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Abstract : In this paper, we propose the new forward backward splitting method
for solving variational inequality problem. The proposed method can be viewed
as an extension of the extragradient method by additional projection step at each
iteration under the relaxed condition that the mapping is pseudomonotone. The
convergence of the proposed method has been proved. Moreover, to show the
effectiveness of the proposed method the numerical experiments are performed.
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1 Introduction

Over the past decades, researchers have developed a variety of efficient algo-
rithms for solving variational inequality problem (VI):

Find a vector x∗ ∈ Ω such that (x− x∗)TF (x∗) ≥ 0, ∀x ∈ Ω, (1.1)

where Ω is assumed to be a nonempty closed convex subset of Rn and F is assumed
to be a mapping fromRn into itself. Denote VI(F,Ω) is the solution set of (1.1).
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The projection method, proposed by Goldstein-Levitin-Polyak [1, 2], is the
basic solution algorithm for solving VI due to its simple implementation. This
method begin with any starting point, then generates a new point as follows:

xk+1 = PΩ[xk − βkF (xk)],

where PΩ(·) is the projection from Rn onto Ω. Under the assumptions that the
mapping F is strongly monotone and Lipschitz continuous, the convergence of the
projection method can be guaranteed. In fact, it may not be easy to estimate the
strongly monotone modulus and the Lipschitz constant of the mapping F . This
stringent condition causes researchers to develop methods by reducing these condi-
tions. Soon thereafter, Korpelevich [3] proposed the extra gradient method, which
get rid of the strong monotonicity of the mapping. The iteration are generated by
the following:

x̄ = PΩ[xk − βkF (xk)],

xk+1 = PΩ[xk − βkF (x)].

The sequence {xk} converges to a solution of VI, when the mapping F is monotone
and Lipschitz continuous, and 0 < βk < 1/L.

Recently, many researchers have proposed various new approaches [4–9] for
solving VI. Most methods were invented to improve the efficiency by control the
step size parameters depend on some suitable principles. Furthermore, the Lips-
chitz constant were removed by using the line search technique.

The prediction correction method developed by He et al. [8] adopted the fol-
lowing iterative scheme:

xk+1 = PΩ[xk − γαkg(xk, βk)], 0 < γ < 2

where

e(xk, βk) = xk − PΩ[xk − βkF (xk)],

g(xk, βk) = e(xk, βk)− βk[F (xk)− F (x̄k)],

αk =
e(xk, βk)T g(xk, βk)

‖g(xk, βk)‖2
.

The convergence of this method can be guaranteed under the conditions that F is
monotone and βk is chosen suitably. On the other hand, Bnouhachem et al. [18]
introduced a new kind of extra gradient method by additional projection step at
each iteration which the convergence of this method can be guaranteed also by the
monotonicity of F (see also [17]).

Inspired by the research mentioned above, the new forward backward splitting
method are introduced. The convergent theorem for solving pseudomonotone vari-
ational inequality are proved and discuss in later section. Finally, some numerical
experiments are presented to show the efficiency of the new method.
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2 Preliminaries

In this section, some definitions and lemmas from the literature are presented
which are used throughout the paper. For convenience, we consider the projection
under the Euclidean norm.

Definition 2.1. [10]The mapping F : Rn → Rn is called α-strongly monotone if
there exists α > 0 such that

(x− y)T (F (x)− F (y)) ≥ α‖x− y‖2, ∀x, y ∈ Rn.

Definition 2.2. [10]The mapping F : Rn → Rn is called monotone if

(x− y)
T

(F (x)− F (y)) ≥ 0,∀x, y ∈ Rn.

Definition 2.3. [11]The mapping F : Rn → Rn is called pseudomonotone if

(x− y)
T
F (y) ≥ 0 ⇒ (x− y)

T
F (x) ≥ 0,∀x, y ∈ Rn.

Remark 2.4. The implications strongly monotone implies monotone and mono-
tone implies pseudomonotone are evident.

Example 2.5. Let K be a nonempty closed convex subset of R and F : K → R
be a single-valued mapping.

(1) If a mapping F is defined by F (x) = 1 − x and K = [0, 1]. Thus, we can
check that the mapping F is a pseudomonotone mapping, but not a monotone
mapping and a strongly monotone mapping.

(2) If a mapping F is defined by F (x) = c, where c is a constant and K = R.
We observe that the mapping F is monotone, but not strongly monotone mapping.

Definition 2.6. Let C be a nonempty subset of Rn, the distance from a point
x ∈ Rn to C is dC(x) = inf

y∈C
‖x− y‖. If C is also closed and convex, then for every

x ∈ Rn, there exists a unique point PC(x) ∈ C such that ‖x − PC(x)‖ = dC(x).
The point PC(x) is the projection of x onto C.

Lemma 2.7. [10] Let Ω be a closed convex subset of Rn. Then the following hold:
(1) (y − PΩ(y))T (x− PΩ(y)) ≤ 0, ∀y ∈ Rn and ∀x ∈ Ω,
(2) ‖PΩ(y)− x‖2 ≤ ‖y − x‖2 − ‖y − PΩ(y)‖2, ∀y ∈ Rn and ∀x ∈ Ω,
(3) ‖PΩ(y)− PΩ(x)‖2 ≤ (y − x)T (PΩ(y)− PΩ(x)), ∀y, x ∈ Rn.

Lemma 2.8. [12] Let Ω be a closed convex subset of Rn. Then x∗ is a solution of
VI(F,Ω) if and only if

x∗ = PΩ[x∗ − βF (x∗)],∀β > 0. (2.1)

From Lemma 2.8, we note that x ∈ VI(F,Ω) if and only if e(x, β) = 0 where

e(x, β) := x− PΩ[x− βF (x)], ∀β > 0. (2.2)

Generally, the term ‖e(x, 1)‖ is referred to as the error bound of VI(F,Ω).
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Lemma 2.9. [13] For any x ∈ Rn and β̃ ≥ β > 0, we have

‖e(x, β)‖ ≤ ‖e(x, β̃)‖, (2.3)

and

‖e(x, β)‖
β

≥ ‖e(x, β̃)‖
β̃

. (2.4)

3 New Forward Backward Splitting Method

In this section, we describe the proposed methods. The proposed methods
generate two predictors and evaluates F three times per iteration. We incorporate
the algorithm with an Armijo-like line search similar to [14] and [6] in which βk
should satisfy two criteria. We also choose βk with the same way in He et al. [8]
to make it a good starting step size for the next iteration. And then investigate
the strategy of how to choose the step size αk.

Remark 3.1. [8] The sequence βk is monotonically nonincreasing. However, this
may cause a slow convergence if

rk :=
βk‖(F (x̄k1)− F (x̄k2))‖

‖x̄k1 − x̄k2‖

is too small. In order to solve this problem, enlarging the step size β for the next
iteration is necessary. Therefore, in k + 1th iteration, we take

βk+1 =

{
2βk/m2, if 2rk ≤ m2;
βk, otherwise.

where m2 ∈ (0,
√

2) is a constant.

Algorithm3.1
Step 1 : Let x0 ∈ Ω, ε > 0, β0 = 1,m1 ∈ (0, 1),m2 ∈ (0,

√
2), γ ∈ (0, 2) and k = 0.

Step 2 : If ‖e(xk, 1)‖ ≤ ε, then stop. Otherwise, go to Step 3.
Step 3 : (1) For a given xk ∈ Ω, calculate

x̄k1 = PΩ[xk − βkF (xk)],

x̄k2 = PΩ[x̄k1 − βkF (x̄k1)].

(2) If ‖e(x̄k1 , 1)‖ ≤ ε, then stop. Otherwise, continue.
(3) If βk satisfies both

rk :=
‖βk(F (x̄k1)− F (x̄k2))‖

‖x̄k1 − x̄k2‖
≤ m1, (3.1)
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and

‖βk[(x̄k1 − x̄k2)T (F (xk)− F (x̄k1))− (xk − x̄k2)T (F (x̄k1)− F (x̄k2))]‖
‖x̄k1 − x̄k2‖2

≤ m2
2 (3.2)

then go to Step 4; otherwise, continue.
(4) Perform an Armijo-like line search via reducing βk

βk :=
3

4
∗ βk ∗min{1, m1

rk
},

and go to Step 3.
Step 4 : Take the new iteration xk+1(αk) by setting

xk+1(αk) = PΩ[xk − γαkg(x̄k1 , x̄
k
2)],

where

0 < γ < 2, g(x̄k1 , x̄
k
2) = (x̄k1 − x̄k2)− βk(F (x̄k1)− F (x̄k2)),

λ =
‖x̄k1 − x̄k2‖
‖F (xk)‖

, αk =
(xk − x̄k2)

T
g(x̄k1 , x̄

k
2)

‖g(x̄k1 , x̄
k
2) + λF (xk)‖2

.

Step 5: Choosing a suitable βk+1 for the next iteration (same as [8]).

βk+1 =

{
2βk/m2, if 2rk ≤ m2;
βk, otherwise.

Return to Step 2, with k replaced by k + 1.

Lemma 3.2. [17, 18] In the kth iteration, if ‖e(xk, 1)‖ ≥ ε, then the Armijo-like
line search procedure with Criterion (3.1) and (3.2) is finite.

Remark 3.3. It is a natural question that how to choose a suitable optimal αk is
an important issue. Criterion (3.2) only could ensure αk > 0. In order to obtain
a lower bound (away from zero) on αk, we need Criterion (3.1). We will discuss
these issues in this section.

For convenience of later analysis, we use the following notations:

ρ1 = (x̄k1 − x̄k2)
T
g(x̄k1 , x̄

k
2)

= ‖ x̄k1 − x̄k2‖
2 − βk(x̄k1 − x̄k2)

T
(F (x̄k1)− F (x̄k2)), (3.3)

and

ρ2 = (xk − x̄k1)
T
g(x̄k1 , x̄

k
2)

= (xk − x̄k1)
T

(x̄k1 − x̄k2)− βk(xk − x̄k1)
T

(F (x̄k1)− F (x̄k2)), (3.4)

then (xk − x̄k2)T g(x̄k1 , x̄
k
2) = ρ1 + ρ2.

Now, in order to prove the fact that αk is bounded away from zero, we need
the next lemma.
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Lemma 3.4. Let xk ∈ Ω, x̄k1 = PΩ[xk − βkF (xk)] and x̄k2 = PΩ[x̄k1 − βkF (x̄k1)],
then

ρ2 ≥ ‖x̄k1 − x̄k2‖2 + βk[(x̄k1 − x̄k2)
T

(F (xk)− F (x̄k1))

−(xk − x̄k1)
T

(F (x̄k1)− F (x̄k2))]. (3.5)

Proof. Since x̄k1 = PΩ[xk−βkF (xk)], x̄k2 = PΩ[x̄k1−βkF (x̄k1)], we can apply Lemma
2.7, with y = xk − βkF (xk) and x = x̄k1 − βkF (x̄k1), we obtain that

(xk − βkF (xk)− (x̄k1 − βkF (x̄k1)))
T

(x̄k1 − x̄k2) ≥ ‖x̄k1 − x̄k2‖2.

By some manipulations, we have

(xk − x̄k1)
T

(x̄k1 − x̄k2) ≥ ‖x̄k1 − x̄k2‖2 + βk(x̄k1 − x̄k2)
T

(F (xk)− F (x̄k1)). (3.6)

Using (3.6) and the definition of ρ2, we obtain that

ρ2 ≥‖ x̄k1 − x̄k2‖
2

+ βk[(x̄k1 − x̄k2)
T

(F (xk)− F (x̄k1))− (xk − x̄k1)
T

(F (x̄k1)− F (x̄k2))]

as claimed.

Lemma 3.5. Let x̄k1 = PΩ[xk − βkF (xk)], x̄k2 = PΩ[x̄k1 − βkF (x̄k1)] and

αk =
(xk − x̄k2)

T
g(x̄k1 , x̄

k
2)

‖g(x̄k1 , x̄
k
2) + λF (xk)‖2

.

Then αk is bounded away from zero.

Proof. Applying the Lemma 3.4 and Criterion (3.2), we have

ρ1 + ρ2 ≥ ‖x̄k1 − x̄k2‖2 − βk(x̄k1 − x̄k2)
T

(F (x̄k1)− F (x̄k2)) + ‖x̄k1 − x̄k2‖2

+βk[(x̄k1 − x̄k2)
T

(F (xk)− F (x̄k1))− (xk − x̄k1)
T

(F (x̄k1)− F (x̄k2))]

= 2‖x̄k1 − x̄k2‖2 + βk[(x̄k1 − x̄k2)
T

(F (xk)

−F (x̄k1))− (xk − x̄k2)
T

(F (x̄k1)− F (x̄k2))]

≥ 2‖x̄k1 − x̄k2‖2 −m2
2‖x̄k1 − x̄k2‖2 = (2−m2

2)‖x̄k1 − x̄k2‖2. (3.7)

Recalling the definition of g(x̄k1 , x̄
k
2) = (x̄k1− x̄k2)−βk(F (x̄k1)−F (x̄k2)) and applying

Criterion (3.1), we get that

‖g(x̄k1 , x̄
k
2) + λF (xk)‖2 ≤ (‖x̄k1 − x̄k2‖+ ‖βk(F (x̄k1)− F (x̄k2))‖+ ‖λF (xk)‖)2

≤ ((1 +m1)‖x̄k1 − x̄k2‖+ ‖x̄k1 − x̄k2‖)
2

= (2 +m1)
2‖x̄k1 − x̄k2‖2. (3.8)

Moreover, by using (3.7) together with (3.8), we get that

αk =
ρ1 + ρ2

‖g(x̄k1 , x̄
k
2) + λF (xk)‖2

≥ 2−m2
2

(2 +m1)2
> 0 where m2 ∈ (0,

√
2). (3.9)

The proof is complete.



New Forward Backward Splitting Methods for Solving Pseudomonotone ... 495

4 Main Results

The aim of this section is to show the convergence result of proposed method.

Theorem 4.1. The sequence {xk+1(αk)} generated by Algorithm 3.1 is bounded.

Proof. Since

(x− x∗)TF (x∗) ≥ 0,∀x ∈ Ω where x∗ ∈ VI(F,Ω),

and

x̄k2 = PΩ[x̄k1 − βkF (x̄k1)] ∈ Ω,

we obtain

(x̄k2 − x∗)
T
F (x∗) ≥ 0.

By pseudomonotonicity of F , i.e;

(x− y)
T
F (y) ≥ 0 implies (x− y)

T
F (x) ≥ 0, ∀x, y ∈ Ω,

we get that

(x̄k2 − x∗)
T
F (x̄k2) ≥ 0.

Then

βk(x̄k2 − x∗)
T
F (x̄k2) ≥ 0.

Since

x̄k1 − βkF (x̄k1) ∈ Rn and x∗ ∈ Ω.

By Lemma 2.7(1), i.e;

(y − PΩ(y))
T

(x− PΩ(y)) ≤ 0, ∀x ∈ Ω, y ∈ Rn,

we get that

(x̄k2 − x∗)
T

(x̄k1 − x̄k2 − βkF (x̄k1)) ≥ 0.

Thus

(x̄k2 − x∗)
T

(x̄k1 − x̄k2 − βkF (x̄k1) + βkF (x̄k2)) ≥ 0.

And then

(x̄k2 − xk + xk − x∗)T g(x̄k1 , x̄
k
2) ≥ 0.
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This implies that

(xk − x∗)T g(x̄k1 , x̄
k
2) ≥ (xk − x̄k2)

T
g(x̄k1 , x̄

k
2). (4.1)

By Lemma 2.7(2), i.e;

‖x− PΩ(y)‖2 ≤ ‖x− y‖2 − ‖y − PΩ(y)‖2, ∀y ∈ Rn,∀x ∈ Ω,

and

xk+1(αk) := PΩ[xk − αkg(x̄k1 , x̄
k
2)].

Since xk − αkg(x̄k1 , x̄
k
2) ∈ Rn and x∗ ∈ Ω, we obtain

‖x∗−xk+1(αk)‖2 ≤ ‖x∗−(xk−αkg(x̄k1 , x̄
k
2)‖2−‖(xk−αkg(x̄k1 , x̄

k
2))−xk+1(αk)‖2

= ‖αkg(x̄k1 , x̄
k
2)−(xk−x∗)‖2−‖(xk−xk+1(αk))−αkg(x̄k1 , x̄

k
2)‖2

= ‖αkg(x̄k1 , x̄
k
2)‖2 − 2αk(xk − x∗)T g(x̄k1 , x̄

k
2) + ‖xk − x∗‖2

−(‖xk − xk+1(αk)‖2 − 2αk(xk − xk+1(αk))
T
g(x̄k1 , x̄

k
2)

+‖αkg(x̄k1 , x̄
k
2)‖2)

= ‖xk − x∗‖2 − ‖xk − xk+1(αk)‖2 − 2αk(xk − x∗)T g(x̄k1 , x̄
k
2)

+2αk(xk − xk+1(αk))
T
g(x̄k1 , x̄

k
2)

≤ ‖xk − x∗‖2 − ‖xk − xk+1(αk)‖2 − 2αk(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)

+2αk(xk−xk+1(αk))
T
g(x̄k1 , x̄

k
2). (4.2)

The second inequality follow directly from (4.1).

Denote that θ(αk) :=‖ xk − x∗‖2− ‖ xk+1(αk)− x∗‖2, we have

θ(αk) = ‖xk − x∗‖2 − ‖xk+1(αk)− x∗‖2

≥ ‖xk−xk+1(αk)‖2+2αk(xk−x̄k2)
T
g(x̄k1 , x̄

k
2)−2αk(xk−xk+1(αk))

T
g(x̄k1 , x̄

k
2)

= 2αk(xk−x̄k2)
T
g(x̄k1 , x̄

k
2)+‖(xk−xk+1(αk))−g(x̄k1 , x̄

k
2)‖2−‖αkg(x̄k1 , x̄

k
2)‖2

≥ 2αk(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)− α2

k‖g(x̄k1 , x̄
k
2)‖2. (4.3)

The right-hand side is a quadratic function of αk and its maximum can be obtained
at

α∗k =
(xk − x̄k2)

T
g(x̄k1 , x̄

k
2)

‖g(x̄k1 , x̄
k
2)‖2

. (4.4)

Let γ ∈ (0, 2) be a relaxation factor and αk = γα∗k, it follows that

θ(γα∗k) ≥ 2γα∗k(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)− γ2α∗2k ‖g(x̄k1 , x̄

k
2)‖2

= γα∗k(2(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)− γα∗k‖g(x̄k1 , x̄

k
2)‖2)

= γα∗k(2(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)− γα∗k

(xk − x̄k2)
T
g(x̄k1 , x̄

k
2)

α∗k
)

= γα∗k(2− γ)(xk − x̄k2)
T
g(x̄k1 , x̄

k
2). (4.5)



New Forward Backward Splitting Methods for Solving Pseudomonotone ... 497

By (3.7) and (3.9), we obtain

α∗k(xk − x̄k2)
T
g(x̄k1 , x̄

k
2) ≥ (2−m2

2)
2

(2 +m1)
2 ‖x̄

k
1 − x̄k2‖2. (4.6)

By (4.5) and (4.6), we have

θ(γα∗k) ≥ γ(2− γ)
(2−m2

2)
2

(2 +m1)
2 ‖x̄

k
1 − x̄k2‖2.

This implies that

‖xk − x∗‖2− ‖ xk+1(γα∗k)− x∗‖2 ≥ γ(2− γ)
(2−m2

2)
2

(2 +m1)
2 ‖x̄

k
1 − x̄k2‖2.

Thus

‖xk+1(γα∗k)− x∗‖2 ≤ ‖xk − x∗‖2 − γ(2− γ)
(2−m2

2)
2

(2 +m1)
2 ‖x̄

k
1 − x̄k2‖2. (4.7)

According to (4.7),it follows that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ ≤ · · · ≤ ‖x0 − x∗‖.

It is clear that the sequence {xk} ⊂ Rn generated by Algorithm 3.1 is bounded.
The proof is completed.

Theorem 4.2. Suppose that the solution set of VI(F,Ω) is nonempty. Then
the sequence {x̄k1} ⊂ Rn generated by Algorithm 3.1 converges to a solution of
VI(F,Ω).

Proof. Let x∗ be a solution of VI(F,Ω). First, it follows from (4.7) that

∞∑
k=0

γ(2− γ)(2−m2
2)2

(2 +m1)2
‖x̄k1 − x̄k2‖2 ≤ ‖x0 − x∗‖2 < +∞,

which means that

lim
k→∞

‖x̄k1 − x̄k2‖2 = 0.

According to Theorem 4.1, the sequence {xk} is bounded. Consequently, {x̄k1} is
also bounded. Thus, it has at least one cluster point. Assume that x∗ is a cluster

point of {x̄k1}. Then there exists a subsequence {x̄kj

1 } that converges to x∗. It
follows from the continuity of e and (2.3) that

‖e(x∗, β)‖ = lim
kj→∞

‖e(x̄kj

1 , β)‖ ≤ lim
kj→∞

‖e(x̄kj

1 , βkj
)‖ = lim

kj→∞
‖x̄kj

1 − x̄
kj

2 ‖ = 0.
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Therefore, x∗ is a solution of VI(F,Ω). In the following, we prove the sequence
{x̄k1} has exactly one cluster point. Assume that x̄ is another cluster point, and
denote δ := ‖x̄− x∗‖ > 0. Since x∗ and x̄ are cluster point of the sequence {x̄k1},
there is a k1 ∈ N such that

‖x̄k1 − x∗‖ ≤
δ

2
, ∀k ≥ k1,

and there is a k2 ∈ N such that

‖x̄k1 − x̄‖ ≤
δ

2
, ∀k ≥ k2,

and choose k0 = max{k1, k2}. On the other hand, since x∗ ∈ VI(F,Ω), thus

‖x̄k1 − x∗‖ ≤ ‖x̄
k0
1 − x∗‖, ∀k ≥ k0,

It follows that

‖x̄k1 − x̄‖ ≥ ‖x̄− x∗‖ − ‖x̄
k0
1 − x∗‖ ≥

δ

2
, ∀k ≥ k0,

This contradicts with x̄ is a cluster point, thus the sequence {x̄k1} converges to
x∗ ∈ VI(F,Ω).

5 Numercal Experiments

In this section, we use two exanples in [5] and [15] to show the efficiency of
the proposed new algorithm. All codes are written in Matlab 7.12 and run on a
desktop computer(CPU:Intel Pentium 4 3.00 GHz, Memory:1.00 GB).

Two examples of the complementarity problem are adopted in this paper:

x ≥ 0, F (x) ≥ 0, xTF (x) = 0

where F (x) = Mx+ q.
Example1

M =



1 2 · · · · · · 2

0 1 2 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 2
0 · · · · · · 0 1


, q = (−1,−1, · · · ,−1)

T
.

Example2

M =



1 2 2 · · · 2
2 5 6 · · · 6

2 6 9
. . . 10

...
...

...
. . .

...
2 6 10 · · · 4(n− 1) + 1

 , q = (−1,−1, · · · ,−1)
T
.
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In our test, we take Ω = Rn
++, β = 1,m1 = 0.9,m2 = 0.3, γ = 1.8 and the

stop as soon as ‖e(xk, 1)‖ ≤ 10−7. We denote compare the method generated
by Algorithm 3.1 with the method proposed by He et al. [8].The test results for
Example 1 are reported in Tables 1 and 2 and the test results for Example 2 are
reported in Tables 3 and 4. It num is the number of iterations and CPU(second)
is computation time.

Table1
Example 1: Numerical results for starting point x0 = (1, 0, 1, 0, )T

method in [8] Algorithm 3.1
dimension N it num cpu it num cpu

100 1030 0.42 187 0.15
200 2111 0.84 266 0.32
300 3194 2.12 328 0.53
400 4277 7.84 374 1.34
500 5360 13.53 429 2.01
1000 - - 606 7.65
1500 - - 745 19.95

”− ” represents that the CPU time is longer than 100 s.

Table2
Example 1: Numerical results for starting point x0 = (2, 2, 2, )T

method in [8] Algorithm 3.1
dimension N it num cpu it num cpu

100 1516 0.48 186 0.20
200 3048 1.57 262 0.25
300 4579 3.25 319 0.39
400 6111 11.01 370 1.26
500 7643 19.57 413 1.92
1000 - - 577 7.25
1500 - - 710 19.45

”− ” represents that the CPU time is longer than 100 s.

Table3
Example 2: Numerical results for starting point x0 = (1, 1, 1, )T

method in [8] Algorithm 3.1
dimension N it num cpu it num cpu

10 2377 0.62 56 0.10
50 59835 17.31 132 0.12
100 - - 194 0.15
200 - - 281 0.32
500 - - 452 1.84
1000 - - 631 8.32

”− ” represents that the CPU time is longer than 100 s.
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Table4
Example 2: Numerical results for starting point x0 = (2, 2, 2, )T

method in [8] Algorithm 3.1
dimension N it num cpu it num cpu

10 2435 0.64 50 0.01
50 61361 16.03 137 0.05
100 245504 80.87 197 0.09
200 - - 284 0.18
500 - - 461 1.90
1000 - - 641 7.93

”− ” represents that the CPU time is longer than 100 s.

The numerical results show that the method generated by Algorithm 3.1 is
more effective than the method presented in [8], which can achieve the solution
with fewer iteration and time.

Next, the example of mapping F which is not monotone but is pseudomonotone
(see [16]). Thus, our algorithm can apply to solve the problem but the algorithm
in [8] can not.

Example3

F (x) =


x1 + x2 + x3 + x4 − 4x2x3x4

x1 + x2 + x3 + x4 − 4x1x3x4

x1 + x2 + x3 + x4 − 4x1x2x4

x1 + x2 + x3 + x4 − 4x1x2x3

 and Ω = {x ∈ R4 : 1 ≤ xi ≤ 5, i =

1, . . . , 4}. The problem has only one solution x∗ = (5, 5, 5, 5)T .
The initial point is generated randomly. And because of the dimension of

this problem is very small, the calculation is too fast, so it is not appropriate to
compare performance of the methods by time. We compare the average of number
of iterations for each method by calculating 500 times, then estimate the average
of It num for each method. The test result for example 3 has been shown in the
table below.

Table5
Example 3: Numerical results for a random start point in [−10, 10]4

method in [8] Algorithm 3.1
Average it num NAN 12

”NAN” represents that the It num is endless calculation.

6 Conclusions

We have proposed modified iterative algorithm for finding the solution of the
variational inequality problems by using hybrid projection method which is gen-
eralization of the method in [8]. The convergence of the proposed algorithm is
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obtained by using weaker condition of monotonicity of the mapping and the nu-
merical result of the hybrid iterative algorithm is also effective than the algorithm
in [8].
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