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1 Introduction

Fractional derivatives have a long mathematical history (Since 1695 by Ho-
pital [1]), but for numerous reasons were not used in sciences for many years,
for example, the various definitions of the fractional derivative [2] and have no
exact geometrical interpretation [3]. However, in recent decades, many physi-
cists and mathematicians have been many works on this subject and have found
many uses for them. For example, the nonlinear oscillation of earthquake [4], the
fluid-dynamic models with fractional derivatives [5–7] can eliminate the deficiency
arising from the assumption of continuum traffic flow, and differential equations
with fractional order have recently proved to be valuable tools for the modeling
of many physical phenomena [8]. A review of some definition and applications of
fractional derivatives is given in [9] and [10]. The analytical results on the exis-
tence and uniqueness of solutions to the fractional differential equations have been
investigated by many authors [2, 11]. During the last decades, several methods
have been used to solve fractional ordinary/partial/integro-differential differential
equations, such as Adomian’s decomposition method [12,13], fractional-order Leg-
endre functions [14], fractional-order Chebyshev functions of the second kind [15],
Homotopy analysis method [16, 17], Bessel functions and Spectral methods [18],
Legendre and Bernstein polynomials [19], and other methods [20–23].

The aim of the paper is to present a numerical method (GFCF Galerkin (Tau)
method) for approximating the solution of a nonlinear integro- differential equation
of the multi-arbitrary order and the second kind:

N1∑
j=1

µjD
αjy(x) +

N2∑
l=1

λl

∫ η

0

kl(x, t)[y(t)]qldt = g(x), 0 6 x < η, (1.1)

with these supplementary conditions:

y(i)(x0) = yi, i = 0, 1, ..., r − 1, s.t. r = dmax{αj}e, (1.2)

where η, αj are positive real numbers; g ∈ L2([0, η)), kl ∈ L2([0, η)2) are known
functions; y(x) is the unknown function; Dαj are the Caputo fractional differenti-
ation operators; µj , λl are real numbers; and q, N1, N2 are positive integers.

The rest of the paper is structured as follows: in section 2, some basic defi-
nitions and theorems of fractional calculus is expressed. In section 3, the GFCFs
and their properties is expressed. Section 4 is devoted to applying the GFCFs
operational matrices to obtain the solution of differential equations. In Section 5,
the work method is explained. Applications of the proposed method are shown in
section 6. Finally, a conclusion is provided.

2 Basical Definitions

In this section, we expressed some basic definitions and properties of fractional
calculus which are further used in the paper [24].
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Definition 2.1. For any real function f(t), t > 0, if there exists a real number
p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), is said to be in space Cµ,
µ ∈ R, and it is in the space Cnµ if and only if f (n) ∈ Cµ, n ∈ N .

Definition 2.2. The fractional derivative of f(t) in the Caputo sense by the
Riemann-Liouville fractional integral operator of order α > 0 is defined as

Dαf(t) =
1

Γ(m− α)

∫ t

0

(t− s)m−α−1Dmf(s)ds, α > 0,

for m− 1 < α 6 m, m ∈ N, t > 0 and f ∈ Cm−1.

Some properties of the operator Dα are as follows:

(i) DαC = 0,

(ii) Dαtγ =


0 γ ∈ N0 and γ < α,

Γ(γ+1)
Γ(γ−α+1) t

γ−α, Otherwise.
(2.1)

(iii) Dα(

n∑
i=1

cifi(t)) =

n∑
i=1

ciD
αfi(t), where ci ∈ R. (2.2)

where f ∈ Cµ, µ ≥ −1, α, β ≥ 0, γ ≥ −1, N0 = {0, 1, 2, ...}, and ci and C are
constant.

Definition 2.3. Suppose that f(t) ∈ C(0, η] and w(t) is a weight function, then

‖ f(t) ‖2w =

∫ η

0

f2(t)w(t)dt.

3 Generalized Fractional Order of the Chebyshev
Functions (GFCF)

The Chebyshev polynomials have many properties, for example recursively,
orthogonality, simple real zeros, complete for the space of polynomials. For these
reasons, many authors have used these functions in their works [25–28].

Some researchers by using some transformations extended Chebyshev polyno-
mials to infinite or semi-infinite domains. For example, by x = t−L

t+L , L > 0 the

rational Chebyshev functions on semi-infinite domain [29–31], by x = t√
t2+L

, L > 0

the rational Chebyshev functions on infinite domain [32], and by x = 1 − 2( tη )α,

α, η > 0 the generalized fractional order of the Chebyshev functions (GFCF) [33]
are introduced.

Darani and Nasiri in [15] have introduced the fractional-order Chebyshev func-
tions of the second kind, then just constructed the derivative operational matrix
for them and used it for solving linear fractional differential equations.
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In the present work, we use the transformation x = 1− 2( tη )α, α, η > 0 on the

Chebyshev polynomials of the first kind, that was introduced in [33], and can use
them to solve the nonlinear integro- differential equations of multi-arbitrary order.

The GFCFs are defined on interval [0, η], denoted by ηFT
α
n (t) = Tn(1−2( tη )α),

and have the analytical form as follows [33]:

ηFT
α
n (t) =

n∑
k=0

βn,k,η,α.t
αk, t ∈ [0, η], (3.1)

where

βn,k,η,α = (−1)k
n22k(n+ k − 1)!

(n− k)!(2k)!ηαk
and β0,k,η,α = 1.

The GFCFs with w(t) = t
α
2

−1
√
ηα−tα are orthogonal on the interval (0, η):∫ η

0
ηFT

α
n (t) ηFT

α
m(t)w(t)dt =

π

2α
cnδmn, (3.2)

where δmn is the Kronecker delta function, c0 = 2, and cn = 1 for n ≥ 1.
Any function y(t) ∈ C[0, η] can be expanded as [34]:

y(t) =

∞∑
n=0

an ηFT
α
n (t),

and using the property of orthogonality in the GFCFs:

an =
2α

πcn

∫ η

0
ηFT

α
n (t)y(t)w(t)dt, n = 0, 1, 2, · · · ,

but in the numerical methods, we have to use first m-terms of the GFCFs and
approximate y(t):

y(t) ≈ ym(t) =

m−1∑
n=0

an ηFT
α
n (t) = ATΦ(t), (3.3)

where

A = [a0, a1, ..., am−1]T , (3.4)

Φ(t) = [ ηFT
α
0 (t), ηFT

α
1 (t), ..., ηFT

α
m−1(t)]T . (3.5)

The following theorem shows that by increasing m, the approximation solution
fm(t) is convergent to f(t) exponentially.

Theorem 3.1. Suppose that Dkαf(t) ∈ C[0, η] for k = 0, 1, ...,m, and ηF
α
m is the

generated subspace by {ηFTα0 (t),η FT
α
1 (t), · · · ,η FTαm−1(t)}. If fm(t) = ATΦ(t)

(Eq. (3.3)) is the best approximation to f(t) from ηF
α
m, then the error bound is:

‖ f(t)− fm(t) ‖w≤
ηmαMα

2mΓ(mα+ 1)

√
π

α m!
,

where Mα ≥ |Dmαf(t)|, t ∈ [0, η].
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Proof. See Ref. [33].

4 Operational Matrices of the GFCFs

In this section, operational matrices the fractional derivative and the product
for the GFCFs are constructed, these matrices can be used to solve the linear and
nonlinear differential equations of arbitrary order.

4.1 The Fractional Derivative Operational Matrix of the
GFCFs

The α-order Caputo fractional derivative operator of the vector Φ(t) in Eq.
(3.5) can be expressed by

DαΦ(t) = D(α)Φ(t). (4.1)

In the following theorem, the operational matrix of fractional derivatives of
the GFCFs is generalized.

Theorem 4.1. Let Φ(t) be the GFCFs vector in Eq. (3.5) and D(α) be the m×m
fractional derivative operational matrix of the α-order Caputo fractional deriva-
tives as follows:

DαΦ(t) = D(α)Φ(t). (4.2)

where

D
(α)
i,j =


2√
πcj

∑i
k=1

∑j
s=0 βi,k,η,αβj,s,η,α

Γ(αk+1)Γ(s+k− 1
2 )ηα(k+s−1)

Γ(αk−α+1)Γ(s+k) , i > j

0 otherwise
(4.3)

for i, j = 0, 1, ...,m− 1.

Proof. See Ref. [33].

4.2 The Product Operational Matrix of the GFCFs

The following property of the product of two GFCFs vectors will also be ap-
plied:

Φ(t)Φ(t)TA ≈ ÂΦ(t), (4.4)

where Â is the m×m product operational matrix for the vector A = {ai}m−1
i=0 .

Theorem 4.2. Let Φ(t) be the GFCFs vector in Eq. (3.5) and A is a vector,

then the elements of Â, that is an m×m product operational matrix for the vector
A = {ai}m−1

i=0 , are obtained as

Φ(t)Φ(t)TA ≈ ÂΦ(t), (4.5)
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where

Âij =

m−1∑
k=0

akĝijk, (4.6)

and

ĝijk =


ck
2cj

i 6= 0 and j 6= 0 and (k = i+ j or k = |i− j|)
ck
cj

(j = 0 and k = i) or (i = 0 and k = j)

0 otherwise.

Proof. See Ref. [33].

4.3 The Dual Operational Matrix of the GFCFs

The dual operational matrix of Φ(t) is defined as follows:

B =

∫ η

0

Φ(t)ΦT (t)dt. (4.7)

Now, the dual operational matrix of the GFCFs is generalized.

Theorem 4.3. Let Φ(t) be the GFCFs vector in Eq. (3.5) and B be the m ×m
dual operational matrix, then for i, j = 0, 1, ...,m− 1:

Bi,j =

i∑
k=0

j∑
s=0

βi,k,η,αβj,s,η,α
ηα(k+s)+1

α(k + s) + 1
. (4.8)

Proof. Using Eq. (3.1), we can write

Bi,j =

∫ η

0

φi(t)φj(t)dt

=

∫ η

0

i∑
k=0

βi,k,η,αt
αk

j∑
s=0

βj,s,η,αt
αsdt

=

i∑
k=0

j∑
s=0

βi,k,η,αβj,s,η,α

∫ η

0

tα(k+s)dt,

by integration of above equation, the theorem can be proved.

Remark: Notice that the fractional derivative operational matrix of the GFCFs
is a lower-triangular matrix that at least 50(1 + 1

m )% of their elements are zero,
the elements of the product operational matrix of the GFCFs are independent of
values of α and η, and the dual operational matrix is symmetric.
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5 Application of the Method

Consider Eq. (1.1), by previous section the two variable functions kl(x, t) ∈
L2([0, 1))2 can be approximated as:

kl(x, t) ≈
m−1∑
i=0

m−1∑
j=0

kl,i,jφ(x)φ(t),

or in the matrix form:

kl(x, t) ≈ ΦT (x)KlΦ(t), (5.1)

where Kl = [kl,i,j ] and also can be written:

y(x) ≈
m−1∑
n=0

anFT
α
n (x) = ATΦ(x), (5.2)

Dαy(x) ≈
m−1∑
n=0

anD
αFTαn (x) = ATD(α)Φ(x), (5.3)

g(x) ≈
m−1∑
n=0

gnFT
α
n (x) = GTΦ(x). (5.4)

and also we have

[y(x)]2 ≈ AT ÂΦ(x),

that it is easy to show by induction:

[y(x)]ql ≈ AT (Â)ql−1Φ(x) = ΦT (x)((Â)ql−1)TA, ql = 1, 2, 3, · · · . (5.5)

where Â is the product operational matrix in Eq. (4.4).
Using the above equations, we have:∫ 1

0

kl(x, t)[y(t)]qldt =

∫ 1

0

ΦT (x)KlΦ(t)ΦT (t)(Â
ql−1

)TAdt

= ΦT (x)Kl

(∫ 1

0

Φ(t)ΦT (t)dt

)
(Â

ql−1
)TA

= ΦT (x)KlB(Â
ql−1

)TA

= AT (Â)ql−1BTKT
l Φ(x), (5.6)

where B is the dual operational matrix in Eq. (4.7).
By substituting the above approximations into Eq. (1.1), we obtain:

N1∑
j=1

µjA
TD(αj)Φ(x) +

N2∑
l=1

λlA
T (Â)ql−1BTKT

l Φ(x) = GTΦ(x), (5.7)
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now, by multiplying two sides of Eq. (5.7) in ΦT (x) then integration in the interval
[0, η], according to orthogonal of the GFCFs we get (Galerkin method):

AT

 N1∑
j=1

µjD
(αj) +

N2∑
l=1

λl(Â)ql−1BTKT
l

 = GT , (5.8)

which is a linear or nonlinear system of algebraic equations. By solving this system,
we can obtain the approximate solution of Eq. (1.1) according to Eq. (5.2).

We define the residual function as follows:

Res(x) = AT

 N1∑
j=1

µjD
(αj) +

N2∑
l=1

λl(Â)ql−1BTKT
l

Φ(x)−GTΦ(x).

In the Galerkin (Tau) method that is derived from the weighted residual
method, the test functions are chosen the same trail functions. Then, the in-
ner product of the residual function and the test functions is set equal to zero,
i.e. 〈Res(x), φn(x)〉 = 0, n = 0, · · · ,m− 1, and algebraic equations obtain for the
calculation of the coefficient of an.

Furthermore, the computations in this paper have been done by Maple 18.

6 Illustrative Examples

In this section, by using the present method we solve some well-known ex-
amples of multi-arbitrary order to show efficiently and applicability the GFCFs
Galerkin method based on the Spectral method. Their outputs are compared with
the corresponding analytical solution.

Example 6.1. Consider the following fractional nonlinear integro- differential
equation [35,36]:

Dαy(x)−
∫ 1

0

xty2(t)dt = 1− x

4
, 0 6 x < 1, 0 < α 6 1

y(0) = 0.

The exact solution of this problem for α = 1 is y(x) = x. By applying the
technique described in last section, the equation is obtained as

AT [D(α) − ÂBTKT ]Φ(x) = GTΦ(x),

where D(α), Â, BT , KT and GT are obtained from Eqs. (4.2), (4.4), (4.7), (5.1)
and (5.4), respectively. Using the above equations and Galerkin method, m − 1
algebraic equations can be generated as

AT [D(α) − ÂBTKT ] = GT . (6.1)
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Also, for y(0) = 0, one has

ATΦ(0) = 0. (6.2)

The Eqs. (6.1) and (6.2) generate a set of nonlinear algebraic equations.

Fig. 1(a) shows the numerical results for the values various of 0 < α 6 1. The
comparisons show that as α → 1, the approximate solutions tend to y(x) = x,
which is the exact solution of the equation in the case of α = 1. The residual
errors in this cases are shown in Fig. 1(b). Table 1 shows the obtained values of
y(x) by the present method with various values α. We define the residual error as
follows

Res(x) = ATD(α)Φ(x)−
∫ 1

0

xty2
m(t)dt− (1− x

4
)

Table 1: Obtained values of y(x) by the present method with various values
α for Example 6.1

x α = 0.25, m = 13 α = 0.50, m = 7 α = 1.00, m = 4

y(x) Res(x) y(x) Res(x) y(x) Abs. Err.

0.1 0.658062583965183 5.4e-100 0.364522952461285 6.3e-101 0.10000 9.37e-104
0.2 0.827349212023551 7.9e-100 0.526400101930032 1.9e-100 0.20000 3.75e-103
0.3 0.965165762796598 1.02e-99 0.658039376089674 3.0e-100 0.30000 8.43e-103
0.4 1.090386646323213 1.25e-99 0.775234680306955 4.2e-100 0.40000 1.50e-102
0.5 1.209246980182119 1.46e-99 0.883952262100326 5.4e-100 0.50000 2.34e-102
0.6 1.324569576356220 1.68e-99 0.987177676009430 6.5e-100 0.60000 3.37e-102
0.7 1.437856268459510 1.89e-99 1.086641092417285 7.6e-100 0.70000 4.59e-102
0.8 1.549989720809763 2.09e-99 1.183441789016069 8.7e-100 0.80000 6.00e-102
0.9 1.661524824469015 2.29e-99 1.278323958921395 9.8e-100 0.90000 7.59e-102
1.0 1.772827573935424 2.50e-99 1.371815388009805 1.10e-99 1.00000 9.37e-102

(a) The approximate solutions (b) The residual error functions

Figure 1: The approximate solutions and the residual error functions for
Example 6.1 with various values α
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Example 6.2. Next, we consider the following fractional nonlinear integro-
differential equation [35]:

D
1
2 y(x)−

∫ 1

0
xty4(t)dt = g(x), 0 6 x < 1,

y(0) = 0.

where g(x) = 1
Γ(1/2)(8

3

√
x3 − 2

√
x)− x

1260 . The exact solution of this prob-

lem is y(x) = x2 − x.

By applying the technique described in the last section, the equation is
obtained as

AT [D( 1
2

) − Â
3
BTKT ] = GT , (6.3)

ATΦ(0) = 0,

The absolute and residual errors and the approximate solution with
m = 20 are displayed in Fig. 2, we can see that the approximate solution
is in a good agreement with the exact solution. Table 2 shows the absolute
and residual errors with m = 20.

Table 2: The absolute and residual errors with m = 20, α = 0.50 for
Example 6.2

x absolute error residual error

0.1 9.779e-99 3.26e-99
0.2 9.192e-99 6.50e-99
0.3 2.948e-99 9.70e-99
0.4 5.603e-99 1.32e-98
0.5 1.441e-98 1.60e-98
0.6 2.206e-98 1.95e-98
0.7 2.749e-98 2.21e-98
0.8 2.987e-98 2.60e-98
0.9 2.852e-98 2.80e-98
1.0 2.290e-98 2.80e-98
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(a) Comparison of the exact solution
and the approximate solution

(b) The absolute and residual errors

Figure 2: (a) Comparison of the exact solution and the approximate solu-
tion, (b) The absolute and residual errors, for Example 6.2 with m = 20
and α = 0.50

Example 6.3. Consider the following nonlinear Fredholm integro- differ-
ential equation of order α = 1

3 [35]:

D
1
3 y(x)−

∫ 1

0
(x+ t)2y3(t)dt = g(x), 0 6 x < 1,

y(0) = 0.

where g(x) = 2
Γ(8/3)x

5
3 − x2

7 −
x
4 −

1
9 . The exact solution of this problem is

y(x) = x2.

By applying the technique described in the last section, the equation is
obtained as

AT [D( 1
3

) − Â
2
BTKT ] = GT . (6.4)

ATΦ(0) = 0,

The absolute and residual errors with m = 15 are displayed in Fig.
3(a). To show the convergence of the present method to solve this example
in the Fig. 3(b), we showed that by increasing the m the residual function
decreases.
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(a) The absolute and residual errors (b) Log residual functions for m =7, 9,
11, 15, to show the convergence rate

Figure 3: (a) The absolute and residual errors, (b) Log residual functions
to show the convergence rate of GFCF method

Example 6.4. Consider the following nonlinear Fredholm integro- differ-
ential equation of order α = 3

2 :

D
3
2 y(x)−

∫ 1

0
ex+ty2(t)dt = g(x), 0 6 x < 1,

y(0) = −2,

y′(0) = 0,

where g(x) = 8√
π
x

3
2 + (748 − 277e)ex. The exact solution of this problem

is y(x) = x3 − 2.

By applying the technique described in the last section, the equation is
obtained as

AT [D( 3
2

) − ÂBTKT ] = GT , (6.5)

ATΦ(0) = −2,

ATD(1)Φ(0) = 0,

The residual error and the approximate solution with m = 7 are dis-
played in Fig. 4, we can see the approximate solution is in a good agreement
with the exact solution. Table 3 shows the absolute and residual errors with
m = 7.
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Table 3: The absolute and residual errors with m = 7 and α = 3
4 for

Example 6.4

t absolute error residual error

0.1 2.18955e-7 3.97608e-6
0.2 1.01085e-7 1.58680e-5
0.3 4.83845e-7 2.17587e-5
0.4 1.48242e-6 2.34365e-5
0.5 2.78456e-6 2.17600e-5
0.6 4.25067e-6 1.72455e-5
0.7 5.72279e-6 1.02422e-5
0.8 7.03034e-6 1.00414e-6
0.9 7.99348e-6 1.02741e-5
1.0 8.42526e-6 2.34381e-5

(a) Comparison of the solutions (b) The residual error function

Figure 4: (a) Comparison of the exact solution and approximate solution,
(b) The residual error function, for Example 6.4 with m = 7 and α = 3

4

Example 6.5. Consider the following nonlinear Fredholm integro- differ-
ential equation with multi order:

2D
4
3 y(x)−D

1
6 y(x)− 56

∫ 1

0
(x+ t)y3(t)dt = g(x), 0 6 x < 1,

y(0) = 1,

y′(0) = −3,

where g(x) = 6
Γ( 2

3
)
x

2
3 − 18

55Γ( 5
6

)
x

5
6 (4x− 11) + 6x+ 9. The exact solution of

this problem is y(x) = x2 − 3x+ 1.
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By applying the technique described in the last section, the equation is
obtained as

AT [2D( 4
3

) −D( 1
6

) − 56Â
2
BTKT ] = GT , (6.6)

ATΦ(0) = 1,

ATD(1)Φ(0) = −3,

The residual error and the approximate solution with m = 20 are dis-
played in Fig. 5. Table 4 shows the absolute and residual errors with
m = 20.

Table 4: The absolute and residual errors with m = 20 and α = 1
6 for

Example 6.5

t absolute error residual error

0.1 7.19310e-9 -4.33445e-12
0.2 5.67658e-9 -1.06538e-11
0.3 3.50843e-9 -1.80383e-11
0.4 9.8974e-10 -2.68854e-11
0.5 1.76571e-9 -3.78585e-11
0.6 4.69932e-9 -5.17159e-11
0.7 7.77568e-9 -6.92530e-11
0.8 1.09712e-8 -9.12790e-11
0.9 1.42691e-8 -1.18605e-10
1.0 1.76569e-8 -1.52041e-10

(a) Comparison of the solutions (b) The residual error function

Figure 5: (a) Comparison of the exact solution and approximate solution,
(b) The residual error function, for Example 6.5 with m = 20 and α = 1

6
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Example 6.6. Consider the following nonlinear Fredholm integro- differ-
ential equation with multi order:

D3y(x) + 2D2y(x)−D
1
2 y(x) +

∫ 1

0
t2y(t)dt− 360

113

∫ 1

0
xt3y2(t)dt = g(x),

y(0) = 0,

y′(0) = 4,

y′′(0) = 0,

where g(x) = 43
6 −

8
5Γ( 1

2
)
x

1
2 (2x2 + 5). The exact solution of this problem is

y(x) = x3 + 4x.
By applying the technique described in the last section, the equation is

obtained as

AT [D(3) + 2D(2) −D( 1
6

) + BTKT
1 −

360

113
ÂBTKT

2 ] = GT , (6.7)

ATΦ(0) = 0,

ATD(1)Φ(0) = 4,

ATD(2)Φ(0) = 0,

The absolute and residual errors and the approximate solution with
m = 15 are displayed in Fig. 6. Table 5 shows the absolute and residual
errors with m = 15. We can see that the approximate solution is in a good
agreement with the exact solution.

Table 5: The absolute and residual errors with m = 15 and α = 0.50 for
Example 6.6

x Absolute error Residual error

0.1 8.100e-97 3.980e-94
0.2 1.132e-96 2.856e-94
0.3 9.837e-97 2.771e-94
0.4 7.031e-97 1.855e-94
0.5 5.252e-97 7.627e-94
0.6 5.514e-97 3.995e-94
0.7 7.632e-97 1.599e-94
0.8 1.038e-96 2.848e-94
0.9 1.166e-96 4.142e-94
1.0 8.602e-97 5.482e-94
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(a) Comparison of the solutions (b) The absolute and residual errors

Figure 6: (a) Comparison of the exact solution and approximate solution,
(b) The absolute and residual errors, for Example 6.6 with m = 15 and
α = 0.50

7 Conclusion

In this paper, the generalized fractional order of the Chebyshev func-
tions (GFCF) of the first kind is expressed, next, the operational matrices
of fractional derivative, the product, and the dual for these orthogonal
functions are obtained. These matrices can be used to solve the linear and
nonlinear Fredholm integro- differential equations of the multi-arbitrary or-
der. As shown, the method converges and has an appropriate accuracy and
stability, that the sufficient accuracy is due choosing the basic of fractional.
Illustrative examples show that this method has good results.
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