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1 Introduction and Preliminaries

Since the Banach’s contraction principle, several type of contraction mappings
on metric space have appeared in order to prove many fixed point theorems. Vari-
ous authors gave some generalizations to Banach’s contraction principle. One such
generalization, in a complete metric space, is due to Geraghty as follows.

Theorem 1.1 ([1]). Let (X, d) be a complete metric space, let f : X → X be
a mapping such that for each x, y ∈ X, d(f(x), f(y)) ≤ α(d(x, y))d(x, y) where
α ∈ S, that S is the families of functions from [0,+∞) into [0, 1) which satisfy
the simple condition α(tn) → 1 ⇒ tn → 0. Then f has a fixed point z ∈ X, and
{fn(x)} converges to z, for each x ∈ X.
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Definition 1.2 ( [2]). A partial metric on a nonempty set X is a function p :
X ×X → R+ such that, for all x, y, z ∈ X

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X. It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y.
But if x = y, p(x, y) may not be 0.

Each partial metric p on X generates a T0 topology τp on X which has as a
base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Definition 1.3. Let (X, p) be a partial metric space. Then:

1. A sequence {xn} in (X, p) converges to a point x ∈ X, with respect to τp,
if limn→ +∞ p(x, xn) = p(x, x).
This will be denoted as xn → x, n→ +∞ or limn→+∞ xn = x.

2. A sequence {xn} in (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm)
exists (and is finite).

3. The space (X, p) is said to be complete if every Cauchy sequence {xn} ⊂
X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

4. A sequence {xn} ∈ (X, p) is called 0-Cauchy if limn,m→∞ p(xn, xm) = 0.
The space (X, p) is said to be 0-complete if every 0-Cauchy sequence in X
converges (in τp) to a point x ∈ X such that p(x, x) = 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

defines a metric on X.
Furthermore, a sequence {xn} converges in (X, ps) to a point x ∈ X if and

only if
lim

n,m→∞
p(xn, xm) = lim

n→∞
p(xn, x) = p(x, x).

Example 1.4. Paradigmatic examples of a partial metric space are:

• The pair (R+, p), where p : R+ × R+ → R+ and

p(x, y) = max {x, y} for all x, y ∈ R+.

The corresponding metric on X is ps(x, y) = 2 max {x, y}−x− y = |x− y| .
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• If (X, d) is a metric space and c ≥ 0 is arbitrary, then p(x, y) = d(x, y) + c
defines a partial metric on X and the corresponding metric is ps(x, y) =
2d(x, y).

Lemma 1.5. Let (X, p) be a partial metric space;

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
the metric space (X, ps).

(b) The space (X, p) is complete if and only if the metric space (X, ps) is complete.

(c) If p(xn, z) → p(z, z) = 0 as n → ∞, then p(xn, y) → p(z, y) as n → ∞ for
each y ∈ X.

(d) Every 0-Cauchy sequence in (X, p) is Cauchy in (X, ps).

(e) If (X, p) is complete, then it is 0-complete.

The converse assertions of (d) and (e) do not hold as the following easy example
shows.

Example 1.6 ([2]). The space X = [0,+∞)∩Q with the partial metric p(x, y) =
max {x, y} is 0-complete, but it is not complete (since ps(x, y) = |x− y| and (X, ps)
is not complete). Moreover, the sequence {xn} with xn = 1 for each n ∈ N is a
Cauchy sequence in (X, p), but it is not a 0-Cauchy sequence.

It is easy to see that every closed subset of a 0-complete partial metric space
is 0-complete.

Let CBp(X) denotes the collection of all nonempty closed bounded subset of
X. For A,B ∈ CBp(X) and x ∈ X, define p(x,B) = inf {p(x, y) : y ∈ B} and

Hp(A,B) = max {δp(A,B), δp(B,A)}

where δp(A,B) = supa∈A p(a,B).

Lemma 1.7. Let (X, p) a partial metric space. For all A,B,C ∈ CBp(X), we
have:

1. Hp(A,A) ≤ Hp(A,B);

2. Hp(A,B) = Hp(B,A);

3. Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(C,C).

Proof. See, [3, Proposition 2.3].

In view of Lemma 1.7, we call the mapping Hp : CBp(X) × CBp(X) →
[0,+∞), a partial Hausdorff metric induced by the partial metric p. For details
see [3]. Note that a point x ∈ X is said to be a fixed point of a multi-valued
mapping T : X → CBp(X) if x ∈ Tx.
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Remark 1.8 ([3]). Let (X, p) be a partial metric space and A any nonempty set
in (X, p), then a ∈ A if and only if p(a,A) = p(a, a), where A denotes the closure
of A with respect to the partial metric p.

Note that A is closed in (X, p) if and only if A = A.
Throughout this paper, we assume that (X, p) is a complete partial metric

space and Hp is the partial Hausdorff metric on CBp(X) induced by p.

2 Main Results

Now we introduce a notion called partial-special multi-valued mapping. For
this type of partial-special multi-valued mappings we have obtained a fixed point
theorem that generalizes a Geragth’s fixed point theorem for multi-valued map-
pings.

Definition 2.1. Let (X, p) be a partial metric space, a multi-valued mapping
T : X → CBp(X) is called partial-special multi-valued mapping if

inf
y∈Tx

{p(x, y) + p(y, z)} = p(x, Tx) + p(z, Tx), ∀ x, z ∈ X. (2.1)

It is clear that every single valued mapping, in a partial metric space, is partial-
special multi-valued mapping, also there exist some mappings that are partial-
special multi-valued but not single valued.

Example 2.2. Let X =
{

1
3 ,

1
9 , · · · ,

1
3n , · · ·

}
∪ {0, 1}, d(x, y) =

{
1 x 6= y
0 x = y.

Define p(x, y) = d(x, y) + c with c ≥ 0 arbitrary. Define mapping T (x) : X →

CBp(X),

T (x) =


{

1
3n+1

}
if x = 1

3n , n = 1, 2, · · ·
{0} if x = 0{

0, 13
}

if x = 1

The mapping T is partial-metric multi-valued mapping, it is possible to check (2.1)
for every couple x, z ∈ X.

It is clear that above example is partial-special multi-valued mapping but not
single valued.

Now we prove our main result in this paper.

Theorem 2.3. Let (X, p) be a complete partial metric space and let T : X →
CBp(X) be partial-special multi-valued mapping such that

Hp(Tx, Ty) ≤ α(p(x, y))p(x, y) + β(p(x, y))[p(x, Tx) + p(y, Ty)]

+ γ(p(x, y))[p(x, Ty) + p(y, Tx)]

for all x, y ∈ X, where α, β, γ are mappings from [0,+∞) into [0, 1) such that
α+β+γ
1−(β+γ) ∈ S and β(t) ≥ γ(t) for all t ∈ [0,+∞). Then T has a fixed point.
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Proof. Define a function α′ from [0,+∞) into [0, 1) by α′(t) = α(t)+1−2β(t)−2γ(t)
2

for all t ∈ [0,+∞). Then we have

1. α(t) < α′(t) for all t ∈ [0,+∞);

2. α′+β+γ
1−(β+γ) ∈ S;

3. for x, y ∈ X and u ∈ Tx, there exists v ∈ Ty such that

p(u, v) ≤ α′(p(x, y))p(x, y) + β(p(x, y))[p(x, Tx) + p(y, Ty)]

+ γ(p(x, y))[p(x, Ty) + p(y, Tx)].

Putting u = y in (3), we obtain that:

4. For x ∈ X and y ∈ Tx there exists v ∈ Ty such that

p(v, y) ≤ α′(p(x, y))p(x, y) + β(p(x, y))[p(x, Tx) + p(y, Ty)]

+ γ(p(x, y))[p(x, Ty) + p(y, Tx)].

Hence, we can define a sequence {xn}n∈N which satisfies xn+1 ∈ Txn, xn+1 6= xn
and

p(xn+2, xn+1) ≤ α′(p(xn+1, xn))p(xn+1, xn)

+ β(p(xn+1, xn))[p(xn, Txn) + p(xn+1, Txn+1)]

+ γ(p(xn+1, xn))[p(xn, Txn+1) + p(xn+1, Txn)]

for all n ∈ N. Observing that

p(xn, Txn+1) + p(xn+1, Txn) ≤ p(xn, xn+2) + p(xn+1, xn+1)

≤ p(xn, xn+1) + p(xn+1, xn+2),

it follows that

p(xn+2, xn+1) ≤ α′(p(xn+1, xn)) + β(p(xn+1, xn)) + γ(p(xn+1, xn))

1− (β(p(xn+1, xn)) + γ(p(xn+1, xn)))
p(xn+1, xn)

for all n ∈ N. We show that {xn} is a Cauchy sequence. To this end, we break
the argument into two Steps.

Step 1: limn→+∞ p(xn, xn+1) = 0. Since α′(t)+β(t)+γ(t)
1−(β(t)+γ(t)) < 1 for all t, {p(xn, xn+1)}

is decreasing and bounded below, so

lim
n→+∞

p(xn, xn+1) = r ≥ 0.

Assume r > 0. Then we have

p(xn+1, xn+2)

p(xn, xn+1)
≤ α′(p(xn, xn+1)) + β(p(xn, xn+1)) + γ(p(xn, xn+1))

1− (β(p(xn, xn+1)) + γ(p(xn, xn+1)))
< 1,
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n = 1, 2, ..... By letting n→ +∞, we see that

1 ≤ lim
n→+∞

α′(p(xn, xn+1)) + β(p(xn, xn+1)) + γ(p(xn, xn+1))

1− (β(p(xn, xn+1)) + γ(p(xn, xn+1)))
≤ 1.

On the other hand, we have α′+β+γ
1−(β+γ) ∈ S. Therefore r = 0. This is a contra-

diction, hence, we prove Step 1.

Step 2: {xn} is a 0-Cauchy sequence. Assume lim supn,m→+∞ p(xn, xm) > 0. By
triangle inequality for positive integer numbers n,m and for y ∈ Txm, we obtain
p(xn, xm) ≤ p(xn, y)+p(y, xm)−p(y, y). This means that for every positive integer
numbers m,n, with using of relation (2.1), we have

p(xn, xm) ≤ inf {p(xn, y) + p(y, xm)− p(y, y)}
≤ inf {p(xn, y) + p(y, xm)} = p(xm, Txm) + p(xn, Txm)

≤ p(xm, xm+1) + p(xn, xn+1) + p(xn+1, Txm)

≤ Hp(Txm, Txn) + p(xn, xn+1) + p(xm, xm+1)

≤ α(p(xn, xm))p(xn, xm) + β(p(xn, xm))[p(xn, Txn) + p(xm, Txm)]

+ γ(p(xn, xm))[p(xn, Txm) + p(xm, Txn)] + p(xn, xn+1) + p(xm, xm+1)

= α(p(xn, xm))p(xn, xm) + β(p(xn, xm))[p(xn, xn+1) + p(xm, xm+1)]

+ γ(p(xn, xm))[p(xn, xm+1)+p(xm, xn+1)] + p(xn, xn+1) + p(xm, xm+1)

≤ α(p(xn, xm))p(xn, xm) + β(p(xn, xm))[p(xn, xn+1) + p(xm, xm+1)]

+ γ(p(xn, xm))[p(xn, xm) + p(xm, xm+1)− p(xm, xm)]

+ γ(p(xn, xm))[p(xm, xn) + p(xn, xn+1)− p(xn, xn)]

+ p(xn, xn+1) + p(xm, xm+1)

≤ α(p(xn, xm))p(xn, xm) + β(p(xn, xm))[p(xn, xn+1) + p(xm, xm+1)]

+ γ(p(xn, xm))[2p(xn, xm) + p(xn, xn+1) + p(xm, xm+1)]+

+ p(xn, xn+1) + p(xm, xm+1).

Then p(xn, xm)− α(p(xn, xm))p(xn, xm)− 2γ(p(xn, xm))p(xn, xm) ≤

β(p(xn, xm))[p(xn, xn+1) + p(xm, xm+1)]

+ γ(p(xn, xm))[p(xn, xn+1) + p(xm, xm+1)] + p(xn, xn+1) + p(xm, xm+1)

and hence:

p(xn, xm) ≤ [β(p(xn, xm)) + γ(p(xn, xm))][p(xn, xn+1) + p(xm, xm+1)]

1− [α(p(xn, xm)) + 2γ(p(xn, xm))]

+
p(xn, xn+1) + p(xm, xm+1)

1− [α(p(xn, xm)) + 2γ(p(xn, xm))]
.

Under the assumption lim supn,m→+∞ p(xn, xm) > 0, it follows by Step 1, that

lim sup
n,m→+∞

1

1− [α(p(xn, xm)) + 2γ(p(xn, xm))]
= +∞,
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for which
lim sup
n,m→+∞

[α(p(xn, xm)) + 2γ(p(xn, xm))] = 1. (2.2)

On the other hand, since

α(t) + β(t) + γ(t)

1− (β(t) + γ(t))
< 1, (2.3)

then β(t) + γ(t) < 1
2 , for all t ∈ [0,+∞).

Hence, since β(t) ≥ γ(t), for all t ∈ [0,+∞), by using (2.2) and (2.3)

lim sup
n,m→+∞

α(p(xn, xm)) + β(p(xn, xm)) + γ(p(xn, xm))

1− [β(p(xn, xm)) + γ(p(xn, xm))]

≥ lim sup
n,m→+∞

α(p(xn, xm)) + 2γ(p(xn, xm))

1− [β(p(xn, xm)) + γ(p(xn, xm))]
(2.4)

≥ lim sup
n,m→+∞

[α(p(xn, xm)) + 2γ(p(xn, xm))] = 1.

Now since, α+β+γ
1−(β+γ) ∈ S, then using (2.4), we have

lim sup
n,m→+∞

α(p(xn, xm)) + β(p(xn, xm)) + γ(p(xn, xm))

1− [β(p(xn, xm)) + γ(p(xn, xm))]
= 1.

It follows that lim supn,m→+∞ p(xn, xm) = 0 which is a contradiction. Thus Step
2 is proved.

By completeness of X, there exists x∗ ∈ X such that limn→+∞ p(xn, x
∗)=

p(x∗, x∗) = 0. Now, we have

p(x∗, Tx∗) ≤ p(x∗, xn+1) + (xn+1, Tx
∗)

≤ p(x∗, xn+1) +Hp(Txn, Tx
∗)

≤ p(x∗, xn+1) + α(p(xn, x
∗))p(xn, x

∗)

+ β(p(xn, x
∗))[p(xn, Txn) + p(x∗, Tx∗)]

+ γ(p(xn, x
∗))[p(xn, Tx

∗) + p(x∗, Txn)]

for all n ∈ N. Therefore

p(x∗, Tx∗) ≤ p(x∗, xn+1) + α(p(xn, x
∗))p(xn, x

∗)

+ [β(p(xn, x
∗)) + γ(p(xn, x

∗))][p(xn, xn+1) + p(x∗, Tx∗)

+ p(xn, Tx
∗) + p(x∗, xn+1)]

On the other hand, since β(t) + γ(t) < 1
2 , for all t ∈ [0,+∞), then we have

p(x∗, Tx∗) < p(x∗, xn+1) + α(p(xn, x
∗))p(xn, x

∗)

+
1

2
[p(xn, xn+1) + p(x∗, Tx∗) + p(xn, Tx

∗) + p(x∗, xn+1)].
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For n → +∞ it follows p(x∗, Tx∗) < p(x∗, Tx∗), absurd. Then p(x∗, Tx∗) = 0 =
p(x∗, x∗). We know that Tx∗ is closed then, by Lemma 1.8, we get x∗ ∈ Tx∗.

Corollary 2.4. Let (X, p) be a complete partial metric space and let T : X →
CBp(X) be partial-special multi-valued mapping such that

p(Tx, Ty) ≤ α(p(x, y))p(x, y) + β(p(x, y))[p(x, Tx) + p(y, Ty)]+

+ γ(p(x, y))[p(x, Ty) + p(y, Tx)]

for all x, y ∈ X, where α, β, γ, are mappings from [0,+∞) into [0, 1)
such that α+β+γ

1−(β+γ) ∈ S and β(t) ≥ γ(t) for all t ∈ [0,+∞). Then T has a fixed
point.

We observed (Definition 2.1) that every single valued mapping, in a partial
metric space, is partial-special multi-valued mapping. Then, putting β = γ = 0
in Theorem 2.3, we obtain the following corollary that is a partial-special multi-
valued version of Geraghty’s fixed point theorem.

Corollary 2.5. Let (X, p) be a complete partial metric space and let T : X →
CBp(X) be partial-special multi-valued mapping such that:

Hp(Tx, Ty) ≤ α(p(x, y))p(x, y)

for all x, y ∈ X, where α ∈ S. Then T has a fixed point.

Corollary 2.6. Let (X, p) be a complete partial metric space and let T : X →
CBp(X) be partial-special multi-valued mapping such that

Hp(Tx, Ty) ≤ β(p(x, y))[D(x, Tx) +D(y, Ty)]

for all x, y ∈ X, where β is a mapping from [0,+∞) into [0, 12 ) such that β
1−β ∈ S.

Then T has a fixed point.

Example 2.7. Let X =
{

0, 13 ,
1
9

}
. Define p(x, y) = 1

2 |x− y|+
1
2 max{x, y}.

Define mapping T (x) : X → CBp(X),

T (x) =

{
{0} if x = 0, 19{

0, 19
}

if x = 1
3 .

First: We prove that T is partial-special multi-valued mapping, indeed:

inf
y∈Tx

{p(x, y) + p(y, z)} = p(x, Tx) + p(z, Tx), ∀ x, z ∈ X.

If x ∈ {0, 19} and z = 1
3 then Tx = {0} and:

inf
y∈Tx

{p(x, y) + p(y, z)} =

{
p(x, 0) + p(0,

1

3
)

}
= (x+

1

3
);

p(x, Tx) + p(z, Tx) = p(x, 0) + p(
1

3
, 0) = (x+

1

3
).
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If x = 1
3 and z = 0 then Tx = {0, 19} and:

inf
y∈Tx

{p(x, y) + p(y, z)} = inf
y∈Tx

{
p(

1

3
, y) + inf{p(0, 0), p(

1

9
, 0)}

}
= inf
y∈Tx

{
p(

1

3
, Tx) + 0

}
= inf{p(1

3
, 0), p(

1

3
,

1

9
)}

= inf{1

3
,

5

18
} =

5

18
;

p(x, Tx) + p(z, Tx) = p(
1

3
, Tx) + p(0, Tx)

= inf{p(1

3
, 0), p(

1

3
,

1

9
)}+ inf{p(0, 0), p(0,

1

9
)} = { 5

18
+ 0}

=
5

18
.

If x = 1
9 and z = 0 then Tx = 0 and:

inf
y∈Tx

{p(x, y) + p(y, z)} =

{
p(

1

9
, 0) + p(0, 0)

}
=

1

9
;

p(x, Tx) + p(z, Tx) = p(
1

9
, 0) + p(0, 0) =

1

9
.

Second: We prove that {0} ,
{

0, 19
}
∈ CBp(X). (See Remark 1.8).

We show that a ∈ {0} if and only if p(a, {0}) = p(a, a) ⇔ a = 0 (trivial), and

a ∈ {0, 19} if and only if p(a, {0, 19}) = p(a, a).
If a = 0 ⇒ p(a, {0, 19}) = inf{p(0, 0), p(0, 19 )} = inf{0, 19} = 0 = p(a, a).
If a = 1

9 ⇒ p(a, {0, 19}) = inf{p( 1
9 , 0), p( 1

9 ,
1
9 )} = inf{ 19 ,

1
18} = 1

18 = p(a, a).
If a = 1

3 ⇒ p(a, {0, 19}) = inf{p( 1
3 , 0), p( 1

3 ,
1
9 )} = inf{ 13 ,

5
18} = 5

18 6= p(a, a).

Third: If β(t) = 1
t2+2 ⇒ β

1−β = 1
t2+1 ∈ S then it is possible to test the

contractive condition:

Hp(Tx, Ty) ≤ β(p(x, y))[D(x, Tx) +D(y, Ty)]

for all x, y ∈ X. Indeed:
If x = 1

3 and y ∈ {0, 19} then Tx = {0, 19} and Ty = {0}, it follows:

Hp(Tx, Ty) = Hp({0,
1

9
}, 0) = sup{p(0, 0), p(0,

1

9
)} =

1

9
.
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If y = 0 then

β(p(x, y))[D(x, Tx) +D(y, Ty)] = β(p(
1

3
, 0))[D(

1

3
, {0, 1

9
)}+D(0, 0)]

= β(
1

3
)[inf{p(1

3
, 0), p(

1

3
,

1

9
)}+ 0]

=
1

1
9 + 2

[inf{1

3
,

5

18
}] =

5

38
,

and the contractive condiction becomes 1
9 ≤

5
38 (true).

If y = 1
9 then

β(p(x, y))[D(x, Tx) +D(y, Ty)] = β(p(
1

3
,

1

9
))[D(

1

3
, {0, 1

9
)}+D(

1

9
, 0)]

= β(
5

18
)[inf{1

3
,

5

18
}+

1

9
]

=
324

673
[

5

18
+

1

9
] =

324

673
[

7

18
],

and the contractive condiction becomes 1
9 ≤

324
673 [ 7

18 ] (true).
If x = y = 0 then the contractive condition becomes 0 ≤ 0 (true).
If x = y = 1

3 then Tx = Ty = {0, 19}

Hp(Tx, Ty) = sup{p(0, 0), p(0,
1

9
), p(

1

9
,

1

9
)} =

1

9

D(x, Tx) = D(y, Ty) = inf{ 13 , {0,
1
9}} = inf{p( 1

3 , 0), p( 1
3 ,

1
9 )} = 5

18

and the contractive condiction becomes 1
9 ≤ β(p( 1

3 ,
1
3 ))[ 5

18 + 5
18 ] = β( 1

6 )[ 1018 ] =
36
73 [ 1018 ] (true).

If x = y = 1
9 then Tx = Ty = {0}, it follows that Hp(Tx, Ty) = 0 and

β(p(x, y))[D(x, Tx) +D(y, Ty)] = β(p(
1

9
,

1

9
))[p(

1

9
, 0) + p(

1

9
, 0)] > 0.

All condictions of Corollary 2.6 are verified and x = 0 is the fixed point.

Corollary 2.8. Let (X, p) be a complete partial metric space and let T : X →
CBp(X) be partial-special multi-valued mapping such that

Hp(Tx, Ty) ≤ α(p(x, y))p(x, y) + β(p(x, y))[D(x, Tx) +D(y, Ty)]

for all x, y ∈ X, where α, β are mappings from [0,+∞) into [0, 1)
such that α+β

1−β ∈ S. Then T has a fixed point.
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versità degli Studi di Palermo (Local University Project R.S. ex 60%).



Geraghty’s Fixed Point Theorem for Partial-Special Multi-Valued Mappings 527

References

[1] M.A. Geraghty, On contractive mappings, Proceedings of the American Math-
ematical Society 2 (40) (1973).

[2] H. Kumar Nashinel, Z. Kadelburg, S. Radenović, J.K. Kim, Fixed point the-
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