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Abstract : This paper is about modeling of coarse data in statistics using set-
valued random elements. We consider also the case of fuzzy set-valued random
elements for modeling of perception-based information. These are typically ran-
dom elements with values in some functional spaces. Unlike the standard approach
in stochastic processes, we emphasize the lattice approach leading to compact, sep-
arable metric spaces.
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1 Introduction

In statistics, set-valued mappings appear at the very beginning of the theory,
namely as sampling designs in finite populations. Formally, they are finite ran-
dom sets. However, the emphasis was on different types of samplings rather than
formulating the concept of random sets rigorously as random elements.

In stochastic geometry, random sets appear naturally. A satisfactory theory of
random closed sets on locally compact, Hausdorff and second countable (LCHS)
was developed by G. Matheron in 1975 in the context of integral geometry and
morphology.

With the advances of technology, more complex types of data are considered
for statistical analysis. These include coarse data , i.e. low quality data, such as
censored or grouped data in survival analysis, indirect observations in bioinfor-
matics, and perception-based information in intelligent systems.

While random closed sets generalize random vectors in multivariate statistical
analysis, a more general concept of random fuzzy sets provides models for imprecise
observation processes. The latter are nothing else than upper semicontinuous
functions taking values in the unit interval. Efforts to define upper semicontinuous
random functions in the literature (see e.g. Li et al, 2002) was not satisfactory
as they only led to a restrictions of the space of upper semicontinuous functions
(usc) with compact supports. This due to the fact that the approach was based
on the search for a metric on usc space , similar to C[0, 1] , D[0, 1] (see e.g.
Billingsley, 1968), in order to toplologize it. Now, the hit-or-miss topology on the
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space of closed sets F(X) of a LCHS space X is compact, Hausdorff and second
countable (and hence metrizable) , it is expected that USC(X), the space of upper
semicontinuous functions, defined on X with values in [0, 1] , should be similar.

This happens to be the case as we will proceed to show .
2. What is a random set ?
A random set is a set obtained at random ! If we view a set obtained at random

as the outcome or realization of a random phenomenon, then we need to model the
observation mechanism as a random element, defined on some probability space,
(Ω,A, P ), with values as subsets of some set X. This requires the specification of
some appropriate σ−field on that collection of subsets. For finite X, the situation
is clear. For LCHS spaces such as Rd , the situation is not so clear ! Now since
singletons are closed sets, random closed sets generalize multivariate statistical
situation. Thus we consider F(X) . The problem is to specify a ”good” σ-field on
F(X) . Of course the standard way is to topologize F(X) and then talke its Borel
σ-field σ(F). Then a random closed set is a A − σ(F)− measurable mapping in
this framework. Keeping in mind that, for random vectors, probability measures
on σ(Rd) are in one-to-one correspondence with distribution functions (via the
Lebesgue-Stieltjes theorem), one should consider σ(F) so that a counter-part of
this theorem exists. This was acheived by Matheron (1975) as we recall here
briefly.

Let X be a LCHS space. We denote by F(X),G(X),K(X) or simply F ,G,K
the spaces of closed, open and compact subsets of X, respectively. The so-called
hit-or-miss topology on F is generated by the base consisting of

FK
G1,...,Gn

= FK ∩ FG1 ∩ FG2 ∩ ... ∩ FGn , for n ∈ N , K ∈ K , Gi ∈ G
where FA = {F ∈ F , F ∩A 6= ∅} , FA = {F ∈ F , F ∩A = ∅}

With this topology, F is a compact, Hausdorff and second countable topological
space and hence metrizable. When X = Rd , a compatible metric on F is the
stereographical metric (see Rockaffelar and Wets, 1984) . For general LCHS spaces,
concrete metrics are obtained similarly by using Alexandroff compactification (see
Wang and Wei, 2007).

The Choquet theorem on F(X) is this. A set-function T : K → [0, 1] is called
a capacity functional if it satisfies :

(i) T (∅) = 0
(ii) If Kn ↘ K in K then T (Kn) ↘ T (K)
(iii) T is alternating of infinite order, i.e., T is monotone increasing and for

Ki ∈ K , i = 1, 2, ...n ≥ 2 ,

T (∩n
i=1) ≤

∑
∅6=I⊆{1,2,...,n}(−1)|I|+1T (∪i∈IKi)

where |I| denotes the cardinality of the set I .

Theorem (Choquet): Let T : K → [0, 1] . There exists uniquely a probability
measure Q on σ(F) satisfying Q(FK) = T (K) for K ∈ K, if and only if T is a
capacity functional.



A CONTINUOUS LATTICE APPROACH TO RANDOM SETS 139

3. Another look at the hit-or-miss topology.
For any topological space X, (F ,⊆) is a complete lattice with

∧{Fi : i ∈ I} = ∩{Fi : i ∈ I}, and ∨{Fi : i ∈ I} = the closure of ∪{Fi : i ∈ I}

Also, (F ,⊇),with reverse order, is a complete lattice. However, the difference
is that, for locally compact X, while the lattice (F ,⊆) is not continuous, (F ,⊇)
is .

This concept of continuity for lattices was introduced by Gierz et al in their
first edition of A Compendium of Continuous Lattices ( Springer-Verlag, 1980),
after Matheron’s book (1975). The basic novel concept in their work is to realize
that to every partial order R ( or ≤ ), one can associate another relation (not
reflexive), denoted as ¿ , called the ”way below” relation.

Specifically, on a complete lattice (L ,≤) , x is said to be way below y, denoted
as x ¿ y, if for directed set D ⊆ L , the relation y ≤ supD always implies ∃d ∈ D
such that x ≤ d.

With this associated ”way below” relation, the complete lattice (L ,≤) is said
to be continuous if it satisfies the following approximation property :

x = sup{u ∈ L : u ¿ x} for all x ∈ L.

One of the main results in ”The Compendium” is this. If (L ,≤) is a continuous
lattice, then there exists a canonical topology, called the Lawson topology, denoted
as λ(L), making L a compact and Hausdorff topological space. This topology is
generated by sets of the form (a subbase):

⇑ x = {y ∈ L : x ¿ y} or L\ ↑ x = {y ∈ L : x � y} for x ∈ L.

It turns out that our F(X), with appropriate order relation, is continuous (for
locally compact X) whose Lawson topology coincides with its hit-or-miss topology.
The additional property of second countability of X implies the same property for
the Lawson topology.

First, the lattice (F ,⊆) , for locally compact X, is not continuous . This can
be checked using the fact that : x ¿ y iff for any A ⊆ L , y ≤ sup A implies the
existence of some finite subset B ⊆ A such that x ≤ supB .

To see that, take X = R, we notice that if A ¿ R, then for any subset B
of A i.e B ⊆ A, we also have B ¿ R (just use the equivalent condition of the
way-below relation). Then any singleton closed set, e.g {0}, is not way-below R.
Indeed,

∨
n∈N

{(−∞,−1/n] ∪ [1/n,∞)} = R , but we can not find any finite subset

A of {(−∞,−1/n]∪ [1/n,∞)}n∈N such that {0} ⊆ ∨
A.Therefore, the only closed

set that is way-below R is the empty set. Then
sup{A ∈ F(R) : A ¿ R} = sup{∅} = ∅ 6= R.
However, (F ,⊇), with X locally compact, is a continuous lattice. For details

of proofs, see Nguyen and Tran (2007). If we examine its Lawson topology, we
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recognize that it is generated by the subbase consisting of sets of the form FG ,
FK , for K ∈ K and G ∈ G , so that it coincides with the hit-or-miss topology.

Thus, random closed sets on LCHS spaces are random elements when equip-
ing F with its Lawson topology. The upshot is this. When extending F(X) to
USC(X) , we should look at lattice structures of USC(X) in the search for a
”good” topology on it.

4. USC(X) as a continuous lattice.
Biased by our interests in modeling of perception-based data (in problems

such as ”social dynamics modeling”) which are expressed in natural languages
where meaning representation needs to be modeled, we consider the space USC(X)
of upper semicontinuous functions, defined on a LCHS space X, with values in
[0, 1]. The motivation is this. The mathematical model for fuzzy concepts in our
natural language is fuzzy set theory. Each fuzzy concept is characterized as a
membership function f : X → [0, 1] . These membership functions generalize
indicator functions of ordinary sets. Since indicator functions of closed sets are
usc, we are led to consider the whole space USC(X) .

The need to define rigorously random elements with values in USC(X) has
started way back in the mid 80’s . However, in one hand, there was no mentioned
of Matheron’s work on closed sets as a guidance for extension, and, on the other
hand, viewing USC(X) as a function space, the approach to topologize it followed
the same path in stochastic processes theory, namely searching directly for metrics,
like for C[0, 1], D[0, 1],see e.g. Billingsley (1968). As a result, the space USC(X)
has to be restricted to the subset of usc functions with compact support, see e.g.
Li et al (2002).

We are going to take a continuous lattice approach to this problem leading to
a more general and satisfactory theory of the so-called random fuzzy sets in the
field of Soft Computing. Specifically, with the Lawson topology on the continuous
lattice (USC(X),≥) , the space USC(X) is a compact, Hausdorff and second
countable (hence separably metrizable) topological space whose compatible metrics
can be identified concretely. Moreover, F(X) is embedded into USC(X) .

Remark. Recall that a fuzzy subset of X is a mapping f from X to the unit
interval [0, 1] . For such mappings to generalize closed sets, they have to be upper
semicontinuous (usc) so that their level-sets Aα(f) = {x ∈ X : f(x) ≥ α} ,
α ∈ [0, 1] , are closed. Thus, formally, by a random fuzzy set, we mean a fuzzy
subset whose membership function is usc. To be rigorous, we need to topologize
the space USC(X) (from now on we suppose functions takes values in [0, 1] ).

If f : X → [0, 1] , then f can be identified with the level-sets Aα(f) for
α ∈ Q1 = Q ∩ [0, 1] (rationals in [0, 1] ). Thus, the mapping ψ : USC(X) → Fα,
the countable cartesian product of identical copies Fα of F , sending f to (Aα(f)
,α ∈ Q1), is an embedding. Thus one hopes to induce a topology on USC(X)
from the product topology of Fα which is a compact and second countable space.
Unfortunately, the induced topology does not make USC(X) a compact space.
For a counter example, see Nguyen et al (2006).

First, like F(X) , with the pointwise order ≤ , USC(X) is a complete lattice
with
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∧
j∈J

fj = inf
j∈J

fj , where f ≤ g means ∇x ∈ X , f(x) ≤ g(x)

Now, noting that the function 1 : X → [0, 1] : x → 1 is usc. As a result,
(USC(X),≤) is a ∧− semilattice with a top (1), hence it is a complete lattice,

where

for any A ⊆ USC(X), ∨A = ∧{g ∈ USC(X) : g is an upper bound of
A} = ∧{g ∈ USC(X) : g ≥ f for some f ∈ A}

Again, with this order, (USC(X),≤) is not continuous. And, as expected,
the reverse order lattice (USC(X),≥) is continuous. Its Lawson topology has a
subbase consisting of sets of the form

{f : f(y) < r, ∀y ∈ K} , for r ∈ (0, 1] and K (compact) ⊆ X

together with

{f : ∃x ∈ X such that g(x) < f(x)}, where g ∈ USC(X).
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