Thai Journal of Mathematics Volume 16 (2018) Number 2 : 529-539
http://thaijmath.in.cmu.ac.th

Colorability of Unitary Endo-Cayley Graphs of Cyclic Groups

Chanon Promsakon
Department of Mathematics, Faculty of Applied Science
King Mongkut's University of Technology North Bangkok
Bangkok, 10800, Thailand
Centre of Excellence in Mathematics, CHE Si Ayuttaya Rd. Bangkok 10400, Thailand
e-mail : chanon.p@sci.kmutnb.ac.th

Abstract

Let n be a positive integer greater than $1, \mathbb{Z}_{n}$ the ring of integer modulo n, f an endomorphism on \mathbb{Z}_{n} and U_{n} the set of all units in \mathbb{Z}_{n}. The unitary endo-Cayley digraph, denoted by endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$, is the digraph whose vertex set is \mathbb{Z}_{n} and a vertex u is adjacent to v if $v=f(u)+a$ for some $a \in U_{n}$.

We find conditions for endomorphism f to make sure that endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$ is undirected graph. After that we study about their coloring to investigate bounds of their chromatic numbers. Moreover, we give examples to show the sharpness of each bounds.

Keywords : endo-Cayley graphs; undirected graphs; chromatic numbers. 2010 Mathematics Subject Classification : 46MO5; 05C40; 05C76.
-

1 Introduction

Let n be a positive integer greater than $1, \mathbb{Z}_{n}$ the ring of integer modulo n, f an endomorphism on \mathbb{Z}_{n} and U_{n} the set of all units in \mathbb{Z}_{n}. The unitary

[^0]endo-Cayley digraph, denoted by endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$, is the digraph whose vertex set is \mathbb{Z}_{n} and a vertex u is adjacent to v if $v=f(u)+a$ for some $a \in U_{n}$. Sometime we call U_{n} as a connecting set of endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$. In case that an endomorphism f is an identity map, we have that unitary endo-Cayley digraph is a unitary Cayley digraph denoted as $\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$. The properties and structure of unitary Cayley graph have been studied in [1, 2, 3,

To illustrate, let us consider an unitary endo-Cayley digraph of \mathbb{Z}_{6}. Then $U_{6}=\{1,5\}$. Let f and g be endomorphisms on \mathbb{Z}_{6} defined as $f(x)=2 x, g(x)=5 x$ for all $x \in \mathbb{Z}_{6}$. The resulting digraphs endo-Cay $\left(\mathbb{Z}_{6}, U_{6}\right)$ and endo-Cayg $\left(\mathbb{Z}_{6}, U_{6}\right)$ are shown below.

Figure 1: Endo-Cayley digraphs of \mathbb{Z}_{6} with different endomorphisms

We call a digraph D as a undirected graph if arc $x y \in A(D)$ if and only if $y x \in A(D)$. So endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{6}, U_{6}\right)$ is a digraph while endo $-\operatorname{Cay}_{g}\left(\mathbb{Z}_{6}, U_{6}\right)$ is undirected.

In 2014, C. Promsakon and S. Panma study undirectedness of endo-Cayley digraph of \mathbb{Z}_{n} for any endomorphisms and connecting sets. They investigate a condition for undirected endo-Cayley digraph of cyclic group of order prime number [4]. That condition involve to an endomorphism and a connecting set showed as follow.

Theorem 1.1 ([4]). Let p be a prime number, A a subset of \mathbb{Z}_{n} and f an endomorphism on \mathbb{Z}_{n}. Then endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{p}, A\right)$ is undirected if and only if at least one condition below holds

1. $f(x)=x$ and $A=A^{-1}$ or
2. $f(x)=x^{-1}$ or
3. $A=\mathbb{Z}_{p}$.

Moreover, they also gave sufficient conditions for undirected endo-Cayley digraph of cyclic group. We restate the results here without proof.

Theorem $1.2([4])$. Let m and n be integers and A a subset of \mathbb{Z}_{n}. If $-m A \subseteq A$ and $x m^{2} \equiv x(\bmod n)$ for all $x \in \mathbb{Z}_{n}$, then endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, A\right)$ is undirected where $f(x)=m x, 1<m<n-1$ for all $x \in \mathbb{Z}_{n}$.

Next, in 2015, C. Promsakon extended his work to study undirected unitary endo-Cayley digraph of $\mathbb{Z}_{p^{k}}$ where p is a prime number and k is a non-negative integer. We show some Theorems related to this work here. The proof of each Theorems are showed in [5].

We begin by giving a necessary condition for undirected endo-Cayley graph of \mathbb{Z}_{n} for any $n \in \mathbb{N}$.

Lemma 1.3 (A necessary condition, [5). Let n be a positive integer such that $n>1, m$ a positive integer less than n, U_{n} a set of all units in \mathbb{Z}_{n} and f an endomorphism on \mathbb{Z}_{n} defined by $f(x)=m x$ for all $x \in \mathbb{Z}_{n}$. If endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$ is undirected, then $m \in U_{n}$.

When n is 2^{k} where $k \in \mathbb{N}$, we have a converse a Lemma 1.3 is true.
Corollary 1.4 ([5]). Let k be a positive integer, m a positive integer less than 2^{k}, $U_{2^{k}}$ a set of all units in $\mathbb{Z}_{2^{k}}$ and f an endomorphism on $\mathbb{Z}_{2^{k}}$ defined by $f(x)=m x$ for all $x \in \mathbb{Z}_{2^{k}}$. Then endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{2^{k}}, U_{2^{k}}\right)$ is undirected if and only if $m \in U_{2^{k}}$.

A condition for endomorphism f to make endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ undirected is showed in the next theorm.

Theorem 1.5 ([5). Let p be a prime number, k a positive integer, m a positive integer less that $p^{k}, U_{p^{k}}$ a set of all units in $\mathbb{Z}_{p^{k}}, f$ an endomorphism on $\mathbb{Z}_{p^{k}}$ defined by $f(x)=m x$ for all $x \in \mathbb{Z}_{p^{k}}$. Then endo $-C a y_{f}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ is undirected if and only if $m^{2} \equiv 1(\bmod p)$.

We end this section by giving some definitions and properties about the chromatic number of graphs. The proof in each theorems can found in 6].

A k-coloring of a graph G is a labeling of vertices in $G, f: V(G) \rightarrow$ $\{1,2, \ldots, k\}$. We call the image of a coloring as colors. A k-coloring is called proper if all adjacent vertices in G have different labels. A graph is called k colorable if it has a proper k-coloring. We always use a coloring for a proper coloring. The chromatic number of a graph G, denoted by $\chi(G)$, is the least k such that G is k-colorable.

Theorem $1.6(\underline{6})$. A graph G is a bipartite graph if and only if $\chi(G)=2$.
A clique of a graph G is a complete subgraph of G. The clique number of a graph G, denoted by $\omega(G)$, is the maximum order of cliques of G. Clearly that for each vertices in a complete graph, they are adjacent. So they have different labels in a coloring. Hence $\chi\left(K_{n}\right)=n=\omega\left(K_{n}\right)$.

Proposition 1.7 ([6]). For any graph $G, \chi(G) \geq \omega(G)$.

Theorem 1.8 (Seinsehe). If a graph G has no induced subgraph isomorphic to P_{4}, then $\chi(G)=\omega(G)$.

The greedy algorithm is an algorithm to find the chromatic number of any graphs. The greedy algorithm takes an order of vertices $v_{1}, v_{2}, \ldots, v_{n}$ and colors vertices in that order, assigning to each vertex the smallest indexed color not already use by it previously colored neighbors. By the greedy algorithm, we have a bound of the chromatic number of a graph.

Theorem $1.9(6)$. For any graph $G, \chi(G) \leq \Delta(G)+1$.
Clearly that an equality in Theorem 1.9 holds in two cases which are odd cycles and complete graphs. Next, R. Leonard Brooks proved that these are the only connected graphs for which the bound is attained.

Theorem 1.10 (Brooks's Theorem). For every connected graph G that is not an odd cycle or a complete graph, $\chi(G) \leq \Delta(G)$.

An independent set of a graph G is a subset of $V(G)$ such that no two of which are adjacent. An independent set is called maximum independent set if it have the largest possible size for a given graph G. That size is called independent number of G, denoted by $\alpha(G)$. Since they are no two vertices adjacent in independent set, we can give the same color to each vertex in independent set. Hence we get the lower bound of the chromatic number of a graph G as follow.

Theorem $1.11([6])$. For any graph G of order $n, \chi(G) \geq \frac{n}{\alpha(G)}$.
In the next section, we explore conditions for an endomorphism f on \mathbb{Z}_{n} to make endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ undirected for any $n \in \mathbb{N}$. After that, colorability of undirected endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$ is studied. We will show bounds of their chromatic numbers and also give examples to show the sharpness of each bounds.

2 Main Results

We know that for any $n \in \mathbb{N}$ can be rewritten in the from $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{i}^{k_{i}}$ where p_{j} are distinct prime numbers such that $p_{1}<p_{2}<\ldots<p_{i}$ and $k_{j} \in \mathbb{N}$ for all $j=1,2, \ldots, i$. In cases that $n=p$ or $n=p^{k}$, C. Promsakon and S. Punma characterized undirected unitary endo-Cayley of \mathbb{Z}_{n}. They gave conditions to make endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ undirected as we mention in introduction. Now we study an undirected for any $n \in \mathbb{N}$. Here is a result.

Theorem 2.1. Given $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{i}^{k_{i}}$ where p_{j} are distinct prime numbers such that $p_{1}<p_{2}<\ldots<p_{i}$ and $k_{j} \in \mathbb{N}$ for all $j=1,2, \ldots, i$. Let f be an endomorphism on \mathbb{N} defined as $f(x)=m x$ for all $x \in \mathbb{N}$. If $m^{2} \equiv 1\left(\bmod p_{j}^{k_{j}}\right)$ for all $j=1,2, \ldots, i$, then endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a undirected graph.

Proof. Assume that $m^{2} \equiv 1\left(\bmod p_{j}^{k_{j}}\right)$ for all $j=1,2, \ldots, i$. Fix j. It implies that $m^{2} \equiv 1\left(\bmod p_{j}\right)$ and so $m \equiv 1\left(\bmod p_{j}\right)$ or $m \equiv-1\left(\bmod p_{j}\right)$. Hence $(m, n)=1=(-m, n)$ and also $m,-m \in U_{n}$. Because U_{n} is a group under multiplication, we have $m U_{n} \subseteq U_{n}$ and $-m U_{n} \subseteq U_{n}$.

Next, Since p_{j} are distinct prime numbers, we have $\left(p_{j_{1}}^{k_{j_{1}}}, p_{j_{2}}^{k_{j_{2}}}\right)=1$ for any $p_{j_{1}}, p_{j_{2}}$. Then $m^{2} \equiv 1(\bmod n)$. So $x m^{2} \equiv x(\bmod n)$ for all $x \in \mathbb{Z}_{n}$. By Theorem 1.2, we have endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a undirected graph.

We know that for any integer $n>2$, there are at least 2 solutions of equation $x^{2} \equiv 1(\bmod n)$ which are $x \equiv 1(\bmod n)$ and $x \equiv-1(\bmod n)$. So there are at least 2^{k} distinct solutions of equation $x^{2} \equiv 1\left(\bmod n_{1} n_{2} \cdots n_{k}\right)$ where $\left(n_{i}, n_{j}\right)=1$ for all i, j by the Chinese remainder theorem. For example, we find solutions of equation $x^{2} \equiv 1(\bmod 45)$. Then $x^{2} \equiv 1(\bmod 5)$ and $x^{2} \equiv 1(\bmod 9)$ and also $x \equiv 1(\bmod 5)$ or $x \equiv-1(\bmod 5)$ and $x \equiv 1(\bmod 9)$ or $x \equiv-1(\bmod 9)$. By solving the 4 equations systems, the solutions are $x \equiv 1,-1,19,-19(\bmod 45)$. Therefore integers m for undirected endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{45}, U_{45}\right)$ where $f(x)=m x$ for all $x \in \mathbb{Z}_{45}$ are $1,19,26$ and 44 .

We show next the condition of an endomorphism for loopless unitary endoCayley of \mathbb{Z}_{n}.

Theorem 2.2. Let n be a natural number such that $n>1$ and m a natural number less than n. If an endomorphisn f on \mathbb{Z}_{n} is defined as $f(x)=m x$ for all $x \in \mathbb{Z}_{n}$ where $(m-1, n) \neq 1$, then A graph endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a loopless graph.

Proof. Assume that $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is defined as $f(x)=m x$ for all $x \in \mathbb{Z}_{n}$ and $(m-1, n) \neq 1$. Suppose for a contradiction that endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ has a loop at vertex a. Then $a=f(a)+u=m a+u$ for some $u \in U_{n}$. So $u=-a(m-1)$. Since $(m-1, n) \neq 1$, we have $(-a(m-1), n) \neq 1$. Hence $u=-a(m-1) \notin U_{n}$, a contradiction.

The objectives of this paper is to study about coloring properties of unitary endo-Cayley graph of \mathbb{Z}_{n} and also find bonds of their chromatic numbers. So we consider only undirected simple endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$. We already showed the case of endomorphisms to make endo - $\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ be undirected simple graph which is $f(x)=m x$ and $m^{2} \equiv 1(\bmod n)$ and $(m-1, n) \neq 1$ for all $x \in \mathbb{Z}_{n}$. Hence we study only endo - $\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ where $f(x)=m x$ and $m^{2} \equiv 1$ $(\bmod n)$ and $(m-1, n) \neq 1$ for all $x \in \mathbb{Z}_{n}$. For convenient, we use notation endo-Caym $\left(\mathbb{Z}_{n}, U_{n}\right)$ for undirected simple endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$ where $f(x)=m x$, $m^{2} \equiv 1(\bmod n)$ and $(m-1, n) \neq 1$ for all $x \in \mathbb{Z}_{n}$. For example, if we mention about endo $-\operatorname{Caym}\left(\mathbb{Z}_{45}, U_{45}\right)$, we refer an endomorphism f defined as $f(x)=m x$ where $m=1,19$ or 26 .

Remark 2.3. For any undirected loopless graph endo - Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$, we have $m \in U_{n}$.

Theorem 2.4. For any vertices x and y in undirected loopless graph endo $C a y_{m}\left(\mathbb{Z}_{n}, U_{n}\right), x$ is adjacent to y if and only if $(y-m x, n)=1$.

Proof. Let x and y be vertices in undirected loopless graph endo - Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$. We assume that x and y are adjacent in endo-Caym $\left(\mathbb{Z}_{n}, U_{n}\right)$. Then $y=m x+u$ for some $u \in U_{n}$ and also $(y-m x, n)=(u, n)=1$. Conversely, assume $(y-m x, n)=1$. So $y-m x \in U_{n}$ and hence x is adjacent to y.

There are some basic properties of undirected simple endo-Cayley graphs of \mathbb{Z}_{n} involving their colorability. We show that properties here.
Theorem 2.5. A graph endo - Caym $\left(\mathbb{Z}_{n}, U_{n}\right)$ is a $\phi(n)$-regular graph.
Proof. Let x be an vertex in endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$. Then x is adjacent to all $f(x)+u$ where $u \in U_{n}$. Since endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ be an undirected simple graph, we have $\operatorname{deg}(u)=\left|U_{n}\right|=\phi(n)$. Hence endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a $\phi(n)$-regular graph.

Theorem 2.6. A graph endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a cycle if and only if $n=3$ or 6 .
Proof. In Case that $n=3$, it is clearly that m which satisfies with $m^{2} \equiv 1$ $(\bmod n)$ and $(m-1, n) \neq 1$ is 1 and endo $-\operatorname{Cay}_{f}\left(\mathbb{Z}_{3}, U_{n}\right)=\operatorname{Cay}\left(\mathbb{Z}_{3},\{1,2\}\right)$ is C_{3}. Sufficiency condition is proved. Next, we may assume endo - $\operatorname{Cay}_{f}\left(\mathbb{Z}_{n}, U_{n}\right)$ is cycle. By Theorem 2.5, we have $\phi(n)=2$. Hence $n=3$ or 6 .

Figure 2: A cycle endo $-\operatorname{Cay}\left(\mathbb{Z}_{6}, U_{6}\right)$ where $m=5$

Now, we know that a graph endo $-\operatorname{Cay} y_{m}\left(\mathbb{Z}_{3}, U_{3}\right)$ is an odd cycle while a graph endo-Caym $\left(\mathbb{Z}_{6}, U_{6}\right)$ is an even cycle. So we instantly have the following Corollary.
Corollary 2.7. $\chi\left(\right.$ endo $\left.-\operatorname{Cay} y_{m}\left(\mathbb{Z}_{3}, U_{3}\right)\right)=3$ and $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{6}, U_{6}\right)\right)=2$
Theorem 2.8. A graph endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a complete graph if and only if n is a prime number and endo $-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)=\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$.

Proof. It is easy to see that endo $-\operatorname{Cay}\left(\mathbb{Z}_{2}, U_{2}\right)$ is a complete graph. So we will prove for any odd prime. We assume that endo $-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a complete graph. Then $\phi(n)=n-1$ by Theorem 2.5. So n is a prime number. Because $m^{2} \equiv 1(\bmod n)$, it implies that $m \equiv 1$ or $n-1(\bmod n)$. Since $(n-2, n)=1$, we have that $m=1$. Therefore endo $-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)=\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$. Clearly that $\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$ is a complete graph where n is a prime number. Therefore the proof is done.

By Brooks's Theorem, we have a trivial bond of the chromatic number of endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ where n is not a prime number as follow.

Theorem 2.9. Let $n \in \mathbb{N}$ be not a prime number. Then $\chi\left(\right.$ endo-Cay $\left.\left(\mathbb{Z}_{n}, U_{n}\right)\right) \leq$ $\phi(n)$.

Proof. Since n is not a prime number, we have endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ is not odd cycle or complete graph. We know that endo - $\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ dose not necessay connected. Than $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)\right)=\max \left\{\chi\left(H_{i}\right)\right\} \leq \Delta(H)=\phi(n)$ where H_{i} is a component of endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$.

We will show that endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{2 n}, U_{2 n}\right)$ is a bipartite graph and so its chromatic number is 2 for any positive integer n.

Theorem 2.10. Let n be a natural number. Then $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{2 n}, U_{2 n}\right)\right)=2$ and hence endo - Cay $\left(\mathbb{Z}_{2 n}, U_{2 n}\right)$ is bipartite.

Proof. We set $\mathbb{Z}_{2 n}=\{1,2, \ldots, 2 n\}$. Then all element in $U_{2 n}$ are odd integer. So we have m is odd.

Define $\alpha: \mathbb{Z}_{2 n} \rightarrow\{1,2\}$ by

$$
\alpha(x)= \begin{cases}1, & \text { if } x \text { is odd }, \\ 2, & \text { if } x \text { is even }\end{cases}
$$

for all $x \in \mathbb{Z}_{2 n}$. To show α is proper, let x and y be elements in $\mathbb{Z}_{2 n}$ such that x is adjacent to y. Then $x=f(y)+u=m y+u$ for some $u \in U_{2 n}$. We can see that x and y have different parity. So $\alpha(x) \neq \alpha(y)$. Hence α is proper and χ (endo $\left.\operatorname{Cay}_{m}\left(\mathbb{Z}_{2 n}, U_{2 n}\right)\right) \leq 2$. Cleary that there is an edge in endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{2 n}, U_{2 n}\right)$ and it implies $\chi\left(\right.$ endo-Caym $\left.\left(\mathbb{Z}_{2 n}, U_{2 n}\right)\right) \geq 2$. Therefore $\chi\left(\right.$ endo-Cay $\left.\left(\mathbb{Z}_{2 n}, U_{2 n}\right)\right)=2$ and endo - Caym $\left(\mathbb{Z}_{2 n}, U_{2 n}\right)$ is bipartite.

Now we already have the chromatic number of endo - Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$ in cases that n is a prime number or n is an even number. So next we focus to find bounds of the chromatic number of endo - $\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ where p is an odd prime and k is a natural number.

We recall that for a group G, f an endomorphism on G and A a subset of G, endo $-\operatorname{Cay}_{f}(G, G) \cong \operatorname{endo}-\operatorname{Cay}_{f}(G, A) \cup$ endo $-\operatorname{Cay}_{f}\left(G, A^{\prime}\right)$ where $A^{\prime}=$ $G \backslash A$ and endo - $\operatorname{Cay}_{f}(G, G)$ is a complete graph. Hence a complement graph of endo - $\operatorname{Cay}_{f}(G, A)$ is endo $-\operatorname{Cay}_{f}\left(G, A^{\prime}\right)$.

Let p be an odd prime number and k be a positive number. Because endo $\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ is undirected, so we have that its complement, endo-Cay $\left(\mathbb{Z}_{p^{k},}, U_{p^{k}}^{\prime}\right)$, is also undirected. We will show in next theorem that endo - Cay $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ contains a complete subgraph of order p^{k-1}

Lemma 2.11. Let p be an odd prime number and k be a positive number greater than 1. Then $\omega\left(\right.$ endo $\left.-\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right) \geq p^{k-1}$.

Proof. We claim that a subgraph induced by $U_{p^{k}}^{\prime}$ is complete. Let u and v be elements in $U_{p^{k}}^{\prime}$. It is sufficient to show that u is adjacent to v because endo $C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ is undirected. Since u and v are in $U_{p^{k}}^{\prime}$, we have $p \mid u$ and $p \mid v$. So $v-m u \equiv 0(\bmod p)$ and thus $v-m u \in U_{p}^{\prime}$. Since $v=m u+(v-m u)$, we conclude that u is adjacent to v. Therefore a subgraph induced by $U_{p^{k}}^{\prime}$ is a complete graph and $\omega\left(\right.$ endo $\left.-C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right) \geq\left|U_{p^{k}}^{\prime}\right|=p^{k-1}$.

Next, we will give a character of endo $-\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$.
Theorem 2.12. Let p be an odd prime number such that $p>3$ and an integer k such that $k>1$. Then a graph endo $-\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ is disconnected.

Proof. Let x be an element in $U_{p^{k}}^{\prime}$. Then $\left(x, p^{k}\right) \neq 1$ and also $p \mid x$. For any $u \in U_{p^{k}}^{\prime}$, we have $p \mid u$ and $p \mid(m x+u)$. Hence $m x+u \in U_{p^{k}}^{\prime}$. It follows that x is not adjacent to any vertex in $U_{p^{k}}$. Therefore endo $-\operatorname{Cay} y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ is disconnected.

Theorem 2.13. Let p be an odd prime number and k be a positive number greater than 1. Then $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)=p^{k-1}=\omega\left(e n d o-C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)$.

Proof. It is clearly that $\Delta\left(e n d o-\operatorname{Cay} y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)=\left|U_{p^{k}}^{\prime}\right|=p^{k-1}>2$. Hence a graph endo - $\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ is not odd cycle. By Theorem 2.12 , we have endo $\operatorname{Cay} y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ is not complete. By Theorem $1.10 \chi\left(\right.$ endo - Cay $\left.\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right) \leq$ $\left|U_{p^{k}}^{\prime}\right|=p^{k-1}$. By Lemma 2.11, we have $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right) \geq \omega($ endo $\left.\operatorname{Cay} y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right) \geq p^{k-1}$. Hence $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)=p^{k-1}=\omega($ endo $\left.\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)$.

By Theorem 2.13 and 2.12 , we can describe character of endo-Caym $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$. A graph endo - Caym $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ have exactly two components such as a complete graph induced by $U_{p^{k}}^{\prime}$ and an induced subgraph by $U_{p^{k}}$ and Its chromatic number is equal to its clique number, $\chi\left(e n d o-\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)=p^{k-1}=$ $\omega\left(e n d o-C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)$. Since a complement graph of endo $-C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ is endo - $\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$, we conclude that the independent number of endo $\operatorname{Cay} y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ is the clique number of endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$ and the lower bound of $\chi\left(e n d o-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right)$ consequently follows.

Theorem 2.14. Let p be an odd prime number and an integer k such that $k>1$. Then $\chi\left(e n d o-C a y_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right) \geq p$.

Proof. Since a graph endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$ is a complement graph of endo $\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)$, we have $\alpha\left(\right.$ endo-Caym $\left.\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right)=\omega\left(\right.$ endo-Caym $\left.\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}^{\prime}\right)\right)=$ p^{k-1}. Hence $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right) \geq \frac{p^{k}}{\alpha\left(\text { endo }-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right)}=\frac{p^{k}}{p^{k-1}}=p$ by Theorem 1.11 .

Now we turn to focus conditions of m, an endomorphism on $Z_{p^{k}}$. Since we study only an undirected loopless graph endo-Caym $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$, we have conditions of m that $m^{2} \equiv 1(\bmod p)$ and $\left(m-1, p^{k}\right) \neq 1$. Then $m \equiv 1(\bmod p)$ or $m \equiv-1$ $(\bmod p)$. In case $m \equiv-1(\bmod p)$, we have $p \nmid(m-1)$ and hence $\left(m-1, p^{k}\right)=1$. Therefore $m \equiv 1(\bmod p)$ for an undirected loopless graph endo-Cay $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$. The next theorems, we show the independent sets and the chromatic numbers of endo - Caym $\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$.

Theorem 2.15. Let p be an odd prime number and an integer k such that $k>1$. For any $i \in \mathbb{Z}_{p^{k}}$, a set $A_{i}=\left\{i, i+p, i+2 p, \ldots, i+\left(p^{k-1}-1\right) p\right\}$ is an independent set of endo $-\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$.

Proof. Fix $i \in \mathbb{Z}_{p^{k}}$ and let $A_{i}=\left\{i, i+p, i+2 p, \ldots, i+\left(p^{k-1}-1\right) p\right\}$ be a subset of $Z_{p^{k}}$. Suppose $i+s p$ and $i+t p$ are elements in A_{i} such that they are adjacent. Hence there are $u \in U_{p^{k}}$ such that $m(i+s p)+u \equiv i+t p\left(\bmod p^{k}\right)$.

$$
\begin{aligned}
m(i+s p)+u & \equiv i+t p \quad\left(\bmod p^{k}\right) \\
m(i+s p)+u & \equiv i+t p \quad(\bmod p) \\
m i+u & \equiv i \quad(\bmod p) \\
u & \equiv 0 \quad(\bmod p), \text { since } m \equiv 1 \quad(\bmod p) .
\end{aligned}
$$

Thus $u \notin U_{p^{k}}$, a contradiction. Therefore $i+s p$ and $i+t p$ are not adjacent and $A_{i}=\left\{i, i+p, i+2 p, \ldots, i+\left(p^{k-1}-1\right) p\right\}$ is an independent set of endo $\operatorname{Cay} m\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$.

Theorem 2.16. Let p be an odd prime number and integer k such that $k>1$.
Then $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right)=p$.
Proof. By following to the proof of Theorem 2.15 we separate $Z_{p^{k}}$ into p distinct independent sets, say $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{p}}$. To get a proper coloring of endo $\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)$, we give color j for every vertices in $A_{i_{j}}$. So we have that $\chi($ endo$\left.\operatorname{Cay}_{m}\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right) \leq p$. By Theorem 2.14, hence $\chi\left(\right.$ endo-Caym $\left.\left(\mathbb{Z}_{p^{k}}, U_{p^{k}}\right)\right)=p$.

For example, let consider endo $-\operatorname{Cay}_{4}\left(\mathbb{Z}_{9}, U_{9}\right)$ in figure 3. We can see that $A_{1}=\{1,4,7\}, A_{2}=\{2,5,8\}$ and $A_{3}=\{0,3,6\}$ are maximum independent sets. Hence $\chi\left(\right.$ endo - Cay $\left._{4}\left(\mathbb{Z}_{9}, U_{9}\right)\right) \geq 3$. It is clearly that endo $-\operatorname{Cay}_{4}\left(\mathbb{Z}_{9}, U_{9}\right)$ contain K_{3}. Hence $\chi\left(\right.$ endo $\left.-\mathrm{Cay}_{4}\left(\mathbb{Z}_{9}, U_{9}\right)\right)=3$.

Finally, We study bound of the chromatic number of endo $-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$ where n is an odd integer, m a positive integer such that $(m-1, n) \neq 1$ and $m^{2} \equiv 1(\bmod n)$. The trivial two solutions of m are $m \equiv 1(\bmod n)$ or $m \equiv 1$ $(\bmod n)$. If $m \equiv 1(\bmod n)$, we have endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)=\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$. Therefore $\chi\left(\right.$ endo $\left.-\operatorname{Cay} y_{m}\left(\mathbb{Z}_{n}, U_{n}\right)\right)=\chi\left(\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)\right)=p$ where p is the smallest prime divisor of n showed in [3].

Theorem 2.17 (3). If p is the smallest prime divisor of n, then $\left.\chi\left(X_{n}\right)\right)=$ $\omega\left(X_{n}\right)=p$ and $\left.\chi\left(\overline{X_{n}}\right)\right)=\omega\left(\overline{X_{n}}\right)=\frac{n}{p}$ where X_{n} is $\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$.

Figure 3: A graph endo $-\operatorname{Cay}_{4}\left(\mathbb{Z}_{9}, U_{9}\right)$

As we know that n be rewritten as a product of primes as $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{i}^{k_{i}}$ where p_{j} are distinct prime numbers such that $p_{1}<p_{2}<\ldots<p_{i}$ and $k_{j} \in \mathbb{N}$ for all $j=1,2, \ldots, i$. Hence $m^{2} \equiv 1\left(\bmod p_{j}\right)$ and also $m \equiv 1\left(\bmod p_{j}\right)$ or $m \equiv-1$ $\left(\bmod p_{j}\right)$ for any prime factor p_{j} of n.

The next theorem is the chromatic number of endo $-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)$ where $m \equiv 1\left(\bmod p_{1}\right)$. It is clearly that $m \equiv 1\left(\bmod p_{1}\right)$ implies that $(m-1, n) \geq p_{1}>$ 1.

Theorem 2.18. Let n be an odd integer such that $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{i}^{k_{i}}$ where p_{j} are distinct prime numbers such that $p_{1}<p_{2}<\ldots<p_{i}$ and $k_{j} \in \mathbb{N}$ for all $j=1,2, \ldots, i$. For a graph endo $-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$, if $m \equiv 1\left(\bmod p_{1}\right)$, then $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)\right) \leq p_{1}$.

Proof. We assume that $m \equiv 1\left(\bmod p_{1}\right)$. Define a coloring $\alpha: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by

$$
\alpha(x)=i, \text { if } x \equiv i \quad\left(\bmod p_{1}\right) \text { and } 0 \leq i \leq p_{1}-1
$$

To show α is proper, suppose x and y be element in \mathbb{Z}_{n} such that x and y are adjacent. Then $y=m x+u$ for some $u \in U_{n}$. Then $u \not \equiv 0\left(\bmod p_{1}\right)$. We have $y=m x+u \equiv x+u \not \equiv x\left(\bmod p_{1}\right)$. Hence $\alpha(x) \neq \alpha(y)$ and α is a proper coloring. Therefore $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{m}\left(\mathbb{Z}_{n}, U_{n}\right)\right) \leq p_{1}$.

In Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)$, we have that a set of vertices $\{0,1,2, \ldots, p-1\}$ forms a complete graph but it do not form in endo-Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$. For example, a set $\{0,1,2,3,4,5\}$ does not be a complete graph in endo-Cay $\left(\mathbb{Z}_{35}, U_{35}\right)$ because 3 and 4 are not adjacent $[(4-6(3), 35) \neq 1]$. In the next theorem, we show a condition to make $\left\{0, m, 2 m, \ldots,\left(p_{1}-1\right) m\right\}$ be a complete graph in endo - Cay $\left(\mathbb{Z}_{n}, U_{n}\right)$.

Theorem 2.19. Let n be an odd integer such that $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{i}^{k_{i}}$ where p_{j} are distinct prime numbers such that $p_{1}<p_{2}<\ldots<p_{i}$ and $k_{j} \in \mathbb{N}$ for all $j=1,2, \ldots, i$. If $p_{2}>2\left(p_{1}-1\right), \omega\left(\right.$ endo - Cay $\left._{m}\left(\mathbb{Z}_{n}, U_{n}\right)\right) \geq p_{1}$.

Proof. Assume that $p_{2}>2\left(p_{1}-1\right)$. We let $A=\left\{0, m, 2 m, \ldots,\left(p_{1}-1\right) m\right\}$. Clearly that any $x \in A$, we have $(x, n)=1$. So 0 is adjacent to any x in A. Let $i m$ and $j m$ be elements in A such that $0<i<j \leq p-1$. Then $(j m-m(i m), n)=(j-m i, n)$, since $m \in U_{n}$. Suppose for a contradiction that $p \mid j-m i$ for some prime factor p of n such that $p \neq p_{1}$. Then $j \equiv m i(\bmod p)$ and also $j^{2} \equiv i^{2}(\bmod p)$. Since $j \not \equiv i$ $\left(\bmod p_{1}\right)$, we have $j \not \equiv i(\bmod p)$. So $j \equiv-i(\bmod p)$. Hence $p_{2}>2\left(p_{1}-1\right) \geq$ $j+i=p k \geq p$. This is a contradiction. Hence there is no prime factor p of n such that $p \mid j-m i$. It implies that $(j-m i, n)=1$ and thus $i m$ and $j m$ are adjacent. Therefore A forms a complete graph and $\omega\left(e n d o-\operatorname{Cay}\left(\mathbb{Z}_{n}, U_{n}\right)\right) \geq p_{1}$.

For example, let consider endo-Cay $\left(\mathbb{Z}_{3^{i} 5^{j}}, U_{3^{i} 5^{j}}\right)$ where $i, j \in \mathbb{N}$. Since $4 \equiv 1$ $(\bmod 3)$, we have $\chi\left(\right.$ endo $\left.-\operatorname{Cay}_{4}\left(\mathbb{Z}_{3^{i} 5^{j}}, U_{3^{i} 5^{j}}\right)\right) \leq 3$ by Theorem 2.18. Clearly that $5>2(3-1)$ by Theorem 2.19, we have $\omega\left(e n d o-\operatorname{Cay}_{4}\left(\mathbb{Z}_{3^{i} 5^{j}}, U_{3^{i} 5^{j}}\right)\right) \geq 3$. Therefore $\chi\left(e n d o-\operatorname{Cay}_{4}\left(\mathbb{Z}_{3^{i} 5^{j}}, U_{3^{i} 5^{j}}\right)\right)=3$.

Acknowledgements : I would like to thank the referees for their comments and suggestions on the manuscript. This research was funded by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-GOV-58-64.

References

[1] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, D. Pritikin, On unitaty Cayley graphs of finite ring, Electronic Journal of Combinatorics 16 (2009) 1-13.
[2] I. Dejter, R.E. Giudici, On Unitaty Cayley Graphs, J. Combin. Math. Combin. Comput. 18 (1995) 121-124.
[3] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electronic Journal of Combinatorics 14 (1) (2007) 1-12.
[4] C. Promsakon, S. Punma, Undirected endo-Cayley digraphs of cyclic groups of order primes, World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences 5 (1) (2014).
[5] C. Promsakon, Undirectedness of endo-Cayley graphs of cyclic groups of power prime order groups, Journal of Discrete Mathematical Sciences \& Cryptography. 19 (2016) 321-330.
[6] B.W. Douglas, Introduction to graph theory, Prentice-Hall Inc., 2001.
(Received 15 August 2017)
(Accepted 27 August 2018)
Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: Thanks! This research was funded by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-GOV-58-64.

    ```
    Copyright (c) 2018 by the Mathematical Association of Thailand.
    All rights reserved.
    ```

