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Abstract : Let n be a positive integer greater than 1, Zn the ring of integer
modulo n, f an endomorphism on Zn and Un the set of all units in Zn. The
unitary endo-Cayley digraph, denoted by endo−Cayf (Zn, Un), is the digraph
whose vertex set is Zn and a vertex u is adjacent to v if v = f(u) + a for some
a ∈ Un.

We find conditions for endomorphism f to make sure that endo−Cayf (Zn, Un)
is undirected graph. After that we study about their coloring to investigate bounds
of their chromatic numbers. Moreover, we give examples to show the sharpness of
each bounds.
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1 Introduction

Let n be a positive integer greater than 1, Zn the ring of integer modulo
n, f an endomorphism on Zn and Un the set of all units in Zn. The unitary
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endo-Cayley digraph, denoted by endo − Cayf (Zn, Un), is the digraph whose
vertex set is Zn and a vertex u is adjacent to v if v = f(u) + a for some a ∈ Un.
Sometime we call Un as a connecting set of endo−Cayf (Zn, Un). In case that an
endomorphism f is an identity map, we have that unitary endo-Cayley digraph is a
unitary Cayley digraph denoted as Cay(Zn, Un). The properties and structure
of unitary Cayley graph have been studied in [1, 2, 3].

To illustrate, let us consider an unitary endo-Cayley digraph of Z6. Then
U6 = {1, 5}. Let f and g be endomorphisms on Z6 defined as f(x) = 2x, g(x) = 5x
for all x ∈ Z6. The resulting digraphs endo−Cayf (Z6, U6) and endo−Cayg(Z6, U6)
are shown below.
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Figure 1: Endo-Cayley digraphs of Z6 with different endomorphisms

We call a digraph D as a undirected graph if arc xy ∈ A(D) if and only if
yx ∈ A(D). So endo − Cayf (Z6, U6) is a digraph while endo − Cayg(Z6, U6) is
undirected.

In 2014, C. Promsakon and S. Panma study undirectedness of endo-Cayley
digraph of Zn for any endomorphisms and connecting sets. They investigate a
condition for undirected endo-Cayley digraph of cyclic group of order prime num-
ber [4]. That condition involve to an endomorphism and a connecting set showed
as follow.

Theorem 1.1 ([4]). Let p be a prime number, A a subset of Zn and f an endo-
morphism on Zn. Then endo − Cayf (Zp, A) is undirected if and only if at least
one condition below holds

1. f(x) = x and A = A−1 or

2. f(x) = x−1 or

3. A = Zp.

Moreover, they also gave sufficient conditions for undirected endo-Cayley di-
graph of cyclic group. We restate the results here without proof.
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Theorem 1.2 ([4]). Let m and n be integers and A a subset of Zn. If −mA ⊆ A
and xm2 ≡ x (mod n) for all x ∈ Zn, then endo−Cayf (Zn, A) is undirected where
f(x) = mx, 1 < m < n− 1 for all x ∈ Zn.

Next, in 2015, C. Promsakon extended his work to study undirected unitary
endo-Cayley digraph of Zpk where p is a prime number and k is a non-negative
integer. We show some Theorems related to this work here. The proof of each
Theorems are showed in [5].

We begin by giving a necessary condition for undirected endo-Cayley graph of
Zn for any n ∈ N.

Lemma 1.3 (A necessary condition, [5]). Let n be a positive integer such that
n > 1, m a positive integer less than n, Un a set of all units in Zn and f an
endomorphism on Zn defined by f(x) = mx for all x ∈ Zn. If endo−Cayf (Zn, Un)
is undirected, then m ∈ Un.

When n is 2k where k ∈ N, we have a converse a Lemma 1.3 is true.

Corollary 1.4 ([5]). Let k be a positive integer, m a positive integer less than 2k,
U2k a set of all units in Z2k and f an endomorphism on Z2k defined by f(x) = mx
for all x ∈ Z2k . Then endo−Cayf (Z2k , U2k) is undirected if and only if m ∈ U2k .

A condition for endomorphism f to make endo − Cayf (Zpk , Upk) undirected
is showed in the next theorm.

Theorem 1.5 ([5]). Let p be a prime number, k a positive integer, m a positive
integer less that pk, Upk a set of all units in Zpk , f an endomorphism on Zpk

defined by f(x) = mx for all x ∈ Zpk . Then endo− Cayf (Zpk , Upk) is undirected
if and only if m2 ≡ 1 (mod p).

We end this section by giving some definitions and properties about the chro-
matic number of graphs. The proof in each theorems can found in [6].

A k-coloring of a graph G is a labeling of vertices in G, f : V (G) →
{1, 2, . . . , k}. We call the image of a coloring as colors. A k-coloring is called
proper if all adjacent vertices in G have different labels. A graph is called k-
colorable if it has a proper k-coloring. We always use a coloring for a proper
coloring. The chromatic number of a graph G, denoted by χ(G), is the least k
such that G is k-colorable.

Theorem 1.6 ([6]). A graph G is a bipartite graph if and only if χ(G) = 2.

A clique of a graph G is a complete subgraph of G. The clique number of
a graph G, denoted by ω(G), is the maximum order of cliques of G. Clearly that
for each vertices in a complete graph, they are adjacent. So they have different
labels in a coloring. Hence χ(Kn) = n = ω(Kn).

Proposition 1.7 ([6]). For any graph G, χ(G) ≥ ω(G).
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Theorem 1.8 (Seinsehe). If a graph G has no induced subgraph isomorphic to
P4, then χ(G) = ω(G).

The greedy algorithm is an algorithm to find the chromatic number of any
graphs. The greedy algorithm takes an order of vertices v1, v2, . . . , vn and colors
vertices in that order, assigning to each vertex the smallest indexed color not
already use by it previously colored neighbors. By the greedy algorithm, we have
a bound of the chromatic number of a graph.

Theorem 1.9 ([6]). For any graph G, χ(G) ≤ ∆(G) + 1.

Clearly that an equality in Theorem 1.9 holds in two cases which are odd
cycles and complete graphs. Next, R. Leonard Brooks proved that these are the
only connected graphs for which the bound is attained.

Theorem 1.10 (Brooks’s Theorem). For every connected graph G that is not an
odd cycle or a complete graph, χ(G) ≤ ∆(G).

An independent set of a graph G is a subset of V (G) such that no two of
which are adjacent. An independent set is called maximum independent set if
it have the largest possible size for a given graph G. That size is called indepen-
dent number of G, denoted by α(G). Since they are no two vertices adjacent
in independent set, we can give the same color to each vertex in independent set.
Hence we get the lower bound of the chromatic number of a graph G as follow.

Theorem 1.11 ([6]). For any graph G of order n, χ(G) ≥ n

α(G)
.

In the next section, we explore conditions for an endomorphism f on Zn to
make endo − Cayf (Zn, Un) undirected for any n ∈ N. After that, colorability of
undirected endo−Cayf (Zn, Un) is studied. We will show bounds of their chromatic
numbers and also give examples to show the sharpness of each bounds.

2 Main Results

We know that for any n ∈ N can be rewritten in the from n = pk1
1 p

k2
2 · · · p

ki
i

where pj are distinct prime numbers such that p1 < p2 < . . . < pi and kj ∈ N for
all j = 1, 2, . . . , i. In cases that n = p or n = pk, C. Promsakon and S. Punma
characterized undirected unitary endo-Cayley of Zn. They gave conditions to make
endo−Cayf (Zn, Un) undirected as we mention in introduction. Now we study an
undirected for any n ∈ N. Here is a result.

Theorem 2.1. Given n = pk1
1 p

k2
2 · · · p

ki
i where pj are distinct prime numbers

such that p1 < p2 < . . . < pi and kj ∈ N for all j = 1, 2, . . . , i. Let f be an

endomorphism on N defined as f(x) = mx for all x ∈ N. If m2 ≡ 1 (mod p
kj

j ) for
all j = 1, 2, . . . , i, then endo− Cayf (Zn, Un) is a undirected graph.
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Proof. Assume that m2 ≡ 1 (mod p
kj

j ) for all j = 1, 2, . . . , i. Fix j. It implies

that m2 ≡ 1 (mod pj) and so m ≡ 1 (mod pj) or m ≡ −1 (mod pj). Hence
(m,n) = 1 = (−m,n) and also m,−m ∈ Un. Because Un is a group under
multiplication, we have mUn ⊆ Un and −mUn ⊆ Un.

Next, Since pj are distinct prime numbers, we have (p
kj1
j1
, p

kj2
j2

) = 1 for any

pj1 , pj2 . Then m2 ≡ 1 (mod n). So xm2 ≡ x (mod n) for all x ∈ Zn. By Theorem
1.2, we have endo− Cayf (Zn, Un) is a undirected graph.

We know that for any integer n > 2, there are at least 2 solutions of equation
x2 ≡ 1 (mod n) which are x ≡ 1 (mod n) and x ≡ −1 (mod n). So there are at
least 2k distinct solutions of equation x2 ≡ 1 (mod n1n2 · · ·nk) where (ni, nj) = 1
for all i, j by the Chinese remainder theorem. For example, we find solutions of
equation x2 ≡ 1 (mod 45). Then x2 ≡ 1 (mod 5) and x2 ≡ 1 (mod 9) and also
x ≡ 1 (mod 5) or x ≡ −1 (mod 5) and x ≡ 1 (mod 9) or x ≡ −1 (mod 9). By
solving the 4 equations systems, the solutions are x ≡ 1,−1, 19,−19 (mod 45).
Therefore integers m for undirected endo − Cayf (Z45, U45) where f(x) = mx for
all x ∈ Z45 are 1, 19, 26 and 44.

We show next the condition of an endomorphism for loopless unitary endo-
Cayley of Zn.

Theorem 2.2. Let n be a natural number such that n > 1 and m a natural number
less than n. If an endomorphisn f on Zn is defined as f(x) = mx for all x ∈ Zn

where (m− 1, n) 6= 1, then A graph endo− Cayf (Zn, Un) is a loopless graph.

Proof. Assume that f : Zn → Zn is defined as f(x) = mx for all x ∈ Zn and
(m− 1, n) 6= 1. Suppose for a contradiction that endo− Cayf (Zn, Un) has a loop
at vertex a. Then a = f(a) + u = ma + u for some u ∈ Un. So u = −a(m − 1).
Since (m− 1, n) 6= 1, we have (−a(m− 1), n) 6= 1. Hence u = −a(m− 1) 6∈ Un, a
contradiction.

The objectives of this paper is to study about coloring properties of unitary
endo-Cayley graph of Zn and also find bonds of their chromatic numbers. So
we consider only undirected simple endo − Cayf (Zn, Un) . We already showed
the case of endomorphisms to make endo − Cayf (Zn, Un) be undirected simple
graph which is f(x) = mx and m2 ≡ 1 (mod n) and (m − 1, n) 6= 1 for all
x ∈ Zn. Hence we study only endo−Cayf (Zn, Un) where f(x) = mx and m2 ≡ 1
(mod n) and (m − 1, n) 6= 1 for all x ∈ Zn. For convenient, we use notation
endo−Caym(Zn, Un) for undirected simple endo−Cayf (Zn, Un) where f(x) = mx,
m2 ≡ 1 (mod n) and (m − 1, n) 6= 1 for all x ∈ Zn. For example, if we mention
about endo−Caym(Z45, U45), we refer an endomorphism f defined as f(x) = mx
where m = 1, 19 or 26.

Remark 2.3. For any undirected loopless graph endo − Caym(Zn, Un), we have
m ∈ Un.

Theorem 2.4. For any vertices x and y in undirected loopless graph endo −
Caym(Zn, Un), x is adjacent to y if and only if (y −mx, n) = 1.
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Proof. Let x and y be vertices in undirected loopless graph endo−Caym(Zn, Un).
We assume that x and y are adjacent in endo−Caym(Zn, Un). Then y = mx+u for
some u ∈ Un and also (y−mx, n) = (u, n) = 1. Conversely, assume (y−mx, n) = 1.
So y −mx ∈ Un and hence x is adjacent to y.

There are some basic properties of undirected simple endo-Cayley graphs of
Zn involving their colorability. We show that properties here.

Theorem 2.5. A graph endo− Caym(Zn, Un) is a φ(n)-regular graph.

Proof. Let x be an vertex in endo−Cayf (Zn, Un). Then x is adjacent to all f(x)+u
where u ∈ Un. Since endo−Cayf (Zn, Un) be an undirected simple graph, we have
deg(u) = |Un| = φ(n). Hence endo− Cayf (Zn, Un) is a φ(n)-regular graph.

Theorem 2.6. A graph endo−Caym(Zn, Un) is a cycle if and only if n = 3 or 6.

Proof. In Case that n = 3, it is clearly that m which satisfies with m2 ≡ 1
(mod n) and (m − 1, n) 6= 1 is 1 and endo − Cayf (Z3, Un) = Cay(Z3, {1, 2}) is
C3. Sufficiency condition is proved. Next, we may assume endo − Cayf (Zn, Un)
is cycle. By Theorem 2.5, we have φ(n) = 2. Hence n = 3 or 6.
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Figure 2: A cycle endo− Caym(Z6, U6) where m = 5

Now, we know that a graph endo−Caym(Z3, U3) is an odd cycle while a graph
endo−Caym(Z6, U6) is an even cycle. So we instantly have the following Corollary.

Corollary 2.7. χ(endo− Caym(Z3, U3)) = 3 and χ(endo− Caym(Z6, U6)) = 2

Theorem 2.8. A graph endo − Caym(Zn, Un) is a complete graph if and only if
n is a prime number and endo− Caym(Zn, Un) = Cay(Zn, Un).

Proof. It is easy to see that endo− Cay1(Z2, U2) is a complete graph. So we will
prove for any odd prime. We assume that endo − Caym(Zn, Un) is a complete
graph. Then φ(n) = n − 1 by Theorem 2.5. So n is a prime number. Because
m2 ≡ 1 (mod n), it implies that m ≡ 1 or n− 1 (mod n). Since (n− 2, n) = 1, we
have that m = 1. Therefore endo − Caym(Zn, Un) = Cay(Zn, Un). Clearly that
Cay(Zn, Un) is a complete graph where n is a prime number. Therefore the proof
is done.
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By Brooks’s Theorem, we have a trivial bond of the chromatic number of
endo− Caym(Zn, Un) where n is not a prime number as follow.

Theorem 2.9. Let n ∈ N be not a prime number. Then χ(endo−Caym(Zn, Un)) ≤
φ(n).

Proof. Since n is not a prime number, we have endo − Caym(Zn, Un) is not odd
cycle or complete graph. We know that endo − Caym(Zn, Un) dose not necessay
connected. Than χ(endo− Caym(Zn, Un)) = max{χ(Hi)} ≤ ∆(H) = φ(n) where
Hi is a component of endo− Caym(Zn, Un).

We will show that endo − Caym(Z2n, U2n) is a bipartite graph and so its
chromatic number is 2 for any positive integer n.

Theorem 2.10. Let n be a natural number. Then χ(endo−Caym(Z2n, U2n)) = 2
and hence endo− Caym(Z2n, U2n) is bipartite.

Proof. We set Z2n = {1, 2, . . . , 2n}. Then all element in U2n are odd integer. So
we have m is odd.

Define α : Z2n → {1, 2} by

α(x) =

{
1, if x is odd,

2, if x is even

for all x ∈ Z2n. To show α is proper, let x and y be elements in Z2n such that x
is adjacent to y. Then x = f(y) + u = my + u for some u ∈ U2n. We can see that
x and y have different parity. So α(x) 6= α(y). Hence α is proper and χ(endo −
Caym(Z2n, U2n)) ≤ 2. Cleary that there is an edge in endo−Caym(Z2n, U2n) and
it implies χ(endo−Caym(Z2n, U2n)) ≥ 2. Therefore χ(endo−Caym(Z2n, U2n)) = 2
and endo− Caym(Z2n, U2n) is bipartite.

Now we already have the chromatic number of endo−Caym(Zn, Un) in cases
that n is a prime number or n is an even number. So next we focus to find bounds
of the chromatic number of endo− Caym(Zpk , Upk) where p is an odd prime and
k is a natural number.

We recall that for a group G, f an endomorphism on G and A a subset of
G, endo − Cayf (G,G) ∼= endo − Cayf (G,A) ∪ endo − Cayf (G,A′) where A′ =
G \A and endo−Cayf (G,G) is a complete graph. Hence a complement graph of
endo− Cayf (G,A) is endo− Cayf (G,A′).

Let p be an odd prime number and k be a positive number. Because endo −
Caym(Zpk , Upk) is undirected, so we have that its complement, endo-Caym(Zpk,U ′pk),

is also undirected. We will show in next theorem that endo−Caym(Zpk , U ′pk) con-

tains a complete subgraph of order pk−1

Lemma 2.11. Let p be an odd prime number and k be a positive number greater
than 1. Then ω(endo− Caym(Zpk , U ′pk)) ≥ pk−1.
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Proof. We claim that a subgraph induced by U ′pk is complete. Let u and v be

elements in U ′pk . It is sufficient to show that u is adjacent to v because endo −
Caym(Zpk , U ′pk) is undirected. Since u and v are in U ′pk , we have p|u and p|v. So

v−mu ≡ 0 (mod p) and thus v−mu ∈ U ′p. Since v = mu+(v−mu), we conclude
that u is adjacent to v. Therefore a subgraph induced by U ′pk is a complete graph

and ω(endo− Caym(Zpk , U ′pk)) ≥ |U ′pk | = pk−1.

Next, we will give a character of endo− Caym(Zpk , U ′pk).

Theorem 2.12. Let p be an odd prime number such that p > 3 and an integer k
such that k > 1. Then a graph endo− Caym(Zpk , U ′pk) is disconnected.

Proof. Let x be an element in U ′pk . Then (x, pk) 6= 1 and also p|x. For any u ∈ U ′pk ,

we have p|u and p|(mx+u). Hence mx+u ∈ U ′pk . It follows that x is not adjacent

to any vertex in Upk . Therefore endo− Caym(Zpk , U ′pk) is disconnected.

Theorem 2.13. Let p be an odd prime number and k be a positive number greater
than 1. Then χ(endo− Caym(Zpk , U ′pk)) = pk−1 = ω(endo− Caym(Zpk , U ′pk)).

Proof. It is clearly that ∆(endo− Caym(Zpk , U ′pk)) = |U ′pk | = pk−1 > 2. Hence a

graph endo−Caym(Zpk , U ′pk) is not odd cycle. By Theorem 2.12, we have endo−
Caym(Zpk , U ′pk) is not complete. By Theorem 1.10, χ(endo− Caym(Zpk , U ′pk)) ≤
|U ′pk | = pk−1. By Lemma 2.11, we have χ(endo − Caym(Zpk , U ′pk)) ≥ ω(endo −
Caym(Zpk , U ′pk)) ≥ pk−1. Hence χ(endo − Caym(Zpk , U ′pk)) = pk−1 = ω(endo −
Caym(Zpk , U ′pk)).

By Theorem 2.13 and 2.12, we can describe character of endo−Caym(Zpk , U ′pk).

A graph endo − Caym(Zpk , U ′pk) have exactly two components such as a com-

plete graph induced by U ′pk and an induced subgraph by Upk and Its chromatic

number is equal to its clique number, χ(endo − Caym(Zpk , U ′pk)) = pk−1 =

ω(endo−Caym(Zpk , U ′pk)). Since a complement graph of endo−Caym(Zpk , Upk)

is endo − Caym(Zpk , U ′pk), we conclude that the independent number of endo −
Caym(Zpk , Upk) is the clique number of endo − Caym(Zpk , U ′pk) and the lower

bound of χ(endo− Caym(Zpk , Upk)) consequently follows.

Theorem 2.14. Let p be an odd prime number and an integer k such that k > 1.
Then χ(endo− Caym(Zpk , Upk)) ≥ p.

Proof. Since a graph endo − Caym(Zpk , Upk) is a complement graph of endo −
Caym(Zpk , U ′pk), we have α(endo−Caym(Zpk , Upk)) = ω(endo−Caym(Zpk , U ′pk)) =

pk−1. Hence χ(endo−Caym(Zpk , Upk)) ≥ pk

α(endo− Caym(Zpk , Upk))
=

pk

pk−1
= p

by Theorem 1.11.
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Now we turn to focus conditions of m, an endomorphism on Zpk . Since we
study only an undirected loopless graph endo−Caym(Zpk , Upk), we have conditions
of m that m2 ≡ 1 (mod p) and (m− 1, pk) 6= 1. Then m ≡ 1 (mod p) or m ≡ −1
(mod p). In case m ≡ −1 (mod p), we have p 6 |(m−1) and hence (m−1, pk) = 1.
Therefore m ≡ 1 (mod p) for an undirected loopless graph endo−Caym(Zpk , Upk).
The next theorems, we show the independent sets and the chromatic numbers of
endo− Caym(Zpk , Upk).

Theorem 2.15. Let p be an odd prime number and an integer k such that k > 1.
For any i ∈ Zpk , a set Ai = {i, i+ p, i+ 2p, . . . , i+ (pk−1− 1)p} is an independent
set of endo− Caym(Zpk , Upk).

Proof. Fix i ∈ Zpk and let Ai = {i, i + p, i + 2p, . . . , i + (pk−1 − 1)p} be a subset
of Zpk . Suppose i+ sp and i+ tp are elements in Ai such that they are adjacent.
Hence there are u ∈ Upk such that m(i+ sp) + u ≡ i+ tp (mod pk).

m(i+ sp) + u ≡ i+ tp (mod pk)

m(i+ sp) + u ≡ i+ tp (mod p)

mi+ u ≡ i (mod p)

u ≡ 0 (mod p), since m ≡ 1 (mod p).

Thus u /∈ Upk , a contradiction. Therefore i + sp and i + tp are not adjacent
and Ai = {i, i + p, i + 2p, . . . , i + (pk−1 − 1)p} is an independent set of endo −
Caym(Zpk , Upk).

Theorem 2.16. Let p be an odd prime number and integer k such that k > 1.
Then χ(endo− Caym(Zpk , Upk)) = p.

Proof. By following to the proof of Theorem 2.15, we separate Zpk into p dis-
tinct independent sets, say Ai1 , Ai2 , . . . , Aip . To get a proper coloring of endo −
Caym(Zpk , Upk), we give color j for every vertices in Aij . So we have that χ(endo−
Caym(Zpk , Upk)) ≤ p. By Theorem 2.14, hence χ(endo−Caym(Zpk , Upk)) = p.

For example, let consider endo − Cay4(Z9, U9) in figure 3. We can see that
A1 = {1, 4, 7}, A2 = {2, 5, 8} and A3 = {0, 3, 6} are maximum independent sets.
Hence χ(endo−Cay4(Z9, U9)) ≥ 3. It is clearly that endo−Cay4(Z9, U9) contain
K3. Hence χ(endo− Cay4(Z9, U9)) = 3.

Finally, We study bound of the chromatic number of endo − Caym(Zn, Un)
where n is an odd integer, m a positive integer such that (m − 1, n) 6= 1 and
m2 ≡ 1 (mod n). The trivial two solutions of m are m ≡ 1 (mod n) or m ≡ 1
(mod n). If m ≡ 1 (mod n), we have endo − Caym(Zn, Un) = Cay(Zn, Un).
Therefore χ(endo−Caym(Zn, Un)) = χ(Cay(Zn, Un)) = p where p is the smallest
prime divisor of n showed in [3].

Theorem 2.17 ([3]). If p is the smallest prime divisor of n, then χ(Xn)) =

ω(Xn) = p and χ(Xn)) = ω(Xn) =
n

p
where Xn is Cay(Zn, Un).
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Figure 3: A graph endo− Cay4(Z9, U9)

As we know that n be rewritten as a product of primes as n = pk1
1 p

k2
2 · · · p

ki
i

where pj are distinct prime numbers such that p1 < p2 < . . . < pi and kj ∈ N for
all j = 1, 2, . . . , i. Hence m2 ≡ 1 (mod pj) and also m ≡ 1 (mod pj) or m ≡ −1
(mod pj) for any prime factor pj of n.

The next theorem is the chromatic number of endo − Caym(Zn, Un) where
m ≡ 1 (mod p1). It is clearly that m ≡ 1 (mod p1) implies that (m−1, n) ≥ p1 >
1.

Theorem 2.18. Let n be an odd integer such that n = pk1
1 p

k2
2 · · · p

ki
i where pj

are distinct prime numbers such that p1 < p2 < . . . < pi and kj ∈ N for all
j = 1, 2, . . . , i. For a graph endo − Caym(Zn, Un), if m ≡ 1 (mod p1), then
χ(endo− Caym(Zn, Un)) ≤ p1.

Proof. We assume that m ≡ 1 (mod p1). Define a coloring α : Zn → Zn by

α(x) = i, if x ≡ i (mod p1) and 0 ≤ i ≤ p1 − 1

To show α is proper, suppose x and y be element in Zn such that x and y are
adjacent. Then y = mx + u for some u ∈ Un. Then u 6≡ 0 (mod p1). We have
y = mx+u ≡ x+u 6≡ x (mod p1). Hence α(x) 6= α(y) and α is a proper coloring.
Therefore χ(endo− Caym(Zn, Un)) ≤ p1.

In Cayley graph Cay(Zn, Un), we have that a set of vertices {0, 1, 2, . . . , p−1}
forms a complete graph but it do not form in endo−Caym(Zn, Un). For example, a
set {0, 1, 2, 3, 4, 5} does not be a complete graph in endo−Cay6(Z35, U35) because 3
and 4 are not adjacent [(4−6(3), 35) 6= 1]. In the next theorem, we show a condition
to make {0,m, 2m, . . . , (p1 − 1)m} be a complete graph in endo− Caym(Zn, Un).

Theorem 2.19. Let n be an odd integer such that n = pk1
1 p

k2
2 · · · p

ki
i where pj

are distinct prime numbers such that p1 < p2 < . . . < pi and kj ∈ N for all
j = 1, 2, . . . , i. If p2 > 2(p1 − 1), ω(endo− Caym(Zn, Un)) ≥ p1.
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Proof. Assume that p2 > 2(p1−1). We let A = {0,m, 2m, . . . , (p1−1)m}. Clearly
that any x ∈ A, we have (x, n) = 1. So 0 is adjacent to any x in A. Let im and jm
be elements in A such that 0 < i < j ≤ p−1. Then (jm−m(im), n) = (j−mi, n),
since m ∈ Un. Suppose for a contradiction that p|j−mi for some prime factor p of
n such that p 6= p1. Then j ≡ mi (mod p) and also j2 ≡ i2 (mod p). Since j 6≡ i
(mod p1), we have j 6≡ i (mod p). So j ≡ −i (mod p). Hence p2 > 2(p1 − 1) ≥
j+ i = pk ≥ p. This is a contradiction. Hence there is no prime factor p of n such
that p|j −mi. It implies that (j −mi, n) = 1 and thus im and jm are adjacent.
Therefore A forms a complete graph and ω(endo− Caym(Zn, Un)) ≥ p1.

For example, let consider endo−Cay4(Z3i5j , U3i5j ) where i, j ∈ N. Since 4 ≡ 1
(mod 3), we have χ(endo−Cay4(Z3i5j , U3i5j )) ≤ 3 by Theorem 2.18. Clearly that
5 > 2(3−1) by Theorem 2.19, we have ω(endo−Cay4(Z3i5j , U3i5j )) ≥ 3. Therefore
χ(endo− Cay4(Z3i5j , U3i5j )) = 3.
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