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1 Introduction and Preliminaries

Throughout this paper, all rings are associative rings with identity and all
modules are unitary right R-modules. Let R be a ring and M, a right R-module.
Denote S =Endr (M), the endomorphism ring of the module M. A submodule X
of M is called a fully invariant submodule if f(X) C X for any f € S. Especially,
a right ideal of R is a fully invariant submodule of Rp if it is a two-sided ideal
of R. The class of all fully invariant submodules of M is non-empty and closed
under intersections and sums. A right R-module M is called a self-generator if it
generates all its submodules. Following [1], a fully invariant proper submodule X
of M is called a prime submodule of M if for any ideal I of S =Endg(M), and any
fully invariant submodule U of M, if I(U) C X, then either /(M) C X or U C X.
A fully invariant submodule X of M is called a strongly prime submodule of M
if for any ¢ € S =Endr(M) and m € M, if ¢(m) € X, then either ¢p(M) C X or
m € X. The basic Theorem 2.1 in [1] shows that the class of prime submodules of
a given module has some properties similar to that of prime ideals in an associative
ring. Following that theorem, a fully invariant proper submodule X of M is prime
if and only if for any ¢ € S and m € M, ¢Sm C X implies that ¢(M) C X or
m € X. Using this property one can see that every strongly prime submodule is
prime.

Definition 1.1. [2| Definition 2.1] A submodule of a right R-module M is said to
have insertion factor property (briefly, an IFP-submodule) if for any endomorphism
¢ of M and any element m € M, if ¢(m) € X, then ¢Sm € X. A right ideal
I is an IFP-right ideal if it is an IFP-submodule of Rp, that is for any a,b € R,
if ab € I, then aRb C I. A right R-module M is called an IFP-module if 0 is an
IFP-submodule of M. A ring R is IFP if 0 is an IFP-ideal.

Definition 1.2. [1, Definition 2.1] A fully invariant submodule X of a right R-
module M is called a semiprime submodule if it is an intersection of prime submod-
ules of M. A right R-module M is called a semiprime module if 0 is a semiprime
submodule of M. Consequently, the ring R is a semiprime ring if Rg is semiprime.
By symmetry, the ring R is a semiprime ring if g R is a semiprime left R-module.

Proposition 1.3. [3, Proposition 2.3] Let M be a right R-module which is a
self-generator and X, a fully invariant submodule of M. Then X is a semiprime
submodule if and only if whenever f € S with fSf(M) C X, then f(M) C X.

In what follows, by Z,Q, Z,, and Z/nZ we denote, respectively, integers, ratio-
nal numbers, the ring of integers modulo n and the Z-module of integers modulo
n.
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2 Completely Semiprime Modules and
Submodules

In this section, we investigate the properties of completely semiprime sub-
modules and modules by our definition. We now give the notion of a completely
semiprime submodule.

Definition 2.1. A fully invariant proper submodule X of M is called completely
semiprime if for any 1 € S and m € M, ¥?(m) € X implies pSm C X.

We provide a relationship between a completely semiprime submodule and
semiprime submodule as follows.

Remark 2.2. Fvery completely semiprime submodule is semiprime.

Proof. Suppose that X is a completely semiprime submodule of M. It follows
from Proposition that X will be semiprime if we can prove that for every
f €S =Endr(M), fSf(M) C X implies f(M) C X. So, let f € S =Endgr(M)
such that fSf(M) C X. Therefore, f2(m) € X for every m € M. Since X is
a completely semiprime submodule of M, we have fSm C X for every m € M.
Hence, f(M) C fS(M) C X and we are done. O

An R-module M is completely semiprime if the zero submodule of M is a com-
pletely semiprime submodule of M. In general, an R-module M/P is a completely
semiprime module if and only if P is a completely semiprime prime submodule of
M. To illustrate, we give an example of completely semiprime module.

Example 2.3. Let p be any prime integer and M = (Z/pZ) & Q a Z-module.
Then the endomorphism ring S of the module M is isomorphic to the matrix
ring { [ 8 2 } ta € Zp,be Q} . It is evident that M is a completely semiprime

module.
We provide a characterization of completely semiprime submodules as follows.

Proposition 2.4. Let M be a right R-module and S =Endr(M) be a reduced ring,
i.e., S has no nonzero nilpotent elements. Assume that for each element m € M,
there exists g € S such that mR = gM. Then M is completely semiprime.

Proof. Let f € S and m € M such that f2(m) = 0. From our assumption there
exists g € S such that mR = gM. Hence 0 = f?(mR) = f%g(M). Hence f?g =
0. Since S is reduced, we have fg = 0 and consequently fSg = 0. Thus 0 =
fSg(M) = fS(mR) and we can see that fS(m)=0. O

The following corollary is a direct consequence of Proposition [2.4]

Corollary 2.5. A free R-module is completely semiprime if S =Endgr(M) is a
reduced ring.
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Proof. Let F be a free R-module. Clearly for every m € F there exists f €
S =Endr (M) such that fF = Rm. By Proposition Fis completely semiprime.
O

Some characterizations of completely semiprime submodules are given in the
following result.

Proposition 2.6. Let M be a right R-module and S =Endr(M). For a fully
inwvariant proper submodule X of M, the followings are equivalent:

1. X s completely semiprime.
2. Foralla € S andm € M, if am € X, then SmNaM C X.

3. (a) Foralla € S and m € M such that am € X, we have aSm C X and
(b) a*m € X implies am € X.

Proof. 1. = 2. Assume that a?m € X. Then aSm C X. Let a € S and m € M
such that am € X and x € SmNaM. Now, z = b = amq, for b € S and
mi1 € M. Since am € X and X is a fully invariant submodule, a>m € X. From our
assumption, we have aSm C X. From am; € Sm, we can see that a?m; € aSm C
X. Again, by our assumption, aSm; C X. It implies that x = amy € aSm; C X.
Hence, SmNaM C X.

2. = 3. Let a € S and m € M such that am € X. From (2), we have
aSm C SmNaM C X and (3a) is satisfied. Now, let a € S and m € M such that
a’*m = a(am) € X. From (2), we have am € S(am) NaM C SmNaM C X and
(3b) is proved.

3.= 2. Let a € S and m € M such that am € X. If x € SmNaM, then x =
bm = an for some b € S and n € M. From (3a), we have abm € aSm C X. Since
a’n = ax = abm € X, applying (3b), we have z = an € X. Hence, SmNaM C X
and (2) is proved.

3.= 1. Let a € S and m € M such that a®>m € X. From (3b), we have am € X
and from (3a), we have aSm C X. O

We consider the relationship between completely semiprime and IFP submod-
ules in the following lemma.

Lemma 2.7. If a fully invariant submodule X of a right R-module M is completely
semiprime, then

1. X is an IFP-submodule of M.
2. If a,f €S and m € M such that af(m) € X, then fa(m) € X.

Proof. 1. Let a(m) € X. Since X is a fully invariant submodule, we have
a?(m) € X. Now, since X is a completely semiprime submodule of M, we
have aS(m) C X.
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2. Let a, 3 € S and m € M such that a3(m) € X. It implies that (3a83)%(m) €
X. Because X is completely semiprime, we have SafS(m) C X. Hence
(Ba)?(m) € X and again, since X is completely semiprime, we have Sa.S(m)
C X and consequently Sa(m) € X.

O

It is well known from [4] that a strongly prime submodule is prime. The fol-
lowing result shows that a strongly prime submodule is also completely semiprime.

Proposition 2.8. If a fully invariant submodule X of M is a strongly prime
submodule of M, then it is completely semiprime.

Proof. Let ¢p € S and m € M such that ¥?(m) € X. Since X is a strongly
prime submodule of M, we have ¢)(M) C X or ¢(m) € X. If (M) C X, then
PS(M) = (M) C X and we have ©S(m) C X. If ¢y(m) € X, then since X is a
strongly prime submodule of M, we have (M) C X or m € X. We only have to
show that if m € X, then ¢S(m) C X. Now g(m) € X for every g € S. Hence
S(m) C X and consequently ¥S(m) C X. O

As for a semiprime submodule in [1] we now define strongly semiprime sub-
module as follows:

Definition 2.9. A fully invariant submodule X of a right R-module M is called a
strongly semiprime submodule if it is an intersection of strongly prime submodules
of M. A right R-module M is called a strongly semiprime module if 0 is a strongly
semiprime submodule of M.

Similar to a prime submodule, the following shows that if X is a strongly
semiprime submodule, then Ix is a completely semiprime ideal of S. The converse
is aslo considered.

Proposition 2.10. Let M be a right R-module.

1. If X is a strongly semiprime submodule of M, then Ix is a completely
semiprime ideal of S.

2. If M is a self-generator and P is a completely semiprime ideal of S, then
X := P(M) is a strongly semiprime submodule of M and Ix = P.

Proof. 1. Since X is a strongly semiprime submodule of M, we can write X =

(| P, where each P is a strongly prime submodule of M.
PeF
Solx=I  p= (1 Ip. Byl[4 Theorem 2.13] it is easy to see
PCM,PEF PCM,PeF
that Iy is a completely semiprime ideal of S.

2. Since M is a self-generator, we can write P = Ip(y) = Ix, which is a com-
pletely semiprime ideal of S. Hence
Ix = N K =Hom(M, ( N K)(M)). Let

KCS,K completely prime KCS,K completely prime
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X = P(M), where P is a completely semiprime ideal of S. Since M is a self-

generator, we have P = Ip(ys) = Ix and by our assumption P = (1 K, for
KeA
some set A of completely prime ideals of S. Thus Ix = Hom(M, Ix(M))

= Hom(M, | K(M)). Thus ( (| K)(M) = () K(M), and therefore
KeA KeA KeA
X = () K(M). Since K is a completely prime ideal of S, K(M) is a
KeA
strongly prime submodule of M, proving that X is a strongly semiprime

submodule of M.
O

The following result provides an important property of completely semiprime
submodules.

Proposition 2.11. Let M be a right R-module which is a self-generator and X a
Sfully invariant submodule of M. Then X is a completely semiprime submodule of
M if and only if it is strongly semiprime submodule of M.

Proof. Let X be a completely semiprime submodule of M. We prove that Iy is
a completely semiprime ideal of S. Let a € S such that a? € Ix. Hence a?(M) C
X. Now for all m € M we have a?>m € X. Since X is a completely semiprime
submodule of M, we have aSm C M. Hence aM = aSM C X and a € Ix. Thus
Ix is a completely semiprime ideal of S. From Proposition 2.10] X is a strongly
semiprime submodule of M.

For the converse, suppose X = (1 P, where A is a family of strongly
PCM,PeA
prime submodules of M. Let f € S and m € M such that
PmeX = (\  P. Hence f?m € P for every P € A. Since P is strongly
PCM,PeA

prime and f(m) € M, we have f(M) C P or f(m) € P for every P € A. If
f(M) C P for every P € A, then fS(m) C P for every P € A. Hence fS(m) C X.
If f(m) € P for every P € A, then since every P is strongly prime, we have
f(M) C Porm € P. Now m € P implies that g(m) € P for all g € S. Hence
S(m) C P and consequently fS(m) C P for every P € A. Thus fS(m) C X and
we are done. O

We consider the quotient module of a completely semiprime submodule as
follows.

Lemma 2.12. Let X be a submodule of a right R-module M. If X is a com-
pletely semiprime submodule and M is quasi-projective, then M /X is a completely
semiprime module. Conversely, if M/X is completely semiprime and X is fully
invariant, then X is a completely semiprime submodule of M.

Proof. Suppose X is a completely semiprime submodule of M and 52(m) =0
where ¢ € S =Endg(M/X) and m € M/X. By the quasi-projectivity of M, there
isa ¢ € S such that v¢ = ¢v, where v : M — M /X is the natural epimorphism. It
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follows that ¢?(m) € X. Let 7] be any element of S. As above there is a ) € S such
that vn = 7. Since X is completely semiprime ¢S(m) C X. Hence vgn(m) = 0
and thus ¢n(m) = éqv(m) = ¢vn(m) = vén(m) = 0. Thus ¢S(m) = 0 and
consequently M /X is a completely semiprime module. For the converse, suppose
X is a fully invariant submodule of M with M/X completely semiprime. Let
#*(m) € X with ¢ € S and m € M. Since M is quasi-projective, there is a ¢ € S
such that vé = ¢v. Now ¢?(m) € X implies v¢?(m) = 0. Hence 52 (m) = $2v(m) =
v¢?(m) = 0. Let n € S. Using the fact that M is quasi-projective, there is a i € S
such that vy = fw. Since M/X is completely semiprime, we have that ¢S(m) = 0
. Now ¢n(m) = énv(m) = ¢vn(m) = vén(m) = 0. Hence ¢n(m) € X for every n
€ S. Thus ¢S(m) C X and therefore X is a completely semiprime submodule of
M. O

The following theorem can be considered as a generalization of |2, Proposition
2.4].

Theorem 2.13. Let X be a fully invariant submodule of a right R-module M. X
is strongly prime if and only if it is prime and completely semiprime.

Proof. From [4] and Proposition if X is strongly prime, then X is prime and
completely semiprime.

For the converse, let X be prime and completely semiprime. From Lemma
X has IFP and from [2, Proposition 2.4] X is strongly prime. O

We give the relationship between a completely semiprime submodule and its
endomorphism ring.

Proposition 2.14. Let M be a right R-module and S =FEndr(M). If M is com-
pletely semiprime, then S is reduced. The converse is true if M is a self generator.

Proof. Let ¢*> = 0 € S. Then ¢*(m) = 0 for all m € M. If M is completely
semiprime, then ¢S(m) = 0 for all m € M. Hence ¢S(M) = ¢(M) = 0. Thus
¢ =0 and S is reduced.

Conversely, since Iy = {f € S|f(M) =0 C M} = 0 is a completely semiprime
ideal, it follows from Proposition [2.10]that 0 is a completely semiprime submodule.
Hence, M is completely semiprime. O

We provide a method to examine when an R-module is completely semiprime.

Proposition 2.15. Let M be a right R-module and S = Endr(M). If M is quasi-
projective, then the followings are equivalent:

1. M 1is completely semiprime.
2. For any ¢ € S, ker(¢) is a completely semiprime submodule of M.
3. M/ker(I) is a completely semiprime module for any subset I of S.
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Proof. 1. = 2. Let ¥?(m) € ker(¢). If ¢ is any element from S, then ¢?(m) = 0.
From Lemma we have ©¥ép(m) = 0. Hence ¢upyy(m) = 0 and since M is
completely semiprime, we have ¢1).S(m) = 0. Thus ¥S(m) C ker(¢) and therefore
ker(¢) is a completely semiprime submodule of M.

2. = 3. We note that ker(I) = () ker(f) and each ker(f) is a completely

fel

semiprime submodule of M. Hence, ker(I) is a completely semiprime submodule of
M. Since M is quasi-projective, by applying Lemma we have that M /ker(I)
is a completely semiprime module.

3. = 1. This part is clear by taking I = {15/}, 1as is the identity map of
M. O

By Proposition [2.15] we can check that M is completely semiprime if and only
if for any ¢ € S, ker(¢) is a completely semiprime submodule of M. The following
result provides another method to check when M is completely semiprime.

Theorem 2.16. Let M be a right R-module which is a self-generator and
S =Endgr(M). The followings are equivalent:

1. M s completely semiprime.
2. For any m € M, lg(m) is a completely semiprime ideal of S.

3. S/ls(A) is a reduced ring for any subset A C M.

Proof. 1. = 2. Let o? € lg(m). Hence a?(m) = 0. Since M is completely
semiprime, we have aS(m) = 0. Thus a(m) = 0 and o € Ig(m).
2.=3.1s(4) = N ls(a). Since each lg(a) is a completely semiprime ideal of
acA

S, ls(A) is a completely semiprime ideal of S. Hence, S/lg(A) is a reduced ring.
3. = 1. Taking A = M, then it is clear that S is a reduced ring. Since M

is a self-generator, by applying Theorem [2.13] we can see that M is a strongly

semiprime module. O

3 Completely Prime Radical

We start this section by the following lemma.

Lemma 3.1. Let M be a quasi-projective module and A a fully invariant submod-
ule of M. If P C M/A is a strongly prime submodule of M /A, then v=1(P) is a
strongly prime submodule of M

Proof. Put M = M/P(M). Let P = v~(P). Suppose f € S and m € M such
that f(m) € P. Since M is quasi-projective, there is f € S such that fv = vf,
where v : M — M/A is the canonical projection. From f(m) € P, we have
vf(m) € v(P) = P or fv(m) € P. From our assumption f(M) C P or v(m) € P.
If f(M) C P, we have fu(M) C Porvf(M) C P, thatis f(M) C P. Ifv(m) € P,
then m € P. Hence, P is strongly prime. O
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Lemma 3.2. Let M be a quasi-projective module and P a strongly prime submod-
ule of M. If A C P is a fully invariant submodule of M, then P/A is a strongly
prime submodule of M/A.

Proof. Let S =Endr(M/A) and let f € S and f(m + A) € M/A such that
f(m + A) € P/A. Since M is quasi-projective, we can find f € S such that fov
= vf, where v : M — M/A is the canonical projection. Then vf(m) = fv(m) =
f(m+ A) € P/A. Hence f(m) € P. Now, since P is a strongly prime submodule
of M, we have f(M) C P or m € P. It implies that (f(M) + A)/A C P/A or
(m+A) € P/A. Thus f(M/A) C P/Aor (m+ A) € P/A. Hence P/A is a strongly
prime submodule of M/A. O

For a right R-module M, let C(M) be the intersection of all strongly prime
prime submodules of M. By our definition, M is a strongly semiprime module if
C(M) = 0. We want to get some properties similar to that of completely prime
radicals of rings and as first step, the following theorem is true for quasi-projective
modules.

Theorem 3.3. Let M be a quasi projective module. Then M/C(M) is a strongly
semiprime module, that is C(M/C(M)) = 0.

Proof. Put M = M/C(M). By I;emma and Lemma we have

C(M) = N X = N X/C(M)
XCM , X is strongly prime XCM,X is strongly prime
= ( N X)/C(M)=C(M)/C(M) = 0. This shows that M/C(M)
XCM,X is strongly prime
is a strongly semiprime module. O

4 Multiplicative Systems

The following proposition offers several other characterizations of strongly
prime submodules.

Proposition 4.1. Let M be a right R module and S =Endg(M). For a proper
fully invariant submodule P of M, the following are equivalent:

1. P is a strongly prime submodule of M.

2. For all a € S and every m € M, if (am) C P then either (m) C P or
aM C P.

Proof. 1. = 2. Let a € S and m € M such that (am) C P. Since am € P, it
follows from 1. that m € P or aM C P, i.e. (m) C P or aM C P.

2. = 1. Let a € S and m € M such that am € P. Now (am) C P and it
follows from 2. that (m) C P or aM C P. Hence m € (m) C P or aM C P and
we are done. O

The notion of multiplicative systems of rings is generalized to modules as
follows.
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Definition 4.2. Let Mpr be a module and S =Endg(M). A nonempty set X C
M\{0} is called a multiplicative system of Mp if for each a € S, m € M and for
all submodules K of M such that (K + (m)) NX # ¢ and (K + (am))N X # ¢,
then (K + (aM)) N X # ¢.

Using multiplicative systems, we can check when a proper fully invariant sub-
module is strongly prime.

Lemma 4.3. Let M be a right R module and S =FEndr(M). A proper fully invari-
ant submodule P of M is strongly prime if and only if X = M\P is a multiplicative
system of M.

Proof. = Put X = M\P. Let a € R and m € M. If K is a submodule of M,
then (K 4+ (m)) NX # ¢ and (K + (aM))N X # ¢. If (K + (am)) N X = ¢, then
(am) C P. since P is strongly prime, we have either (m) C P or aM C P. Thus,
(K 4+ (m)) NX = ¢ or (K + (aM))N X = ¢, a contradiction.

< Let a € S and m € M such that (am) C P but (m) ¢ P and aM ¢ P.
Then, (m))NX # ¢ and aMN X # ¢. By the definition of a multiplicative system,
{am) N X # ¢ such that (am) ¢ P, a contradiction. O

The following is a property of strongly prime submodules.

Lemma 4.4. Let M be an R-module, X C M a multiplicative system of M and
P a fully invariant submodule of M mazimal with respect to the property that
PNX =¢. Then P is a strongly prime submodule of M.

Proof. Suppose a € S and m € M such that (am) C P. If (m) ¢ P and aM ¢ P
then (P+{(m))N X # ¢ and (P+aM)N X # ¢. Since X is a multiplicative system
of M, ({(am) + P)NX # ¢. Since (am) C P, we have PN X # ¢, a contradiction.
Hence, P must be a strongly prime submodule. O

We give the definition of st(N), where st(INV) is the intersection of all strongly
prime submodules containing N.

Definition 4.5. Let R be a ring and M an R-module. For a fully invariant
submodule N of M, if there is a strongly prime submodule containing N, we define
st(N) := {m € M : every multiplicative system containing m meets N}. We write
st(N) = M when there are no strongly prime submodules of M containing N.

Using definition above, we have the following result.
Theorem 4.6. Let M be a right R-module and N a fully invariant submodule of

M. Then, either st(N) = M or st(N) equals the intersection of all strongly prime
submodules containing N, which is denoted by Bst(N).
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Proof. Suppose st(N) # M. Then, B (N) # ¢. Both st(N) and N are contained
in the same strongly prime submodules. By definition of st(NN), it is clear that
N C st(N). Hence, any strongly prime submodule of M which contains st(N)
must necessarily contain N. Suppose P is a strongly prime submodule of M such
that N C P, and let t € st(N). If t ¢ P, then the complement of P, C(P) in M is
a multiplicative system containing ¢ and therefore we would have C(P) N N # ¢.
However, since N C P, C(P) N P = ¢ and this contradiction shows that ¢ € P.
Hence st(N) C P as we wished to show. Thus, st(N) C B (N). Conversely,
assume s ¢ st(IN), then there exists a multiplicative system X such that s € X and
X NN = ¢. From Zorn’s Lemma, there exists a fully invariant submodule P O N
which is maximal with respect to PN X = ¢. From Lemma P is a strongly
prime submodule of M and s ¢ P. Therefore, we have st(N) = B (N). O

Let I be an ideal of a ring R. Recall from [5, Theorem 3] that, if there exists a
completely prime ideal of R containing I, then we define N/ (I) is the intersection
of all completely prime ideals of R containing I. If there is no completely prime
ideal containing I, we put N'(I) = R.

Proposition 4.7. Let M be a right R-module and N a fully invariant submodule
of M. Then N(In)(M) C st(N).

Proof. 1f st(N) = M, then the result is immediate. Otherwise, if T is any strongly
prime submodule of M that contains N, then Ir is a completely prime ideal
of S and I+ D In. Thus N(Iy) C Iy and hence N(Iy)(M) C Ip(M) C T.
Since T is an arbitrary strongly prime submodule of M containing N, we have
N(IN)(M) C st(N). O

Applying Proposition [£.7, we have the following proposition.

Proposition 4.8. Let M be a quasi-projective finitely generated right R-module
which is a self-generator. Let N be a fully invariant submodule of M. Then
N(IN)(M) = st(N).

Proof. By Proposition we have N(In)(M) C st(N). Now, we write st(N)
= ILyny(M) and we will show that I, ny € N (In). Let P be a completely prime
ideal of S such that Iy C P. Then PM is a strongly prime submodule of M and
PM D In(M) = N. Hence PM D st(N). Since Iy ny =Hom(M, st(N))
CHom(M, PM) = P, we have I;(ny € N (Iy). It follows that st(N) € N (In)(M).
O

5 Dr Prime Submodules

In a more recent paper, S. I. Bilavska and B. V. Zabavsky studied dr-prime
right ideals of rings and they suggested a version of Kaplansky-Cohen’s theorem
for noncommutative rings (see [6] for more details). Many authors studied Cohen’s
theorem and Kaplansky-Cohen’s theorem for noncommutative rings. Some of them
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also extended these results for modules. For example, in [6], S. I. Bilavska and
B. V. Zabavsky gave a noncommutative version of the Kaplansky-Cohen theorem.
Following them, a right ideal P of R is called a dr-prime right ideal if P C cR,
where ¢ is a duo element and for any p € P the condition p = cx implies z € P.
It is easy to verify that any maximal right ideal J of a ring R is a dr-prime right
ideal. This result is introduced in [6].

Theorem 5.1. [6, Theorem 2] If every dr-prime right ideal of a ring R is principal,
then every right ideal of R is principal.

We now give the defnition of dr-prime submodules as an extension of dr-prime
right ideals for rings.

Definition 5.2. A submodule X of M is called a dr-prime submodule if X C
©S(M) where ¢ is a duo-element of S and if n € S such that pn(M) C X then
n(M) C X.

It is easy to see that if M = R, then the defnition of dr-prime right ideals and
dr-prime submodules coincide.

Proposition 5.3. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then X is a dr-prime submodule if and only if Ix is a
dr-prime right ideal of S.

Proof. Suppose that X is a dr-prime submodule of M and Ix C 7S where n € S
is a duo-element of S. We have X C nS(M). If p € S such that np € Ix, then
np(M) C X. Since is X is a dr-prime submodule of M, we have p(M) C X i.e.
p € lx.

For the converse, assume that Ix is a dr-prime right ideal of S and X C
©S(M), where ¢ is a duo-element of S. Hence Ix C ©S. If n € S such that
en(M) C X, then ¢n € Ix. Since Ix is a dr-prime right ideal of S, we have
n€lxie n(M)CX. O

Recall that a module NV is said to be M-generated if there is an epimorphism
MT — N for some index set I. If I is finite, then N is called a finitely M-
generated module. In particular, a module N is called M-cyclic if there is an
epimorphism from M — N.

Proposition 5.4. Let M be a quasi-projective module and X an M -cyclic sub-
module of M. Then Ix is a principal right ideal of S.

Proof. Since M is M-cyclic, there exists an epimorphism ¢ : M — X such that
X = o(M). Tt follows that S C Ix. By the quasi-projectivity of M, for any
f € Ix, we can find a a € S such that f = pa, proving that Ix = ¢S, as
required. O

We finish this section by providing another version of the Kaplansky-Cohen
theorem for modules. To do that, we give the following proposition.
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Proposition 5.5. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If every dr-prime submodule of M is M -cyclic, then S
is a right principal ideal ring.

Proof. Assume that S is not a right principal ideal ring. Then there exists a non-
principal right ideal I of S. From [6, Corollary 6], I is contained in a maximal
non-principal right ideal N and from [6, Proposition 2], N is a dr prime right
ideal of S. Let X = N(M). Since M is a quasi-projective finitely generated right
R-module, we have N = Ix. Now, since [x. is a dr-prime right ideal, we have X
is a dr prime submodule. Since N = [x is a non-principal right ideal, it follows
from [7, Lemma 2.3] that X is a dr-prime submodule of M which is not M —cyclic.
This is a contradiction. Hence, S is a principal right ideal ring. O

We now have the following theorem, that can be considered as a new version
of the Kaplansky-Cohen theorem for modules.

Theorem 5.6. Let M be a quasi-projective finitely generated right R-module which
is a self-generator. If every dr-prime submodule of M is M-cyclic, then every
submodule of M is M-cyclic.

Proof. Using Proposition [5.5] we see that S is a right principal ideal ring. Assume
that X is a submodule of M. Then we have Ix (M) = X. Hence, X is M-cyclic,
proving that every submodule of M is M-cyclic. O
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