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1 Introduction

Mustafa and Sims introduced the G-metric spaces as a generalization of the
notion of metric spaces.

Definition 1.1. [1] Let X be a non-empty set and G : X × X × X → R+ be a
function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
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(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then, the function G is called a generalized metric, or more specially, a G-metric
on X, and the pair (X,G) is called a G-metric space.

Example 1.2. Let (X, d) be a metric space. The function G : X × X × X →
[0,+∞), defined by G(x, y, z) = d(x, y) + d(y, z) + d(z, x), for all x, y, z ∈ X, is a
G-metric on X.

Later, many results appeared in G-metric spaces (see [2–5]). Abbas and
Rhoades [6] initiated the study of common fixed point in G-metric spaces. Since
then the common fixed point theorem for mappings satisfying certain contractive
conditions has been continually studied for decade (see [7–9]). Recently, Abbas,
Nazir and Vetro [10] proved some common fixed point results for three single-
valued maps in G-metric spaces. The aim of this paper is to prove the existence
of the common fixed points for two single-valued and one multi-valued maps in
G-metric spaces. Our results improve Theorem 2.1, 2.4, 2.8 and 2.11 of Abbas et
al [10].

2 Preliminaries

We now recall some of the basic concepts and results in G-metric spaces that
were introduced in [1].

Definition 2.1. [1] Let (X,G) be a G-metric space, and {xn} a sequence of points
of X. We say that {xn} is G-convergent to x ∈ X if limn,m→∞G(x, xn, xm) = 0,
that is, for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε, for all n,m ≥
N . We call x the limit of the sequence {xn} and write xn → x or limn→∞ xn = x.

Proposition 2.2. [1] Let (X,G) be a G-metric space, the following are equivalent:

(1) {xn} is G-convergent to x,

(2) G(xn, xn, x)→ 0 as n→ +∞,

(3) G(xn, x, x)→ 0 as n→ +∞,

(4) G(xn, xm, x)→ 0 as n,m→ +∞.

Definition 2.3. [1] Let (X,G) be a G-metric space. A sequence {xn} is called a G-
Cauchy sequence if for any ε > 0, there exists N ∈ N such that G(xn, xm, xl) < ε,
for all n,m, l ≥ N . That is, G(xn, xm, xl)→ 0 as n,m, l→ +∞.

Proposition 2.4. [1] Let (X,G) be a G-metric space, the following are equivalent

(1) the sequence {xn} is G-Cauchy,

(2) for any ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all
n,m ≥ N .
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Definition 2.5. [1] A G-metric space (X,G) is called G-complete if every G-
Cauchy sequence is G-convergent in (X,G).

Every G-metric on X defines a metric dG on X given by

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

Recently, Kaewcharoen and Kaewkhao [11] introduced the following concepts.
Let X be a G-metric space. We shall denote CB(X) the family of all nonempty
closed bounded subsets of X. Let H(·, ·, ·) be the Hausdorff G-distance on CB(X),
i.e.,

HG(A,B,C) = max{sup
x∈A

G(x,B,C), sup
x∈B

G(x,C,A), sup
x∈C

G(x,A,B)},

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),

dG(x,B) = inf{dG(x, y), y ∈ B},
dG(A,B) = inf{dG(a, b), a ∈ A, y ∈ B}.

Recall that G(x, y, C) = inf{G(x, y, z), z ∈ C}. A mapping T : X → 2X is
called a multi-valued mapping. A point x ∈ X is called a fixed point of T if x ∈ Tx.

Proposition 2.6. Let X be a G-metric space and A,B,C ⊂ X. For x, y ∈ X
and a ∈ A, we have

(i) G(x, y, y) ≤ 2G(y, x, x),

(ii) G(x, x, y) ≤ G(x, y,A) if y /∈ A,

(iii) G(x, x,A) ≤ G(x, y,A) if y /∈ A,

(iv) G(x, x,A) +G(x, x,B) ≤ G(x,A,B),

(v) G(x,A,A) ≤ 6G(x, a, a),

(vi) G(x,A,A) ≤ 4G(x, y,A) ≤ 4G(x, y, a) if y /∈ A and x 6= y,

(vii) G(a,B,C) ≤ HG(A,B,C),

(viii) G(x, y,A) ≤ G(x, y, a) ≤ HG(x, y,A).

Proof. It is easy to check that (i)-(iii) and (vii)-(viii) hold, so we will show that
(iv), (v) and (vi) hold. Let x, y ∈ X and A,B ⊂ X,

(iv) By (G2) and (G4), we get

G(x, x,A) +G(x, x,B) = inf{G(x, x, a), a ∈ A}+ inf{G(x, x, b), b ∈ B}
≤ inf{G(x, a, a) +G(a, x, x), a ∈ A}

+ inf{G(x, b, b) +G(b, x, x), b ∈ B}
= inf{dG(x, a), a ∈ A}+ inf{dG(x, b), b ∈ B}
= dG(x,A) + dG(x,B)

= G(x,A,B).
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(v) By (i), we obtain

G(x,A,A) = 2 inf{G(x, a, a), a ∈ A}
≤ 2 inf{G(x, a, a) +G(a, x, x), a ∈ A}
≤ 2[G(x, a, a) +G(a, x, x)], for all a ∈ A
≤ 2G(x, a, a) + 4G(x, a, a), for all a ∈ A
= 6G(x, a, a), for all a ∈ A.

(vi) Let x 6= y and y /∈ A. By (v) and (G3), we have

G(x,A,A) ≤ 2[G(x, a, a) +G(a, x, x)], for all a ∈ A
≤ 2G(x, a, y) + 2G(a, x, y), for all a ∈ A
= 4G(x, y, a), for all a ∈ A.

Therefore, G(x,A,A) ≤ 4 inf{G(x, y, a), a ∈ A} = 4G(x, y,A).

3 Main Results

Theorem 3.1. Let (X,G) be a G-metric space. Assume that f, g : X → X and
T : X → CB(X) satisfy the following condition

HG(fx, gy, Tz) ≤ αG(x, y, z) + β[G(fx, x, x) +G(y, gy, y) +G(z, z, Tz)]

+γ[G(fx, y, z) +G(x, gy, z) +G(x, y, Tz)] (3.1)

for all x, y, z ∈ X, where α, β, γ > 0 and α + 4β + 4γ < 1. Then f, g and T have
a unique common fixed point in X. Moreover, any fixed point of f is a fixed point
of g and T and conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T .
Assume that p ∈ X is such that fp = p. Now, we prove that p = gp = Tp. If it is
not the case, then for p 6= gp and p /∈ Tp,

Case 1: If gp /∈ Tp, we have

G(p, gp, Tp) ≤ HG(fp, gp, Tp)

≤ αG(p, p, p) + β[G(fp, p, p) +G(p, gp, p) +G(p, p, Tp)]

+γ[G(fp, p, p) +G(p, gp, p) +G(p, p, Tp)]

= (β + γ)[G(p, p, gp) +G(p, p, Tp)]

≤ (β + γ)G(p, gp, Tp),

a contradiction.
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Case 2: If gp ∈ Tp, we have

G(p, gp, gp) ≤ HG(fp, gp, Tp)

≤ αG(p, p, p) + β[G(fp, p, p) +G(p, gp, p) +G(p, p, Tp)]

+γ[G(fp, p, p) +G(p, gp, p) +G(p, p, Tp)]

= (β + γ)[G(p, p, gp) +G(p, p, Tp)]

≤ 2(β + γ)G(p, p, gp)

≤ 2(β + γ)G(p, gp, gp),

a contradiction. Therefore, p = gp = Tp. Analogously, following the similar
arguments to those given above, we obtain a contradiction for p 6= gp and p ∈ Tp
or for p = gp and p /∈ Tp. Hence in all the cases, we conclude that p = gp ∈ Tp.
The same conclusion holds if p = gp or p ∈ Tp.

Next, we will show that f, g and T have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 ∈ Tx3n+2, n = 0, 1, 2, .... If xn = xn+1 for some n, with n = 3m, then
p = x3m is a fixed point of f and, by the first step, p is a common fixed point for
f, g and T . The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)

≤ HG(fx3n, gx3n+1, Tx3n+2)

≤ αG(x3n, x3n+1, x3n+2) + β[G(fx3n, x3n, x3n) +G(x3n+1, gx3n+1, x3n+1)

+G(x3n+2, x3n+2, Tx3n+2)] + γ[G(fx3n, x3n+1, x3n+2)

+G(x3n, gx3n+1, x3n+2) +G(x3n, x3n+1, Tx3n+2)]

≤ αG(x3n, x3n+1, x3n+2) + β[G(x3n+1, x3n, x3n) +G(x3n+1, x3n+2, x3n+1)

+G(x3n+2, x3n+2, x3n+3)] + γ[G(x3n+1, x3n+1, x3n+2)

+G(x3n, x3n+2, x3n+2) +G(x3n, x3n+1, x3n+3)]

≤ αG(x3n, x3n+1, x3n+2) + β[G(x3n, x3n+1, x3n+2) +G(x3n, x3n+1, x3n+2)

+G(x3n+1, x3n+2, x3n+3)] + γ[G(x3n, x3n+1, x3n+2)

+G(x3n, x3n+1, x3n+2) +G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3)],

that is

(1− β − γ)G(x3n+1, x3n+2, x3n+3) ≤ (α+ 2β + 3γ)G(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ = α+2β+3γ
1−β−γ . Obviously 0 < λ < 1. Repeating this process, we have for

each n

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2) ≤ · · · ≤ λn+1G(x0, x1, x2).
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Now, for any l,m, n with l > m > n,

G(xn, xm, xl) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+ · · ·+G(xl−1, xl−1, xl)

≤ G(xn, xx+1, xn+2) +G(xn+1, xn+2, xn+3)

+ · · ·+G(xl−2, xl−1, xl)

≤ [λn + λn+1 + · · ·+ λl−2]G(x0, x1, x2)

≤ λn

1− λ
G(x0, x1, x2).

The same is holds if l = m > n and if l > m = n we have

G(xn, xm, xl) ≤
λn−1

1− λ
G(x0, x1, x2).

Consequently, G(xn, xm, xl) → 0 as n,m, l → ∞. This show that the sequence
{xn} is a G-Cauchy in the complete space X. Thus, {xn} converges to u as n→∞.
We claim that fu = u. If not, then consider

G(fu, x3n+2, x3n+3)

≤ HG(fu, gx3n+1, Tx3n+2)

≤ αG(u, x3n+1, x3n+2) + β[G(fu, u, u) +G(x3n+1, gx3n+1, x3n+1)

+G(x3n+2, x3n+2, Tx3n+2)] + γ[G(fu, x3n+1, x3n+2)

+G(u, gx3n+1, x3n+2) +G(u, x3n+1, Tx3n+2)]

≤ αG(u, x3n+1, x3n+2) + β[G(fu, u, u) +G(x3n+1, x3n+2, x3n+1)

+G(x3n+2, x3n+2, x3n+3)] + γ[G(fu, x3n+1, x3n+2)

+G(u, x3n+2, x3n+2) +G(u, x3n+1, x3n+3)].

Taking limit n→∞, we obtain that

G(fu, u, u) ≤ (β + γ)G(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and u ∈ Tu.
Finally, suppose that v is another common fixed point of f, g and T , then

G(u, v, v) ≤ HG(fu, gv, Tv)

≤ αG(u, v, v) + β[G(fu, u, u) +G(v, gv, v) +G(v, v, Tv)]

+γ[G(fu, v, v) +G(u, gv, v) +G(u, v, Tv)]

≤ αG(u, v, v) + β[G(u, u, u) +G(v, v, v) +G(v, v, v)]

+γ[G(u, v, v) +G(u, v, v) +G(u, v, v)]

= (α+ 3γ)G(u, v, v),

which gives that G(u, v, v) = 0, and u = v. We can conclude that u is a unique
common fixed point of f, g and T .
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Theorem 3.2. Let (X,G) be a G-metric space. Assume that f, g : X → X and
T : X → CB(X) satisfy the following condition

G(fx, gy, Tz) ≤ aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + dG(z, Tz, Tz) (3.2)

for all x, y, z ∈ X, where 0 < a+ 2b+ 2c+ 6d < 1. Then f, g and T have a unique
common fixed point in X. Moreover, any fixed point of f is a fixed point of g and
T and conversely.

Proof. First, we will show that any fixed point of f is a fixed point of g and T .
Assume that p ∈ X is such that fp = p. Now, we prove that p = gp = Tp. If it is
not the case, then for p 6= gp and p /∈ Tp,

Case 1: If gp /∈ Tp, we have

G(p, gp, Tp) ≤ HG(fp, gp, Tp)

≤ aG(p, p, p) + bG(p, fp, fp) + cG(p, gp, gp) + dG(p, Tp, Tp)

≤ aG(p, p, p) + bG(p, p, p) + cG(p, gp, Tp) + 4dG(p, gp, Tp)

≤ (c+ 4d)G(p, gp, Tp),

which is a contradiction.
Case 2: If gp ∈ Tp, we have

G(p, gp, gp) ≤ HG(fp, gp, Tp)

≤ aG(p, p, p) + bG(p, fp, fp) + cG(p, gp, gp) + dG(p, Tp, Tp)

≤ aG(p, p, p) + bG(p, p, p) + cG(p, gp, gp) + 6dG(p, gp, gp)

≤ (c+ 6d)G(p, gp, gp),

which is a contradiction. Similarly to the previous case, we obtain a contradiction
for p 6= gp and p ∈ Tp or for p = gp and p /∈ Tp. Hence in all the cases, we
conclude that p = gp ∈ Tp. The same conclusion holds if p = gp or p ∈ Tp.

Let now show that f, g and T have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 ∈ Tx3n+2, n = 0, 1, 2, .... If xn = xn+1 for some n, with n = 3m, then
p = x3m is a fixed point of f and, by the first step, p is a common fixed point for
f, g and T . The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)

≤ HG(fx3n, gx3n+1, Tx3n+2)

≤ aG(x3n, x3n+1, x3n+2) + bG(x3n, fx3n, fx3n) + cG(x3n+1, gx3n+1, gx3n+1)

+dG(x3n+2, Tx3n+2, Tx3n+2)

≤ aG(x3n, x3n+1, x3n+2) + bG(x3n, x3n+1, x3n+1) + cG(x3n+1, x3n+2, x3n+3)

+4dG(x3n+1, x3n+2, x3n+3),
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that is

(1− c− 4d)G(x3n+1, x3n+2, x3n+3) ≤ (a+ b)G(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ = a+b
1−c−4d . Obviously 0 < λ < 1. Continue this process, we obtain for

each n,

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2) ≤ · · · ≤ λn+1G(x0, x1, x2).

Following similar arguments to those given in Theorem 3.1, G(xn, xm, xl)→ 0 as
n,m, l→∞. Hence, {xn} is a G-Cauchy sequence. By G-completeness of X, there
exists u ∈ X such that {xn} converges to u as n→∞. We claim that fu = u. If
not, then consider

G(fu, x3n+2, x3n+3)

≤ HG(fu, gx3n+1, Tx3n+2)

≤ aG(u, x3n+1, x3n+2) + bG(u, fu, fu) + cG(x3n+1, gx3n+1, gx3n+1)

+dG(x3n+2, Tx3n+2, Tx3n+2)

≤ aG(u, x3n+1, x3n+2) + bG(u, fu, x3n+1) + cG(x3n+1, x3n+2, x3n+2)

+4dG(x3n+1, x3n+2, x3n+3).

Taking limit n→∞, we obtain that

G(fu, u, u) ≤ bG(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and u ∈ Tu.
We next prove the uniqueness, suppose that v is another common fixed point

of f, g and T , then

G(u, v, v) ≤ HG(fu, gv, Tv)

≤ aG(u, v, v) + bG(u, fu, fu) + cG(v, gv, gv) + dG(v, Tv, Tv)

≤ aG(u, v, v) + bG(u, u, u) + cG(v, v, v) + 6dG(v, v, v)

≤ aG(u, v, v),

which gives that G(u, v, v) = 0, and u = v. Hence u is a unique common fixed
point of f, g and T .

Definition 3.3. Let f : X → X be a single-valued mapping, T : X → CB(X)
a multi-valued mapping on G-metric space X. Then, f and T are said to be
commuting mappings if fTx ⊂ Tfx for all x ∈ X.

Example 3.4. Let X = [0, 1] and G(x, y, z) = max{|x − y|, |y − z|, |z − x|} be a
G-metric on X. Define f, g : X → X and T : X → CB(X) as

f(x) =

{
x
24 if x ∈ [0, 12 )
x
20 if x ∈ [ 12 , 1],

g(x) =

{
x
16 if x ∈ [0, 12 )
x
12 if x ∈ [ 12 , 1],
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and

T (x) =

{
[0, x10 ] if x ∈ [0, 12 )
[0, x6 ] if x ∈ [ 12 , 1].

Note that f, g and T are discontinuous maps. Also

fg(
1

2
) =f(

1

24
) =

1

576
, gf(

1

2
) =f(

1

40
) =

1

640
,

gT (
1

2
) =g([0,

1

12
]) = [0,

1

192
], T g(

1

2
) =T (

1

24
) = [0,

1

240
],

fT (
1

2
) =g([0,

1

12
]) = [0,

1

288
], T f(

1

2
) =T (

1

40
) = [0,

1

400
],

which shows that f, g and T does not commute to each other. For x, y, z ∈ [0, 12 ),

HG(fx, gy, Tz) = max{| x
24
− z

10
|, x

24
, | x

24
− y

16
|, | y

16
− z

10
|, y

16
}

=
1

16
max{|2x

3
− 8z

5
|, 2x

3
, |2x

3
− y|, |y − 8z

5
|, y}

≤ 1

16
[max{|x− z|, |y − z|, |z − x|}+ x+ y + z]

=
1

16
max{|x− z|, |y − z|, |z − x|}+

x

16
+

y

16
+

z

16

=
1

16
max{|x− z|, |y − z|, |z − x|}+

3

46
(
23x

24
) +

1

15
(
15y

16
)

+
5

288
(
18z

5
)

= aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + dG(z, Tz, Tz).

Thus (3.2) is satisfied for 0 < a + 2b + 2c + 6d = 0.43 < 1. The same conclusion
holds in all cases. 0 is the unique common fixed point of f, g and T . Also any
fixed point of f is a fixed point of g and T and conversely.

Example 3.5. Let X = [0, 1] and G(x, y, z) = max{|x − y|, |y − z|, |z − x|} be a
G-metric on X. Define f, g : X → X, T : X → CB(X) by f(x) = x

4 , g(x) = x
8

and T (x) = [0, x16 ]. without loss of generality, we assume that z ≤ y ≤ x. Consider

G(x, y, z) = max{|x− y|, |y − z|, |z − x|} = x− z,

G(x, fx, fx) = max{|x− x

4
|, |x

4
− x

4
|, |x

4
− x|} =

3x

4
,

G(y, gy, gy) = max{|y − y

8
|, |y

8
− y

8
|, |y

8
− y|} =

7y

8
,

G(z, Tz, Tz) = 2dG(z, Tz) = 2 inf
t∈Tz
{G(z, t, t) +G(t, z, z)}

= 4 inf
t∈Tz
|z − t| = 4(z − z

10
) =

15z

4
.
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Now,

HG(fx, gy, Tz) = max{|x
4
− y

8
|, x

4
,
y

8
}

=
x

4

≤ 1

4
(x− z) +

z

4

≤ 1

4
(x− z) +

x

12
+

y

12
+

z

12

≤ 1

4
(x− z) +

1

9
(
3x

4
) +

2

21
(
7y

8
) +

1

45
(
15z

4
)

= aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + dG(z, Tz, Tz).

Thus (3.2) is satisfied for 0 < a+ 2b+ 2c+ 6d = 0.79 < 1. 0 is the unique common
fixed point of f, g and T . Also any fixed point of f is a fixed point of g and T and
conversely.

Theorem 3.6. Let (X,G) be a G-metric space. Assume that f, g : X → X and
T : X → CB(X) satisfy the following condition

G(fx, gy, Tz) ≤ a[G(y, fx, fx) +G(z, gy, gy) +G(x, Tz, Tz)] (3.3)

for all x, y, z ∈ X, where 0 < a < 1
12 . Then f, g and T have a unique common

fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and
conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T .
Assume that p ∈ X is such that fp = p. Now, we show that p = gp = Tp. If it is
not the case, then for p 6= gp and p /∈ Tp,

Case 1: If gp /∈ Tp, we have

G(p, gp, Tp) ≤ HG(fp, gp, Tp)

≤ a[G(p, fp, fp) +G(p, gp, gp) +G(p, Tp, Tp)]

≤ a[G(p, p, p) +G(p, gp, Tp) + 4G(p, gp, Tp)]

≤ 5aG(p, gp, Tp),

which is a contradiction.
Case 2: If gp ∈ Tp, we have

G(p, gp, gp) ≤ HG(fp, gp, Tp)

≤ a[G(p, fp, fp) +G(p, gp, gp) +G(p, Tp, Tp)]

≤ a[G(p, p, p) +G(p, gp, gp) + 6G(p, gp, gp)]

≤ 7aG(p, gp, gp),

which is a contradiction. Analogously, following the similar arguments to those
given above, we obtain a contradiction for p 6= gp and p /∈ Tp and gp ∈ Tp
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or for p 6= gp and p ∈ Tp or for p = gp and p /∈ Tp. Hence in all the cases,
we conclude that p = gp ∈ Tp. The same conclusion holds if p = gp or p ∈ Tp.

Next, we will show that f, g and T have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 ∈ Tx3n+2, n = 0, 1, 2, .... If xn = xn+1 for some n, with n = 3m, then
p = x3m is a fixed point of f and, by the first step, p is a common fixed point for
f, g and T . The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)

≤ HG(fx3n, gx3n+1, Tx3n+2)

≤ a[G(x3n+1, fx3n, fx3n) +G(x3n+2, gx3n+1, gx3n+1)

+G(x3n, Tx3n+2, Tx3n+2)]

≤ a[G(x3n+1, x3n+1, x3n+1) +G(x3n+2, x3n+2, x3n+2)

+6G(x3n, x3n+3, x3n+3)]

≤ 6a[G(x3n, x3n+1, x3n+1) +G(x3n+1, x3n+3, x3n+3)]

≤ 6a[G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3)]

that is

(1− 6a)G(x3n+1, x3n+2, x3n+3) ≤ 6aG(x3n, x3n+1, x3n+2).

Hence,

G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ = 6a
1−6a . Obviously 0 < λ < 1. Continue the above process, we obtain for

each n,

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2) ≤ · · · ≤ λn+1G(x0, x1, x2).

As the proof of Theorem 3.1, G(xn, xm, xl)→ 0 as n,m, l→∞. Hence, {xn} is a
G-Cauchy sequence. By G-completeness of X, there exists u ∈ X such that {xn}
converges to u as n→∞. We claim that fu = u. If not, then consider

G(fu, x3n+2, x3n+3)

≤ HG(fu, gx3n+1, Tx3n+2)

≤ a[G(x3n+1, fu, fu) +G(x3n+2, gx3n+1, gx3n+1) +G(u, Tx3n+2, Tx3n+2)]

≤ a[G(x3n+1, fu, fu) +G(x3n+2, x3n+2, x3n+2) + 6G(u, x3n+3, x3n+3)].

Taking limit n→∞, we obtain that

G(fu, u, u) ≤ aG(u, fu, fu) ≤ 2aG(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and u ∈ Tu.
Now we show that u is unique. For this, assume that there exists another point
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v ∈ X such that v = fv = gv ∈ Tv, then

G(u, v, v) ≤ HG(fu, gv, Tv)

≤ a[G(v, fu, fu) +G(v, gv, gv) +G(u, Tv, Tv)]

≤ a[G(v, u, u) +G(v, v, v) + 6G(u, v, v)]

≤ a[2G(u, v, v) + 6G(u, v, v)]

≤ 8aG(u, v, v),

which implies that G(u, v, v) = 0, and u = v. Hence u is a unique common fixed
point of f, g and T .

Theorem 3.7. Let (X,G) be a G-metric space. Assume that f, g : X → X and
T : X → CB(X) satisfy the following condition

G(fx, gy, Tz) ≤ k[G(x, fx, fx) +G(y, gy, gy) +G(z, Tz, Tz)] (3.4)

for all x, y, z ∈ X, where 0 < k < 1
8 . Then f, g and T have a unique common

fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and
conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T .
Assume that p ∈ X is such that fp = p. Now, we prove that p = gp = Tp. If it is
not the case, then for p 6= gp and p /∈ Tp,

Case 1: If gp /∈ Tp, we have

G(p, gp, Tp) ≤ HG(fp, gp, Tp)

≤ k[G(p, fp, fp) +G(p, gp, gp) +G(p, Tp, Tp)]

≤ k[G(p, p, p) +G(p, gp, Tp) + 4G(p, gp, Tp)]

≤ 5kG(p, gp, Tp),

which is a contradiction.
Case 2: If gp ∈ Tp, we have

G(p, gp, gp) ≤ HG(fp, gp, Tp)

≤ k[G(p, fp, fp) +G(p, gp, gp) +G(p, Tp, Tp)]

≤ k[G(p, p, p) +G(p, gp, gp) + 6G(p, gp, gp)]

≤ 7kG(p, gp, Tp),

which is a contradiction. Analogously, following the similar arguments to those
given above, we obtain a contradiction for p 6= gp and p /∈ Tp and gp ∈ Tp
or for p 6= gp and p ∈ Tp or for p = gp and p /∈ Tp. Hence in all the cases,
we conclude that p = gp ∈ Tp. The same conclusion holds if p = gp or p ∈ Tp.

Next, we will show that f, g and T have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 ∈ Tx3n+2, n = 0, 1, 2, .... If xn = xn+1 for some n, with n = 3m, then



Common Fixed Point Results for Three Maps One ... 467

p = x3m is a fixed point of f and, by the first step, p is a common fixed point for
f, g an dT . The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)

≤ HG(fx3n, gx3n+1, Tx3n+2)

≤ k[G(x3n, fx3n, fx3n) +G(x3n+1, gx3n+1, gx3n+1)

+G(x3n+2, Tx3n+2, Tx3n+2)]

≤ k[G(x3n, x3n+1, x3n+1) +G(x3n+1, x3n+2, x3n+2) + 4G(x3n+1, x3n+2, x3n+3)]

≤ k[G(x3n, x3n+1, x3n+2) +G(x3n+1, x3n+2, x3n+3) + 4G(x3n+1, x3n+2, x3n+3)]

that is
(1− 5k)G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ = k
1−5k . Obviously 0 < λ < 1. Continue the procedure to obtain for each

n,

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2) ≤ · · · ≤ λn+1G(x0, x1, x2).

Following similar arguments to those given in Theorem 3.1, G(xn, xm, xl)→ 0 as
n,m, l→∞. Hence, {xn} is a G-Cauchy sequence. By G-completeness of X, there
exists u ∈ X such that {xn} converges to u as n→∞. We claim that fu = u. If
not, then consider

G(fu, x3n+2, x3n+3)

≤ HG(fu, gx3n+1, Tx3n+2)

≤ k[G(u, fu, fu) +G(x3n+1, gx3n+1, gx3n+1) +G(xn+2, Tx3n+2, Tx3n+2)]

≤ k[G(u, fu, fu) +G(x3n+1, x3n+2, x3n+2) + 6G(xn+2, x3n+3, x3n+3)].

Taking limit n→∞, we obtain that

G(fu, u, u) ≤ kG(u, fu, fu) ≤ 2kG(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and u ∈ Tu.
To prove the uniqueness, suppose that v is another common fixed point of f, g

and T , then

G(u, v, v) ≤ HG(fu, gv, Tv)

≤ k[G(u, fu, fu) +G(v, gv, gv) +G(v, Tv, Tv)]

≤ k[G(u, u, u) +G(v, v, v) + 6G(v, v, v)]

≤ 0,

which gives that G(u, v, v) = 0, and u = v. Hence, u is a unique common fixed
point of f, g and T .
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Remark 3.8.

(1) Theorem 3.1 improves Theorem 2.1 of [10] in case α+ 3β + 4γ < 1.

(2) Theorem 3.2 improves Theorem 2.4 of [10] in case 0 < a+ b+ c+ d < 1.

(3) Theorem 3.6 improves Theorem 2.8 of [10] in case 0 ≤ a ≤ 1
2 .

(4) Theorem 3.7 improves Theorem 2.11 of [10] in case 0 < k < 1
3 .
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