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Abstract : In this paper we recall the concept of partial Hausdorff metric. Many
authors studied about fixed point theory for multi-valued mappings on a partial
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1 Introduction and Preliminaries

Since the Banach’s contraction principle, several type of contraction mappings
on metric space have appeared in order to prove many fixed point theorems. Vari-
ous authors gave some generalizations to Banach’s contraction principle. One such
generalization, in a complete metric space, is due to Geraghty as follows.

Theorem 1.1 ([1]). Let (X,d) be a complete metric space, let f : X — X be
a mapping such that for each x,y € X, d(f(z), f(y)) < ald(z,y))d(z,y) where
a € S, that S is the families of functions from [0,+00) into [0,1) which satisfy
the simple condition a(t,) — 1 = t, — 0. Then f has a fized point z € X, and
{f"(x)} converges to z, for each x € X.
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Definition 1.2 ([2]). A partial metric on a nonempty set X is a function p :
X x X — R* such that, for all z,y,2z € X

pl) z =y & p(z,r) = p(z,y) = p(y,y),

) p(z,x) < p(z,y),

3) p(z,y) = p(y, ),

4) p(z,y) < p(z,2) +p(2,9) = p(z,2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X. It is clear that, if p(x,y) = 0, then from (pl) and (p2) x = y.
But if = y, p(z,y) may not be 0.

Each partial metric p on X generates a Ty topology 7, on X which has as a
base the family of open p-balls {B,(z,¢) : x € X, e > 0}, where

By(z,6) ={y € X : p(x,y) < p(x,z) + €}
for all z € X and € > 0.

Definition 1.3. Let (X, p) be a partial metric space. Then:

1. A sequence {z,} in (X,p) converges to a point = € X, with respect to 7,,
if limy,— 400 p(, ) = p(x, x).
This will be denoted as z,, — x, n — +o00 or lim, o x, = .

2. A sequence {z,} in (X, p) is called a Cauchy sequence if limy, —s 00 D(Tny Tm,)
exists (and is finite).

3. The space (X,p) is said to be complete if every Cauchy sequence {x,} C
X converges, with respect to 7,, to a point € X such that p(z,z) =
limy, 1 — o0 P(Tns )

4. A sequence {z,} € (X,p) is called 0-Cauchy if lim,, ;1,00 P(@n, Tm) = 0.
The space (X, p) is said to be 0-complete if every 0-Cauchy sequence in X
converges (in 7,) to a point z € X such that p(z,z) = 0.

If p is a partial metric on X, then the function p® : X x X — RT given by

p*(z,y) = 2p(z,y) — p(z,2) —p(y,y),
defines a metric on X.
Furthermore, a sequence {x,} converges in (X, p®) to a point x € X if and
only if

n)}yilrgoop(fvmxm) = nlgréop(xmm) = p(x,x).

Example 1.4. Paradigmatic examples of a partial metric space are:

e The pair (RT,p), where p: RT x RT — R™ and
p(z,y) = max {z,y} forall z,y€RT.

The corresponding metric on X is p*(z,y) = 2max {z,y} —x—y = |z — y|.
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o If (X,d) is a metric space and ¢ > 0 is arbitrary, then p(z,y) = d(z,y) + ¢
defines a partial metric on X and the corresponding metric is p*(z,y) =
2d(x,y).

Lemma 1.5. Let (X,p) be a partial metric space;

(a) {zn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in
the metric space (X, p®).

(b) The space (X, p) is complete if and only if the metric space (X, p®) is complete.

(c) If p(xn,2) = p(z,2) =0 as n — oo, then p(xn,y) — p(z,y) as n — oo for
eachy € X.

(d) Every 0-Cauchy sequence in (X, p) is Cauchy in (X, p®).
(e) If (X,p) is complete, then it is 0-complete.

The converse assertions of (d) and (e) do not hold as the following easy example
shows.

Example 1.6 ([2]). The space X = [0, +00) NQ with the partial metric p(z,y) =
max {z,y} is 0-complete, but it is not complete (since p*(z,y) = |z — y| and (X, p®)
is not complete). Moreover, the sequence {z,} with x,, = 1 for each n € N is a
Cauchy sequence in (X, p), but it is not a 0-Cauchy sequence.

It is easy to see that every closed subset of a O-complete partial metric space
is O-complete.

Let CBP(X) denotes the collection of all nonempty closed bounded subset of
X.For A,B € CBP(X) and x € X, define p(z, B) = inf {p(x,y) : y € B} and

Hy(A, B) = max {6,(A, B), 5,(B, A)}
where 0,(A, B) = sup,c 4 p(a, B).

Lemma 1.7. Let (X,p) a partial metric space. For all A,B,C € CBP(X), we
have:

1. Hy(A,A) < H,(A,B);
2. Hy(A,B) = H,(B,A);
3. Hy(A,B) < H,(A,C)+ Hy(C,B) —inf.cc p(C, C).
Proof. See, |3, Proposition 2.3]. O

In view of Lemma 1.7, we call the mapping H, : CB?(X) x CBP(X) —
[0,400), a partial Hausdorff metric induced by the partial metric p. For details
see [3]. Note that a point z € X is said to be a fized point of a multi-valued
mapping T : X — CBP(X) if v € Tx.
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Remark 1.8 ([3]). Let (X,p) be a partial metric space and A any nonempty set
in (X,p), then a € A if and only if p(a, A) = p(a,a), where A denotes the closure
of A with respect to the partial metric p.

Note that A is closed in (X, p) if and only if A = A.
Throughout this paper, we assume that (X,p) is a complete partial metric
space and H,, is the partial Hausdorff metric on CBP(X) induced by p.

2 Main Results

Now we introduce a notion called partial-special multi-valued mapping. For
this type of partial-special multi-valued mappings we have obtained a fixed point
theorem that generalizes a Geragth’s fixed point theorem for multi-valued map-
pings.

Definition 2.1. Let (X, p) be a partial metric space, a multi-valued mapping
T:X — CBP(X) is called partial-special multi-valued mapping if

iean {p(z,y) +p(y,2)} = p(z,Tz) + p(2,Tx), Vz,z€X. (2.1)
yeTx

It is clear that every single valued mapping, in a partial metric space, is partial-
special multi-valued mapping, also there exist some mappings that are partial-
special multi-valued but not single valued.

0 z=y.

Example 2.2. Let X = {1 1 ... L ...1u{0,1}, d(x7y):{ L x#y
> 0 arbitrary. Define mapping T(z) : X —

Define p(z,y) = d(z,y) + ¢ with ¢

CB(X),
{75} fz=3 n=12-
T(x) =< {0} if =0
{o,3} if z=1
The mapping T is partial-metric multi-valued mapping, it is possible to check
for every couple z, z € X.

It is clear that above example is partial-special multi-valued mapping but not
single valued.

Now we prove our main result in this paper.

Theorem 2.3. Let (X,p) be a complete partial metric space and let T : X —
CBP(X) be partial-special multi-valued mapping such that

Hy(Tx, Ty) < a(p(z,y))p(z,y) + B(p(x,y))[p(z, Tz) + p(y, Ty)]
+(p(z, ) [p(z, Ty) + py, Tz)]

for all z,y € X, where o, B, are mappings from [0, +00) into [0,1) such that

fjg_t;’) € S and B(t) > ~(t) for allt € [0,400). Then T has a fized point.
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Proof. Define a function o’ from [0,400) into [0,1) by &/(t) = a(t)ﬂ_zg(t)_%(t)
for all t € [0, +00). Then we have

1. at) < d/(t) for all t € [0, 400);

o’ +B+y .
2. T~y € S

3. for x,y € X and u € Tz, there exists v € T'y such that

p(u,v) < o (p(x,y))p(z,y) + B(p(z, ) [p(x, Tx) + ply, Ty)]
+7(p(z, ) [p(z, Ty) + p(y, Tz)].
Putting u = y in (3), we obtain that:
4. For x € X and y € Tx there exists v € Ty such that

p(v,y) < o (p(z,y)p(z,y) + Bp(x,y)p(x, Tz) + py, Ty)]
+y(p(z,y))[p(x, Ty) + py, Tx)].

Hence, we can define a sequence {x,}, .y which satisfies z,,11 € Tz, Tny1 # Tn
and

P(@nt2, Tni1) < & (p(@ng1, Tn))p(Tng1, Tn)
+ ﬁ(p(xn-l-h xn)) [p(J?»,“ Tl‘n) + p(‘x’ﬂ-l-h T.’I?—,H_l)]
+Y(P@nt1, ) [P(Tn, TTns1) + P(Tnt1, Try)]

for all n € N. Observing that

P(@n, Txng1) + D(@ni1, Txn) < (T, Tpi2) + P(Tng1, Tnit)
< p(:cn, $n+1) + p(xn+17 xn+2)>

it follows that

& (p(Tnt1,2n)) + BP(@n+1,2n)) + Y(P(Tny1,T0))
L= (B(p(@ni1;2n)) +7(P(Tnt1,20)))

for all n € N. We show that {z,} is a Cauchy sequence. To this end, we break

the argument into two Steps.

p(mn+1, xn)

p(xn—&-Za xn-&-l) <

Step 1: limy,— oo p(Tp, Zn41) = 0. Since % < lforallt, {p(xn,ni1)}

is decreasing and bounded below, so

lim p(z,,zpe1) =7 >0.

n—-+oo
Assume r > 0. Then we have

P(Tpi1, Tniz) < o (p(n, Tny1)) + BP0, Tny1)) +Y(0(Tn, Tni1))

Pmtner) = 1= B0 ns) F10@ )
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n=12,... By letting n — +o00, we see that

& (p(@n, Tnt1)) + BP(@n, Tnt1)) + ¥(P(@n, Tnt1)) <1
n—+0o0 1= (B(p(zn, Tni1)) +7(P(Tn, Tny1))) -

On the other hand, we have = T/?IJ) € S. Therefore » = 0. This is a contra-

diction, hence, we prove Step 1.

Step 2: {z,} is a 0-Cauchy sequence. Assume limsup,, ,,, , 1o P(Tn, Trm) > 0. By
triangle inequality for positive integer numbers n,m and for y € Tx,,, we obtain
(T, Tm) < p(zn, y)+p(y, Tm) —p(y, y). This means that for every positive integer
numbers m, n, with using of relation , we have

p(@n, om) < inf {p(zn,y) +p(y, 2m) — p(y,y)}
< inf {p(zn,y) + p(y; 2m)} = P(Tm, Txm) + p(@n, Txm)
< P(@m, Tmt1) + P(@n, Tnt1) + P(@nt1, T20m)
< Hy(Txpm, Txyn) + p(@n, Tng1) + D(Tms Tmt1)
< a(p(zn, T ))P(Tns Tm) + BP0, Tm)) [P(Tn, T2n) + (T, TTm)]
+ 7( (a?n, xm))[p(mna Txm) + p(CL‘m, Txn)] +p(33m $n+1) + p(mm, $m+1)
= a(p(Tns )Py Tm) + BO(@ns Tn)) P(Tns Tng1) + P(Tims Tim1)]
+@@n, T ) [P(@n, Tt 1) +P(Tm, T 1)] + P(Tns Tnt1) + DT, Tint1)
< a(p(Tn, Tm ))P(Tns Tm) + B(P(Tns ) [P(Tns Tns1) + P(Tims Tmy1)]
+Y(P(@ns ) [P(Tns Tm) + P( Ty Tms1) = P(Tims T
+ (@0, ) [P(Tms Tn) + (@0, Tnt1) — p(n, T0)]
+ p(@n, Tnt1) + P(Tm, Timt1)
< a(p(Tn, Tm ))P(Tns Tm) + B(P(Tns m)) [P(Tns Tns1) + P(Tms Tmy1)]
+v(P(@Tns ) 2p(Tn, T ) + P(Tny Trg1) + P(Ty Trng1)]+
+ P(Tns Tnt1) + P(Tims Tmp1)-

8

8

Then p(ﬂ?n, xm) - a(p(xn, xm))p(xm xm) - 27(17(-7371’ xm))p(xm xm) <

Bp(Tn, Tm))[P(Tn, Tni1) + D(Tm, Trg1)]

+7(P(@n, 2m)) [P(Tn, Try1) + D(@Tmy Timg1)] + P(Tn, Trg1) + D( T, Tg1)
and hence:
[BP(@n: Tm)) + Y(@(@n; Tm))][P(Tn; Tng1) + P(Tms Tmtr)]

1 —[a(p(zn, 2m)) + 27(P(Tn, Tm))]

p(xn, xn-&-l) + p(Ima Im+1)
1= [a(p(Tn, Tm)) + 27(p(Tn, Tm))]
Under the assumption imsup,, ,,, 4 oo P(Tn, Tm) > 0, it follows by Step 1, that

1
lim sup = +o0,
nym—too L= [(D(Tn, Tm)) + 27(p(Tn, Tm))]

P(Tn, Tm) <
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for which
limsup [a(p(zn, Zm)) + 27(0(2n, Tm))] = 1.

n,m—4oo

On the other hand, since

then 3(t) +(t) < 1, for all ¢ € [0, +00).
Hence, since 8(t) > 7(t), for all ¢ € [0, +00), by using and (2.3)

lim sup Oé(p(xn,:cm)) + ﬁ(p(:cn,xm)) 'Y(p(xnvxm»
n,m—s4o0 1- [B(p(a?n,iﬂm)) ( (mn,xm))]

a(p(a:n, xm)) + 27( (xnv xm))
Z S T (B(p(@n, zm)) + 1P, )]

> limsup [a(p(Tn, Tm)) + 27(p(zn, 2m))] = 1.

n,Mm——+00

Now since, 10?(513) € S, then using (2.4), we have

lim sup (p(xn; Tm)) + BO(En, Tm)) + V(P(Tn, Tm))

n,m—+00 1= [B(p(zn, Tm)) +v(P(Tn, Tm))] -t

It follows that limsup,, ,, 4o P(¥n, Tm) = 0 which is a contradiction. Thus Step

2 is proved.

By completeness of X, there exists z* € X such that lim, . p(@y,
p(z*,z*) = 0. Now, we have

p(z*, Tx™)

+ + IAIA A

for all n € N. Therefore

p(a”, Tx®) < p(a*, ni1) + a(p(en, ©°))p(en, 27)
+ [B(p(an, 7)) + v(p(an, 27)l[p(@n; Tnir) + pla”, Tz")
+ p(@n, Ta") + p(a”, Tni1)]

On the other hand, since B(t) + (t) < 3, for all ¢ € [0,400), then we have
p(a", Tz") < p(a", Tny1) + alp(zn, 27))p(zn, 27)

1 * * * *
+§[p(xn7mn+1)+p(x Tx™) + p(an, Tx™) + p(a™, wpy1)].

x*)=
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For n — +o0 it follows p(z*, Tz*) < p(a*,Tx*), absurd. Then p(z*,Ta*) =0 =
p(z*, z*). We know that Tz* is closed then, by Lemma 1.8, we get z* € Tz*. O

Corollary 2.4. Let (X,p) be a complete partial metric space and let T : X —
CBP(X) be partial-special multi-valued mapping such that

p(Tz, Ty) < a(p(z,y))p(z,y) + B(p(z,y))lp(z, Tx) + ply, Ty)]+
+7(p(z,y)p(z, Ty) + p(y, Tz)]
for all z,y € X, where a, 8,7, are mappings from [0,+0o0) into [0, 1)

such that 1Q—ng-tj/) € S and B(t) > ~(t) for all t € [0,+00). Then T has a fized
point.

We observed (Definition 2.1) that every single valued mapping, in a partial
metric space, is partial-special multi-valued mapping. Then, putting 5 = v =0
in Theorem 2.3, we obtain the following corollary that is a partial-special multi-
valued version of Geraghty’s fixed point theorem.

Corollary 2.5. Let (X,p) be a complete partial metric space and let T : X —
CBP(X) be partial-special multi-valued mapping such that:

for all x,y € X, where a € S. Then T has a fized point.

Corollary 2.6. Let (X,p) be a complete partial metric space and let T : X —
CBP(X) be partial-special multi-valued mapping such that

Hy(Tx, Ty) < B(p(x,y))[D(x, Tx) + D(y, Ty)]

forall z,y € X, where 5 is a mapping from [0, 400) into [0, %) such that % es.
Then T has a fized point.

Example 2.7. Let X = {0, 1, +}. Define p(z,y) = [z — y| + § max{z,y}.

1379
Define mapping T'(z) : X — CBP(X),
{0} if x=0,%
T(x) = . 9
(=) {{o,;} if o= 1

First: We prove that T is partial-special multi-valued mapping, indeed:

iean {p(z,y) +p(y,2)} = p(x,Tz) + p(2,Tx), Vaz,z€X.
yeTx

If z € {0, 5} and z = £ then Tz = {0} and:

Jof {p(z,y) +p(y. 2)} = {p(m,O) +p(0, ;)} — (o + %);



Geraghty’'s Fixed Point Theorem for Partial-Special Multi-Valued Mappings 525

If =% and 2z = 0 then Tz = {0, §} and:

uleanz {p(z,y) +p(y, 2)} = ylenjfgﬂ {p(;, y) + inf{p(0, 0)7p(év 0)}}

— inf {p(;,m«) + 0}

yeTx
1 11
=1 f — — =
inf{p(3,0), p(5. 5)}
S
—1nf{§, E} =
1
p(z,Tx) +p(z,Tx) = p(57 Tz) + p(0, Tx)
= inf{p(2,0).p(2, 51} + inf(p(0.0).5(0, 1)) = [ +0)
_5
18’

Ifz:éandz:OthenTx:Oand:

Jnf o) + 90020} = {p(G.0 +0.0)} =

p(z, Tx) + plz, Ta) = p(é, 0) + p(0,0) = é

Second: We prove that {0}, {0, 5} € CBP(X). (See Remark 1.8).
We show that a € {0} if and only if p(a, {0}) = p(a,a) < a = 0 (trivial), and
a € {0, §} if and only if p(a, {0, §}) = p(a, a).

~

Ifa=0 = p(a,{0, é}) = inf{p(0, 0), p(0, é } = inf{0, é} =0=p(a,a)

Ifa= % = p(a, {0, é}) = inf{p(%,o),p(éa %)} = inf{%a ﬁ} = é = p(a,a).
Ifa= 3 = p(aa {07 §}) = inf{p(gvo)ap(ga 5)} = inf{ga ﬁ} T 7é p(a’ﬂa)'
Third: If (1) = z45 = 13@ = @5 € S then it is possible to test the

contractive condition:
H,(Tz,Ty) < B(p(z,y))[D(x,Tx) + D(y, Ty)]

for all z,y € X. Indeed:
If z =1 and y € {0, §} then Tz = {0, 1} and Ty = {0}, it follows:

1

H,(T, Ty) = Hy({0, 5 1,0) = sup{p(0,0),p(0, )} = 5.
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If y = 0 then

ﬁ(p(%y))[l)(ﬂf,Tﬂf)+D(y7Ty)]ZB(p(% oplp ( {0, )}+D(0 0)]

1. 1 1 1
= B(3)linf{p(3,0),p(3, 5)} + 0]
1 15 5
= f =
T iy = 5
and the contractive condiction becomes % < % (true).
Ify= % then
11 1
Blp(a, )P, To) + Dly, Ty)] = Bp(5, DD, {0, )} + D, 0)]
RN | 5 1
= B(o)linf{z, £} + 5]
BTN VT
©673'18 9 6737187
and the contractive condiction becomes § < 323[ L] (true).

If © = y = 0 then the contractive condition becomes 0 <0 (true).
If =y = then Tw = Ty = {0, 5}

1
Hp(Tx7 Ty) = Sup{p(07 0)7]7(07 "

D(x,Tx) = D(y, Ty) = inf{}, {0, 13} = inf {p(3,0).p(}, 3)} = &
; DI+ &) = BRI =

and the contractive condiction becomes 5 < B(p(
38[49] (true).

If z =y = § then Tw = Ty = {0}, it follows that H,(Tz,Ty) = 0 and

11 1 1

7 §))[p(§,0) er(g,o)] > 0.

All condictions of Corollary 2.6 are verified and x = 0 is the fixed point.

B(p(z,y))[D(x, Tx) + D(y, Ty)| = B(p(

Corollary 2.8. Let (X,p) be a complete partial metric space and let T : X —
CBP(X) be partial-special multi-valued mapping such that

Hy(Tx, Ty) < ap(z,y))p(z,y) + B(p(z, y))[D(z, Tx) + D(y, Ty)]

for all z,y € X, where a, B are mappings from [0, +00) into [0, 1)
such that %‘g € S. Then T has a fized point.
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