings. We show that a proper fully invariant submodule of M is strongly prime if and only if it is prime and strongly semiprime.

Keywords : strongly prime submodules; strongly semiprime submodules; multiplicative systems and strongly prime radical; dr-submodules; Kaplansky-Cohen theorem.

[^0]2010 Mathematics Subject Classification : 16D50; 16D70; 16D80.

1 Introduction and Preliminaries

Throughout this paper, all rings are associative rings with identity and all modules are unitary right R-modules. Let R be a ring and M, a right R-module. Denote $S=\operatorname{End}_{R}(M)$, the endomorphism ring of the module M. A submodule X of M is called a fully invariant submodule if $f(X) \subset X$ for any $f \in S$. Especially, a right ideal of R is a fully invariant submodule of R_{R} if it is a two-sided ideal of R. The class of all fully invariant submodules of M is non-empty and closed under intersections and sums. A right R-module M is called a self-generator if it generates all its submodules. Following [1], a fully invariant proper submodule X of M is called a prime submodule of M if for any ideal I of $S=\operatorname{End}_{R}(M)$, and any fully invariant submodule U of M, if $I(U) \subset X$, then either $I(M) \subset X$ or $U \subset X$. A fully invariant submodule X of M is called a strongly prime submodule of M if for any $\phi \in S=\operatorname{End}_{R}(M)$ and $m \in M$, if $\phi(m) \in X$, then either $\phi(M) \subset X$ or $m \in X$. The basic Theorem 2.1 in [1] shows that the class of prime submodules of a given module has some properties similar to that of prime ideals in an associative ring. Following that theorem, a fully invariant proper submodule X of M is prime if and only if for any $\phi \in S$ and $m \in M, \phi S m \subset X$ implies that $\phi(M) \subset X$ or $m \in X$. Using this property one can see that every strongly prime submodule is prime.

Definition 1.1. [2, Definition 2.1] A submodule of a right R-module M is said to have insertion factor property (briefly, an IFP-submodule) if for any endomorphism ϕ of M and any element $m \in M$, if $\phi(m) \in X$, then $\phi S m \in X$. A right ideal I is an IFP-right ideal if it is an IFP-submodule of R_{R}, that is for any $a, b \in R$, if $a b \in I$, then $a R b \subseteq I$. A right R-module M is called an $I F P$-module if 0 is an IFP-submodule of M. A ring R is $I F P$ if 0 is an IFP-ideal.

Definition 1.2. [1, Definition 2.1] A fully invariant submodule X of a right R module M is called a semiprime submodule if it is an intersection of prime submodules of M. A right R-module M is called a semiprime module if 0 is a semiprime submodule of M. Consequently, the ring R is a semiprime ring if R_{R} is semiprime. By symmetry, the ring R is a semiprime ring if ${ }_{R} R$ is a semiprime left R-module.

Proposition 1.3. [3, Proposition 2.3] Let M be a right R-module which is a self-generator and X, a fully invariant submodule of M. Then X is a semiprime submodule if and only if whenever $f \in S$ with $f S f(M) \subset X$, then $f(M) \subset X$.

In what follows, by $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{n}$ and $\mathbb{Z} / n \mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers modulo n and the \mathbb{Z}-module of integers modulo n.

2 Completely Semiprime Modules and Submodules

In this section, we investigate the properties of completely semiprime submodules and modules by our definition. We now give the notion of a completely semiprime submodule.

Definition 2.1. A fully invariant proper submodule X of M is called completely semiprime if for any $\psi \in S$ and $m \in M, \psi^{2}(m) \in X$ implies $\psi S m \subseteq X$.

We provide a relationship between a completely semiprime submodule and semiprime submodule as follows.

Remark 2.2. Every completely semiprime submodule is semiprime.
Proof. Suppose that X is a completely semiprime submodule of M. It follows from Proposition 1.3 that X will be semiprime if we can prove that for every $f \in S=\operatorname{End}_{R}(M), f S f(M) \subseteq X$ implies $f(M) \subseteq X$. So, let $f \in S=\operatorname{End}_{R}(M)$ such that $f S f(M) \subseteq X$. Therefore, $f^{2}(m) \in X$ for every $m \in M$. Since X is a completely semiprime submodule of M, we have $f S m \subseteq X$ for every $m \in M$. Hence, $f(M) \subseteq f S(M) \subseteq X$ and we are done.

An R-module M is completely semiprime if the zero submodule of M is a completely semiprime submodule of M. In general, an R-module M / P is a completely semiprime module if and only if P is a completely semiprime prime submodule of M. To illustrate, we give an example of completely semiprime module.

Example 2.3. Let p be any prime integer and $M=(\mathbb{Z} / p \mathbb{Z}) \oplus \mathbb{Q}$ a \mathbb{Z}-module. Then the endomorphism ring S of the module M is isomorphic to the matrix $\operatorname{ring}\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a \in \mathbb{Z}_{p}, b \in \mathbb{Q}\right\}$. It is evident that M is a completely semiprime module.

We provide a characterization of completely semiprime submodules as follows.
Proposition 2.4. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$ be a reduced ring, i.e., S has no nonzero nilpotent elements. Assume that for each element $m \in M$, there exists $g \in S$ such that $m R=g M$. Then M is completely semiprime.

Proof. Let $f \in S$ and $m \in M$ such that $f^{2}(m)=0$. From our assumption there exists $g \in S$ such that $m R=g M$. Hence $0=f^{2}(m R)=f^{2} g(M)$. Hence $f^{2} g=$ 0 . Since S is reduced, we have $f g=0$ and consequently $f S g=0$. Thus $0=$ $f S g(M)=f S(m R)$ and we can see that $f S(m)=0$.

The following corollary is a direct consequence of Proposition 2.4
Corollary 2.5. A free R-module is completely semiprime if $S=\operatorname{End}_{R}(M)$ is a reduced ring.

Proof. Let F be a free R-module. Clearly for every $m \in F$ there exists $f \in$ $S=\operatorname{End}_{R}(M)$ such that $f F=R m$. By Proposition [2.4, F is completely semiprime.

Some characterizations of completely semiprime submodules are given in the following result.

Proposition 2.6. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. For a fully invariant proper submodule X of M, the followings are equivalent:

1. X is completely semiprime.
2. For all $a \in S$ and $m \in M$, if $a m \in X$, then $S m \cap a M \subseteq X$.
3. (a) For all $a \in S$ and $m \in M$ such that am $\in X$, we have $a S m \subseteq X$ and (b) $a^{2} m \in X$ implies $a m \in X$.

Proof. 1. $\Rightarrow 2$. Assume that $a^{2} m \in X$. Then $a S m \subseteq X$. Let $a \in S$ and $m \in M$ such that $a m \in X$ and $x \in S m \cap a M$. Now, $x=b m=a m_{1}$, for $b \in S$ and $m_{1} \in M$. Since $a m \in X$ and X is a fully invariant submodule, $a^{2} m \in X$. From our assumption, we have $a S m \subseteq X$. From $a m_{1} \in S m$, we can see that $a^{2} m_{1} \in a S m \subseteq$ X. Again, by our assumption, $a S m_{1} \subseteq X$. It implies that $x=a m_{1} \in a S m_{1} \subseteq X$. Hence, $S m \cap a M \subseteq X$.

2 . $\Rightarrow 3$. Let $a \in S$ and $m \in M$ such that $a m \in X$. From (2), we have $a S m \subseteq S m \cap a M \subseteq X$ and ($3 a$) is satisfied. Now, let $a \in S$ and $m \in M$ such that $a^{2} m=a(a m) \in X$. From (2), we have $a m \in S(a m) \cap a M \subseteq S m \cap a M \subseteq X$ and $(3 b)$ is proved.
3. $\Rightarrow 2$. Let $a \in S$ and $m \in M$ such that $a m \in X$. If $x \in S m \cap a M$, then $x=$ $b m=a n$ for some $b \in S$ and $n \in M$. From (3a), we have $a b m \in a S m \subseteq X$. Since $a^{2} n=a x=a b m \in X$, applying (3b), we have $x=a n \in X$. Hence, $S m \cap a M \subseteq X$ and (2) is proved.
3. \Rightarrow 1. Let $a \in S$ and $m \in M$ such that $a^{2} m \in X$. From (3b), we have $a m \in X$ and from (3a), we have $a S m \subseteq X$.

We consider the relationship between completely semiprime and IFP submodules in the following lemma.

Lemma 2.7. If a fully invariant submodule X of a right R-module M is completely semiprime, then

1. X is an IFP-submodule of M.
2. If $\alpha, \beta \in S$ and $m \in M$ such that $\alpha \beta(m) \in X$, then $\beta \alpha(m) \in X$.

Proof. 1. Let $\alpha(m) \in X$. Since X is a fully invariant submodule, we have $\alpha^{2}(m) \in X$. Now, since X is a completely semiprime submodule of M, we have $\alpha S(m) \subseteq X$.
2. Let $\alpha, \beta \in S$ and $m \in M$ such that $\alpha \beta(m) \in X$. It implies that $(\beta \alpha \beta)^{2}(m) \in$ X. Because X is completely semiprime, we have $\beta \alpha \beta S(m) \subseteq X$. Hence $(\beta \alpha)^{2}(m) \in X$ and again, since X is completely semiprime, we have $\beta \alpha S(m)$ $\subseteq X$ and consequently $\beta \alpha(m) \in X$.

It is well known from 4] that a strongly prime submodule is prime. The following result shows that a strongly prime submodule is also completely semiprime.

Proposition 2.8. If a fully invariant submodule X of M is a strongly prime submodule of M, then it is completely semiprime.

Proof. Let $\psi \in S$ and $m \in M$ such that $\psi^{2}(m) \in X$. Since X is a strongly prime submodule of M, we have $\psi(M) \subseteq X$ or $\psi(m) \in X$. If $\psi(M) \subseteq X$, then $\psi S(M)=\psi(M) \subseteq X$ and we have $\psi S(m) \subseteq X$. If $\psi(m) \in X$, then since X is a strongly prime submodule of M, we have $\psi(M) \subseteq X$ or $m \in X$. We only have to show that if $m \in X$, then $\psi S(m) \subseteq X$. Now $g(m) \in X$ for every $g \in S$. Hence $S(m) \subseteq X$ and consequently $\psi S(m) \subseteq X$.

As for a semiprime submodule in [1] we now define strongly semiprime submodule as follows:

Definition 2.9. A fully invariant submodule X of a right R-module M is called a strongly semiprime submodule if it is an intersection of strongly prime submodules of M. A right R-module M is called a strongly semiprime module if 0 is a strongly semiprime submodule of M.

Similar to a prime submodule, the following shows that if X is a strongly semiprime submodule, then I_{X} is a completely semiprime ideal of S. The converse is aslo considered.

Proposition 2.10. Let M be a right R-module.

1. If X is a strongly semiprime submodule of M, then I_{X} is a completely semiprime ideal of S.
2. If M is a self-generator and P is a completely semiprime ideal of S, then $X:=P(M)$ is a strongly semiprime submodule of M and $I_{X}=P$.

Proof. 1. Since X is a strongly semiprime submodule of M, we can write $X=$ $\bigcap_{P \in \mathcal{F}} P$, where each P is a strongly prime submodule of M.
So $I_{X}=I \bigcap_{P \subseteq M, P \in \mathcal{F}} P=\bigcap_{P \subseteq M, P \in \mathcal{F}} I_{P}$. By [4, Theorem 2.13] it is easy to see that I_{X} is a completely semiprime ideal of S.
2. Since M is a self-generator, we can write $P=I_{P(M)}=I_{X}$, which is a completely semiprime ideal of S. Hence

$$
I_{X}=\bigcap_{K \subset S, K} K=\operatorname{Hom}\left(M,\left(\bigcap_{K \subset S, K} K \bigcap_{\text {completetely prime }} K\right)(M)\right) . \text { Let }
$$

$X=P(M)$, where P is a completely semiprime ideal of S. Since M is a selfgenerator, we have $P=I_{P(M)}=I_{X}$ and by our assumption $P=\bigcap_{K \in \Lambda} K$, for some set Λ of completely prime ideals of S. Thus $I_{X}=\operatorname{Hom}\left(M, I_{X}(M)\right)$ $=\operatorname{Hom}\left(M, \bigcap_{K \in \Lambda} K(M)\right)$. Thus $\left(\bigcap_{K \in \Lambda} K\right)(M)=\bigcap_{K \in \Lambda} K(M)$, and therefore $X=\bigcap_{K \in \Lambda} K(M)$. Since K is a completely prime ideal of $S, K(M)$ is a strongly prime submodule of M, proving that X is a strongly semiprime submodule of M.

The following result provides an important property of completely semiprime submodules.

Proposition 2.11. Let M be a right R-module which is a self-generator and X a fully invariant submodule of M. Then X is a completely semiprime submodule of M if and only if it is strongly semiprime submodule of M.

Proof. Let X be a completely semiprime submodule of M. We prove that I_{X} is a completely semiprime ideal of S. Let $a \in S$ such that $a^{2} \in I_{X}$. Hence $a^{2}(M) \subseteq$ X. Now for all $m \in M$ we have $a^{2} m \in X$. Since X is a completely semiprime submodule of M, we have $a S m \subseteq M$. Hence $a M=a S M \subseteq X$ and $a \in I_{X}$. Thus I_{X} is a completely semiprime ideal of S. From Proposition 2.10, X is a strongly semiprime submodule of M.

For the converse, suppose $X=\bigcap_{P \subseteq M, P \in \Lambda} P$, where Λ is a family of strongly prime submodules of M. Let $f \in S$ and $m \in M$ such that
$f^{2} m \in X=\bigcap_{P \subseteq M, P \in \Lambda} P$. Hence $f^{2} m \in P$ for every $P \in \Lambda$. Since P is strongly prime and $f(m) \in M$, we have $f(M) \subseteq P$ or $f(m) \in P$ for every $P \in \Lambda$. If $f(M) \subseteq P$ for every $P \in \Lambda$, then $f S(m) \subseteq P$ for every $P \in \Lambda$. Hence $f S(m) \subseteq X$. If $f(m) \in P$ for every $P \in \Lambda$, then since every P is strongly prime, we have $f(M) \subseteq P$ or $m \in P$. Now $m \in P$ implies that $g(m) \in P$ for all $g \in S$. Hence $S(m) \subseteq P$ and consequently $f S(m) \subseteq P$ for every $P \in \Lambda$. Thus $f S(m) \subseteq X$ and we are done.

We consider the quotient module of a completely semiprime submodule as follows.

Lemma 2.12. Let X be a submodule of a right R-module M. If X is a completely semiprime submodule and M is quasi-projective, then M / X is a completely semiprime module. Conversely, if M / X is completely semiprime and X is fully invariant, then X is a completely semiprime submodule of M.

Proof. Suppose X is a completely semiprime submodule of M and $\bar{\phi}^{2}(\bar{m})=\overline{0}$ where $\bar{\phi} \in \bar{S}=\operatorname{End}_{R}(M / X)$ and $\bar{m} \in M / X$. By the quasi-projectivity of M, there is a $\phi \in S$ such that $v \phi=\bar{\phi} v$, where $v: M \rightarrow M / X$ is the natural epimorphism. It
follows that $\phi^{2}(m) \in X$. Let $\bar{\eta}$ be any element of \bar{S}. As above there is a $\eta \in S$ such that $v \eta=\bar{\eta} v$. Since X is completely semiprime $\phi S(m) \subseteq X$. Hence $v \phi \eta(m)=0$ and thus $\bar{\phi} \bar{\eta}(\bar{m})=\bar{\phi} \bar{\eta} v(m)=\bar{\phi} v \eta(m)=v \phi \eta(m)=0$. Thus $\overline{\phi S}(\bar{m})=\overline{0}$ and consequently M / X is a completely semiprime module. For the converse, suppose X is a fully invariant submodule of M with M / X completely semiprime. Let $\phi^{2}(m) \in X$ with $\phi \in S$ and $m \in M$. Since M is quasi-projective, there is a $\bar{\phi} \in \bar{S}$ such that $v \phi=\bar{\phi} v$. Now $\phi^{2}(m) \in X$ implies $v \phi^{2}(m)=\overline{0}$. Hence $\bar{\phi}^{2}(\bar{m})=\bar{\phi}^{2} v(m)=$ $v \phi^{2}(m)=\overline{0}$. Let $\eta \in S$. Using the fact that M is quasi-projective, there is a $\bar{\mu} \in \bar{S}$ such that $v \eta=\bar{\mu} v$. Since M / X is completely semiprime, we have that $\overline{\phi S}(\bar{m})=\overline{0}$. Now $\bar{\phi} \bar{\eta}(\bar{m})=\bar{\phi} \bar{\eta} v(m)=\bar{\phi} v \eta(m)=v \phi \eta(m)=\overline{0}$. Hence $\phi \eta(m) \in X$ for every η $\in S$. Thus $\phi S(m) \subseteq X$ and therefore X is a completely semiprime submodule of M.

The following theorem can be considered as a generalization of 2, Proposition 2.4].

Theorem 2.13. Let X be a fully invariant submodule of a right R-module $M . X$ is strongly prime if and only if it is prime and completely semiprime.

Proof. From 4] and Proposition 2.8, if X is strongly prime, then X is prime and completely semiprime.

For the converse, let X be prime and completely semiprime. From Lemma 2.7. X has IFP and from [2, Proposition 2.4] X is strongly prime.

We give the relationship between a completely semiprime submodule and its endomorphism ring.

Proposition 2.14. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. If M is completely semiprime, then S is reduced. The converse is true if M is a self generator.

Proof. Let $\phi^{2}=0 \in S$. Then $\phi^{2}(m)=0$ for all $m \in M$. If M is completely semiprime, then $\phi S(m)=0$ for all $m \in M$. Hence $\phi S(M)=\phi(M)=0$. Thus $\phi=0$ and S is reduced.

Conversely, since $I_{0}=\{f \in S \mid f(M)=0 \subset M\}=0$ is a completely semiprime ideal, it follows from Proposition 2.10 that 0 is a completely semiprime submodule. Hence, M is completely semiprime.

We provide a method to examine when an R-module is completely semiprime.
Proposition 2.15. Let M be a right R-module and $S=\operatorname{End}_{R}(M)$. If M is quasiprojective, then the followings are equivalent:

1. M is completely semiprime.
2. For any $\phi \in S$, $\operatorname{ker}(\phi)$ is a completely semiprime submodule of M.
3. $M / \operatorname{ker}(I)$ is a completely semiprime module for any subset I of S.

Proof. 1. $\Rightarrow 2$. Let $\psi^{2}(m) \in \operatorname{ker}(\phi)$. If ϕ is any element from S, then $\phi \psi^{2}(m)=0$. From Lemma 2.7, we have $\psi \phi \psi(m)=0$. Hence $\phi \psi \phi \psi(m)=0$ and since M is completely semiprime, we have $\phi \psi S(m)=0$. Thus $\psi S(m) \subseteq \operatorname{ker}(\phi)$ and therefore $\operatorname{ker}(\phi)$ is a completely semiprime submodule of M.
2. $\Rightarrow 3$. We note that $\operatorname{ker}(I)=\bigcap_{f \in I} \operatorname{ker}(f)$ and each $\operatorname{ker}(f)$ is a completely semiprime submodule of M. Hence, $\operatorname{ker}(I)$ is a completely semiprime submodule of M. Since M is quasi-projective, by applying Lemma 2.12, we have that $M / \operatorname{ker}(I)$ is a completely semiprime module.
$3 . \Rightarrow 1$. This part is clear by taking $I=\left\{1_{M}\right\}, 1_{M}$ is the identity map of M.

By Proposition 2.15, we can check that M is completely semiprime if and only if for any $\phi \in S, \operatorname{ker}(\phi)$ is a completely semiprime submodule of M. The following result provides another method to check when M is completely semiprime.

Theorem 2.16. Let M be a right R-module which is a self-generator and $S=\operatorname{End}_{R}(M)$. The followings are equivalent:

1. M is completely semiprime.
2. For any $m \in M, l_{S}(m)$ is a completely semiprime ideal of S.
3. $S / l_{S}(A)$ is a reduced ring for any subset $A \subset M$.

Proof. 1. $\Rightarrow 2$. Let $\alpha^{2} \in l_{S}(m)$. Hence $\alpha^{2}(m)=0$. Since M is completely semiprime, we have $\alpha S(m)=0$. Thus $\alpha(m)=0$ and $\alpha \in l_{S}(m)$.
$2 . \Rightarrow 3 . l_{S}(A)=\bigcap_{\alpha \in A} l_{S}(a)$. Since each $l_{S}(a)$ is a completely semiprime ideal of $S, l_{S}(A)$ is a completely semiprime ideal of S. Hence, $S / l_{S}(A)$ is a reduced ring.
$3 . \Rightarrow 1$. Taking $A=M$, then it is clear that S is a reduced ring. Since M is a self-generator, by applying Theorem 2.13 we can see that M is a strongly semiprime module.

3 Completely Prime Radical

We start this section by the following lemma.
Lemma 3.1. Let M be a quasi-projective module and A a fully invariant submodule of M. If $\bar{P} \subset M / A$ is a strongly prime submodule of M / A, then $v^{-1}(\bar{P})$ is a strongly prime submodule of M

Proof. Put $\bar{M}=M / P(M)$. Let $P=v^{-1}(\bar{P})$. Suppose $f \in S$ and $m \in M$ such that $f(m) \in P$. Since M is quasi-projective, there is $\bar{f} \in \bar{S}$ such that $\bar{f} v=v f$, where $v: M \rightarrow M / A$ is the canonical projection. From $f(m) \in P$, we have $v f(m) \in v(P)=\bar{P}$ or $\bar{f} v(m) \in \bar{P}$. From our assumption $\bar{f}(\bar{M}) \subseteq \bar{P}$ or $v(m) \in \bar{P}$. If $\bar{f}(\bar{M}) \subseteq \bar{P}$, we have $\bar{f} v(M) \subseteq \bar{P}$ or $v f(M) \subset \bar{P}$, that is $f(M) \subset P$. If $v(m) \in \bar{P}$, then $m \in P$. Hence, P is strongly prime.

Lemma 3.2. Let M be a quasi-projective module and P a strongly prime submodule of M. If $A \subset P$ is a fully invariant submodule of M, then P / A is a strongly prime submodule of M / A.
Proof. Let $\bar{S}=\operatorname{End}_{R}(M / A)$ and let $\bar{f} \in \bar{S}$ and $\bar{f}(m+A) \in M / A$ such that $\bar{f}(m+A) \in P / A$. Since M is quasi-projective, we can find $f \in S$ such that $\bar{f} v$ $=v f$, where $v: M \rightarrow M / A$ is the canonical projection. Then $v f(m)=\bar{f} v(m)=$ $\bar{f}(m+A) \in P / A$. Hence $f(m) \in P$. Now, since P is a strongly prime submodule of M, we have $f(M) \subseteq P$ or $m \in P$. It implies that $(f(M)+A) / A \subset P / A$ or $(m+A) \in P / A$. Thus $\bar{f}(M / A) \subset P / A$ or $(m+A) \in P / A$. Hence P / A is a strongly prime submodule of M / A.

For a right R-module M, let $\mathcal{C}(M)$ be the intersection of all strongly prime prime submodules of M. By our definition, M is a strongly semiprime module if $\mathcal{C}(M)=0$. We want to get some properties similar to that of completely prime radicals of rings and as first step, the following theorem is true for quasi-projective modules.

Theorem 3.3. Let M be a quasi projective module. Then $M / \mathcal{C}(M)$ is a strongly semiprime module, that is $\mathcal{C}(M / \mathcal{C}(M))=0$.
Proof. Put $\bar{M}=M / \mathcal{C}(M)$. By Lemma 3.1 and Lemma 3.2, we have
$\mathcal{C}(\bar{M})=\bigcap_{\bar{X} \subset \bar{M}, \bar{X} \text { is strongly prime }} \bar{X}=\bigcap_{X \subset M, X} \bigcap_{\text {is strongly prime }} X / \mathcal{C}(M)$
$=\left(\bigcap_{X \subset M, X \text { is strongly prime }} X\right) / \mathcal{C}(M)=\mathcal{C}(M) / \mathcal{C}(M)=0$. This shows that $M / \mathcal{C}(M)$ is a strongly semiprime module.

4 Multiplicative Systems

The following proposition offers several other characterizations of strongly prime submodules.

Proposition 4.1. Let M be a right R module and $S=\operatorname{End}_{R}(M)$. For a proper fully invariant submodule P of M, the following are equivalent:

1. P is a strongly prime submodule of M.
2. For all $a \in S$ and every $m \in M$, if $\langle a m\rangle \subseteq P$ then either $\langle m\rangle \subseteq P$ or $a M \subseteq P$.

Proof. 1. $\Rightarrow 2$. Let $a \in S$ and $m \in M$ such that $\langle a m\rangle \subseteq P$. Since $a m \in P$, it follows from 1. that $m \in P$ or $a M \subseteq P$, i.e. $\langle m\rangle \subseteq P$ or $a M \subseteq P$.

2 . $\Rightarrow 1$. Let $a \in S$ and $m \in M$ such that $a m \in P$. Now $\langle a m\rangle \subseteq P$ and it follows from 2. that $\langle m\rangle \subseteq P$ or $a M \subseteq P$. Hence $m \in\langle m\rangle \subseteq P$ or $a M \subseteq P$ and we are done.

The notion of multiplicative systems of rings is generalized to modules as follows.

Definition 4.2. Let M_{R} be a module and $S=\operatorname{End}_{R}(M)$. A nonempty set $X \subseteq$ $M \backslash\{0\}$ is called a multiplicative system of M_{R} if for each $a \in S, m \in M$ and for all submodules K of M such that $(K+\langle m\rangle) \cap X \neq \phi$ and $(K+\langle a m\rangle) \cap X \neq \phi$, then $(K+\langle a M\rangle) \cap X \neq \phi$.

Using multiplicative systems, we can check when a proper fully invariant submodule is strongly prime.

Lemma 4.3. Let M be a right R module and $S=\operatorname{End}_{R}(M)$. A proper fully invariant submodule P of M is strongly prime if and only if $X=M \backslash P$ is a multiplicative system of M.

Proof. \Rightarrow Put $X=M \backslash P$. Let $a \in R$ and $m \in M$. If K is a submodule of M, then $(K+\langle m\rangle) \cap X \neq \phi$ and $(K+\langle a M\rangle) \cap X \neq \phi$. If $(K+\langle a m\rangle) \cap X=\phi$, then $\langle a m\rangle \subseteq P$. since P is strongly prime, we have either $\langle m\rangle \subseteq P$ or $a M \subseteq P$. Thus, $(K+\langle m\rangle) \cap X=\phi$ or $(K+\langle a M\rangle) \cap X=\phi$, a contradiction.
\Leftarrow Let $a \in S$ and $m \in M$ such that $\langle a m\rangle \subseteq P$ but $\langle m\rangle \nsubseteq P$ and $a M \nsubseteq P$. Then, $\langle m\rangle) \cap X \neq \phi$ and $a M \cap X \neq \phi$. By the definition of a multiplicative system, $\langle a m\rangle \cap X \neq \phi$ such that $\langle a m\rangle \nsubseteq P$, a contradiction.

The following is a property of strongly prime submodules.
Lemma 4.4. Let M be an R-module, $X \subseteq M$ a multiplicative system of M and P a fully invariant submodule of M maximal with respect to the property that $P \cap X=\phi$. Then P is a strongly prime submodule of M.

Proof. Suppose $a \in S$ and $m \in M$ such that $\langle a m\rangle \subseteq P$. If $\langle m\rangle \nsubseteq P$ and $a M \nsubseteq P$ then $(P+\langle m\rangle) \cap X \neq \phi$ and $(P+a M) \cap X \neq \phi$. Since X is a multiplicative system of $M,(\langle a m\rangle+P) \cap X \neq \phi$. Since $\langle a m\rangle \subseteq P$, we have $P \cap X \neq \phi$, a contradiction. Hence, P must be a strongly prime submodule.

We give the definition of $\operatorname{st}(N)$, where $\operatorname{st}(N)$ is the intersection of all strongly prime submodules containing N.

Definition 4.5. Let R be a ring and M an R-module. For a fully invariant submodule N of M, if there is a strongly prime submodule containing N, we define $\operatorname{st}(N):=\{m \in M:$ every multiplicative system containing m meets $N\}$. We write $s t(N)=M$ when there are no strongly prime submodules of M containing N.

Using definition above, we have the following result.
Theorem 4.6. Let M be a right R-module and N a fully invariant submodule of M. Then, either $\operatorname{st}(N)=M$ or $s t(N)$ equals the intersection of all strongly prime submodules containing N, which is denoted by $\beta_{s t}(N)$.

Proof. Suppose $s t(N) \neq M$. Then, $\beta_{s t}(N) \neq \phi$. Both $\operatorname{st}(N)$ and N are contained in the same strongly prime submodules. By definition of $\operatorname{st}(N)$, it is clear that $N \subseteq \operatorname{st}(N)$. Hence, any strongly prime submodule of M which contains $\operatorname{st}(N)$ must necessarily contain N. Suppose P is a strongly prime submodule of M such that $N \subseteq P$, and let $t \in s t(N)$. If $t \notin P$, then the complement of $P, C(P)$ in M is a multiplicative system containing t and therefore we would have $C(P) \cap N \neq \phi$. However, since $N \subseteq P, C(P) \cap P=\phi$ and this contradiction shows that $t \in P$. Hence $\operatorname{st}(N) \subseteq P$ as we wished to show. Thus, $\operatorname{st}(N) \subseteq \beta_{s t}(N)$. Conversely, assume $s \notin s t(N)$, then there exists a multiplicative system X such that $s \in X$ and $X \cap N=\phi$. From Zorn's Lemma, there exists a fully invariant submodule $P \supseteq N$ which is maximal with respect to $P \cap X=\phi$. From Lemma 4.4, P is a strongly prime submodule of M and $s \notin P$. Therefore, we have $s t(N)=\beta_{s t}(N)$.

Let I be an ideal of a ring R. Recall from [5. Theorem 3] that, if there exists a completely prime ideal of R containing I, then we define $\mathcal{N}(I)$ is the intersection of all completely prime ideals of R containing I. If there is no completely prime ideal containing I, we put $\mathcal{N}(I)=R$.

Proposition 4.7. Let M be a right R-module and N a fully invariant submodule of M. Then $\mathcal{N}\left(I_{N}\right)(M) \subseteq \operatorname{st}(N)$.

Proof. If $\operatorname{st}(N)=M$, then the result is immediate. Otherwise, if T is any strongly prime submodule of M that contains N, then I_{T} is a completely prime ideal of S and $I_{T} \supset I_{N}$. Thus $\mathcal{N}\left(I_{N}\right) \subseteq I_{T}$ and hence $\mathcal{N}\left(I_{N}\right)(M) \subseteq I_{T}(M) \subseteq T$. Since T is an arbitrary strongly prime submodule of M containing N, we have $\mathcal{N}\left(I_{N}\right)(M) \subseteq \operatorname{st}(N)$.

Applying Proposition 4.7, we have the following proposition.
Proposition 4.8. Let M be a quasi-projective finitely generated right R-module which is a self-generator. Let N be a fully invariant submodule of M. Then $\mathcal{N}\left(I_{N}\right)(M)=\operatorname{st}(N)$.

Proof. By Proposition 4.7, we have $\mathcal{N}\left(I_{N}\right)(M) \subseteq \operatorname{st}(N)$. Now, we write $\operatorname{st}(N)$ $=I_{s t(N)}(M)$ and we will show that $I_{s t(N)} \subseteq \mathcal{N}\left(I_{N}\right)$. Let P be a completely prime ideal of S such that $I_{N} \subseteq P$. Then $P M$ is a strongly prime submodule of M and $P M \supset I_{N}(M)=N$. Hence $P M \supset s t(N)$. Since $I_{s t(N)}=\operatorname{Hom}(M, s t(N))$ $\subseteq \operatorname{Hom}(M, P M)=P$, we have $I_{s t(N)} \subseteq \mathcal{N}\left(I_{N}\right)$. It follows that $s t(N) \subseteq \mathcal{N}\left(I_{N}\right)(M)$.

5 Dr Prime Submodules

In a more recent paper, S. I. Bilavska and B. V. Zabavsky studied dr-prime right ideals of rings and they suggested a version of Kaplansky-Cohen's theorem for noncommutative rings (see [6] for more details). Many authors studied Cohen's theorem and Kaplansky-Cohen's theorem for noncommutative rings. Some of them
also extended these results for modules. For example, in [6], S. I. Bilavska and B. V. Zabavsky gave a noncommutative version of the Kaplansky-Cohen theorem. Following them, a right ideal P of R is called a dr-prime right ideal if $P \subseteq c R$, where c is a duo element and for any $p \in P$ the condition $p=c x$ implies $x \in P$. It is easy to verify that any maximal right ideal J of a ring R is a dr-prime right ideal. This result is introduced in 6].

Theorem 5.1. [6, Theorem 2] If every dr-prime right ideal of a ring R is principal, then every right ideal of R is principal.

We now give the defnition of dr-prime submodules as an extension of dr-prime right ideals for rings.

Definition 5.2. A submodule X of M is called a dr-prime submodule if $X \subseteq$ $\varphi S(M)$ where φ is a duo-element of S and if $\eta \in S$ such that $\varphi \eta(M) \subseteq X$ then $\eta(M) \subseteq X$.

It is easy to see that if $M=R$, then the defnition of dr-prime right ideals and dr-prime submodules coincide.

Proposition 5.3. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then X is a dr-prime submodule if and only if I_{X} is a $d r$-prime right ideal of S.

Proof. Suppose that X is a dr-prime submodule of M and $I_{X} \subseteq \eta S$ where $\eta \in S$ is a duo-element of S. We have $X \subseteq \eta S(M)$. If $\rho \in S$ such that $\eta \rho \in I_{X}$, then $\eta \rho(M) \subseteq X$. Since is X is a dr-prime submodule of M, we have $\rho(M) \subseteq X$ i.e. $\rho \in I_{X}$.

For the converse, assume that I_{X} is a dr-prime right ideal of S and $X \subseteq$ $\varphi S(M)$, where φ is a duo-element of S. Hence $I_{X} \subseteq \varphi S$. If $\eta \in S$ such that $\varphi \eta(M) \subseteq X$, then $\varphi \eta \in I_{X}$. Since I_{X} is a dr-prime right ideal of S, we have $\eta \in I_{X}$ i.e. $\eta(M) \subseteq X$.

Recall that a module N is said to be M-generated if there is an epimorphism $M^{(I)} \longrightarrow N$ for some index set I. If I is finite, then N is called a finitely M generated module. In particular, a module N is called M-cyclic if there is an epimorphism from $M \longrightarrow N$.

Proposition 5.4. Let M be a quasi-projective module and X an M-cyclic submodule of M. Then I_{X} is a principal right ideal of S.

Proof. Since M is M-cyclic, there exists an epimorphism $\varphi: M \longrightarrow X$ such that $X=\varphi(M)$. It follows that $\varphi S \subset I_{X}$. By the quasi-projectivity of M, for any $f \in I_{X}$, we can find a $\alpha \in S$ such that $f=\varphi \alpha$, proving that $I_{X}=\varphi S$, as required.

We finish this section by providing another version of the Kaplansky-Cohen theorem for modules. To do that, we give the following proposition.

Proposition 5.5. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If every dr-prime submodule of M is M-cyclic, then S is a right principal ideal ring.

Proof. Assume that S is not a right principal ideal ring. Then there exists a nonprincipal right ideal I of S. From [6, Corollary 6], I is contained in a maximal non-principal right ideal N and from [6, Proposition 2], N is a dr prime right ideal of S. Let $X=N(M)$. Since M is a quasi-projective finitely generated right R-module, we have $N=I_{X}$. Now, since I_{X}. is a dr-prime right ideal, we have X is a dr prime submodule. Since $N=I_{X}$ is a non-principal right ideal, it follows from [7, Lemma 2.3] that X is a dr-prime submodule of M which is not M-cyclic. This is a contradiction. Hence, S is a principal right ideal ring.

We now have the following theorem, that can be considered as a new version of the Kaplansky-Cohen theorem for modules.

Theorem 5.6. Let M be a quasi-projective finitely generated right R-module which is a self-generator. If every dr-prime submodule of M is M-cyclic, then every submodule of M is M-cyclic.

Proof. Using Proposition 5.5. we see that S is a right principal ideal ring. Assume that X is a submodule of M. Then we have $I_{X}(M)=X$. Hence, X is M-cyclic, proving that every submodule of M is M-cyclic.

Acknowledgements : We would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was partially supported by a grant from the Niels Hendrik Abel Board. Bac T. Nguyen is grateful to the Foundation for Science and Technology Development, Nguyen Tat Thanh University, for partial financial support.

References

[1] N.V. Sanh, N.A. Vu, K.F.U. Ahmed, S. Asawasamrit, L.P. Thao, Primeness in module category, Asian-European J. of Math. 3 (1) (2010) 145-154.
[2] N.V. Sanh, N.T. Bac, N.D.H. Nghiem, C. Somsup, On modules with insertion factor property, Southeast Asian Bulletin of Mathematics 40 (2016) 1-7.
[3] K.F.U. Ahmed, L.P. Thao, N.V. Sanh, On semiprime modules with chain conditions, East-West J. of Mathematics 2 (2013) 135-151.
[4] N.T. Bac, N.V. Sanh, A characterization of Noetherian modules by the class of one-sided strongly prime submodules, Southeast Asian Bulletin of Mathematics 40 (2016) 1-9.
[5] N.H. McCoy, Completely prime and completely semi-prime ideals, Rings, Modules and Radicals, A. Kertesz (ed.), J. Bolyai Math. Soc. Budapest (1973), 147-152.
[6] S.I. Bilavska, B.V. Zabavsky, On the structure of maximal nonfinitely generated ideals of a ring and Cohen's theorem, Buletinul Academiei de Stiinte a Republich Moldova Matematica 65 (1) (2011) 33-41.
[7] T.V. Dong, N.T. Bac, N.V. Sanh, Applications of Kaplansky Cohens theorem, East-West J. of Mathematics 16 (2014) 87-91.
(Received 1 March 2017)
(Accepted 30 August 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2018 by the Mathematical Association of Thailand. All rights reserved.

