Thai Journal of Mathematics
Volume 16 (2018) Number 2 : 455-469
http://thaijmath.in.cmu.ac.th

Common Fixed Point Results for Three Maps One of which is Multivalued in G-Metric Spaces

Narawadee Phudolsitthiphat ${ }^{1}$ and Phakdi Charoensawan
Department of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai 50200, Thailand
e-mail : narawadee_n@hotmail.co.th (N. Phudolsitthiphat)
phakdi@hotmail.com (P. Charoensawan)

Abstract

In this work, we prove the existence of common fixed points for two single-valued maps and one multi-valued map satisfying certain contractive conditions in G-metric spaces.

Keywords : common fixed points; multi-valued mappings; generalized metric spaces.
2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

Mustafa and Sims introduced the G-metric spaces as a generalization of the notion of metric spaces.

Definition 1.1. 1 Let X be a non-empty set and $G: X \times X \times X \rightarrow \mathbb{R}^{+}$be a function satisfying the following properties:
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables),

[^0](G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).
Then, the function G is called a generalized metric, or more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

Example 1.2. Let (X, d) be a metric space. The function $G: X \times X \times X \rightarrow$ $[0,+\infty)$, defined by $G(x, y, z)=d(x, y)+d(y, z)+d(z, x)$, for all $x, y, z \in X$, is a G-metric on X.

Later, many results appeared in G-metric spaces (see 2-5). Abbas and Rhoades [6] initiated the study of common fixed point in G-metric spaces. Since then the common fixed point theorem for mappings satisfying certain contractive conditions has been continually studied for decade (see $\sqrt[7]{9}$). Recently, Abbas, Nazir and Vetro 10 proved some common fixed point results for three singlevalued maps in G-metric spaces. The aim of this paper is to prove the existence of the common fixed points for two single-valued and one multi-valued maps in G-metric spaces. Our results improve Theorem 2.1, 2.4, 2.8 and 2.11 of Abbas et al 10 .

2 Preliminaries

We now recall some of the basic concepts and results in G-metric spaces that were introduced in 1 .

Definition 2.1. 1 Let (X, G) be a G-metric space, and $\left\{x_{n}\right\}$ a sequence of points of X. We say that $\left\{x_{n}\right\}$ is G-convergent to $x \in X$ if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$, that is, for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$, for all $n, m \geq$ N. We call x the limit of the sequence $\left\{x_{n}\right\}$ and write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$.

Proposition 2.2. (1) Let (X, G) be a G-metric space, the following are equivalent:
(1) $\left\{x_{n}\right\}$ is G-convergent to x,
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
(4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Definition 2.3. 1 Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ is called a G Cauchy sequence if for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$, for all $n, m, l \geq N$. That is, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Proposition 2.4. 1] Let (X, G) be a G-metric space, the following are equivalent
(1) the sequence $\left\{x_{n}\right\}$ is G-Cauchy,
(2) for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$.

Definition 2.5. 1 A G-metric space (X, G) is called G-complete if every G Cauchy sequence is G-convergent in (X, G).

Every G-metric on X defines a metric d_{G} on X given by

$$
d_{G}(x, y)=G(x, y, y)+G(y, x, x) \text { for all } x, y \in X
$$

Recently, Kaewcharoen and Kaewkhao [11] introduced the following concepts. Let X be a G-metric space. We shall denote $C B(X)$ the family of all nonempty closed bounded subsets of X. Let $H(\cdot, \cdot, \cdot)$ be the Hausdorff G-distance on $C B(X)$, i.e.,

$$
H_{G}(A, B, C)=\max \left\{\sup _{x \in A} G(x, B, C), \sup _{x \in B} G(x, C, A), \sup _{x \in C} G(x, A, B)\right\}
$$

where

$$
\begin{aligned}
G(x, B, C) & =d_{G}(x, B)+d_{G}(B, C)+d_{G}(x, C) \\
d_{G}(x, B) & =\inf \left\{d_{G}(x, y), y \in B\right\} \\
d_{G}(A, B) & =\inf \left\{d_{G}(a, b), a \in A, y \in B\right\}
\end{aligned}
$$

Recall that $G(x, y, C)=\inf \{G(x, y, z), z \in C\}$. A mapping $T: X \rightarrow 2^{X}$ is called a multi-valued mapping. A point $x \in X$ is called a fixed point of T if $x \in T x$.
Proposition 2.6. Let X be a G-metric space and $A, B, C \subset X$. For $x, y \in X$ and $a \in A$, we have
(i) $G(x, y, y) \leq 2 G(y, x, x)$,
(ii) $G(x, x, y) \leq G(x, y, A)$ if $y \notin A$,
(iii) $G(x, x, A) \leq G(x, y, A)$ if $y \notin A$,
(iv) $G(x, x, A)+G(x, x, B) \leq G(x, A, B)$,
(v) $G(x, A, A) \leq 6 G(x, a, a)$,
(vi) $G(x, A, A) \leq 4 G(x, y, A) \leq 4 G(x, y, a)$ if $y \notin A$ and $x \neq y$,
(vii) $G(a, B, C) \leq H_{G}(A, B, C)$,
(viii) $G(x, y, A) \leq G(x, y, a) \leq H_{G}(x, y, A)$.

Proof. It is easy to check that (i)-(iii) and (vii)-(viii) hold, so we will show that (iv), (v) and (vi) hold. Let $x, y \in X$ and $A, B \subset X$,
(iv) By (G2) and (G4), we get

$$
\begin{aligned}
G(x, x, A)+G(x, x, B)= & \inf \{G(x, x, a), a \in A\}+\inf \{G(x, x, b), b \in B\} \\
\leq & \inf \{G(x, a, a)+G(a, x, x), a \in A\} \\
& +\inf \{G(x, b, b)+G(b, x, x), b \in B\} \\
= & \inf \left\{d_{G}(x, a), a \in A\right\}+\inf \left\{d_{G}(x, b), b \in B\right\} \\
= & d_{G}(x, A)+d_{G}(x, B) \\
= & G(x, A, B) .
\end{aligned}
$$

(v) By (i), we obtain

$$
\begin{aligned}
G(x, A, A) & =2 \inf \{G(x, a, a), a \in A\} \\
& \leq 2 \inf \{G(x, a, a)+G(a, x, x), a \in A\} \\
& \leq 2[G(x, a, a)+G(a, x, x)], \text { for all } a \in A \\
& \leq 2 G(x, a, a)+4 G(x, a, a), \text { for all } a \in A \\
& =6 G(x, a, a), \text { for all } a \in A .
\end{aligned}
$$

(vi) Let $x \neq y$ and $y \notin A$. By (v) and (G3), we have

$$
\begin{aligned}
G(x, A, A) & \leq 2[G(x, a, a)+G(a, x, x)], \text { for all } a \in A \\
& \leq 2 G(x, a, y)+2 G(a, x, y), \text { for all } a \in A \\
& =4 G(x, y, a), \text { for all } a \in A .
\end{aligned}
$$

Therefore, $G(x, A, A) \leq 4 \inf \{G(x, y, a), a \in A\}=4 G(x, y, A)$.

3 Main Results

Theorem 3.1. Let (X, G) be a G-metric space. Assume that $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$ satisfy the following condition

$$
\begin{align*}
H_{G}(f x, g y, T z) \leq & \alpha G(x, y, z)+\beta[G(f x, x, x)+G(y, g y, y)+G(z, z, T z)] \\
& +\gamma[G(f x, y, z)+G(x, g y, z)+G(x, y, T z)] \tag{3.1}
\end{align*}
$$

for all $x, y, z \in X$, where $\alpha, \beta, \gamma>0$ and $\alpha+4 \beta+4 \gamma<1$. Then f, g and T have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T. Assume that $p \in X$ is such that $f p=p$. Now, we prove that $p=g p=T p$. If it is not the case, then for $p \neq g p$ and $p \notin T p$,

Case 1: If $g p \notin T p$, we have

$$
\begin{aligned}
G(p, g p, T p) \leq & H_{G}(f p, g p, T p) \\
\leq & \alpha G(p, p, p)+\beta[G(f p, p, p)+G(p, g p, p)+G(p, p, T p)] \\
& +\gamma[G(f p, p, p)+G(p, g p, p)+G(p, p, T p)] \\
= & (\beta+\gamma)[G(p, p, g p)+G(p, p, T p)] \\
\leq & (\beta+\gamma) G(p, g p, T p),
\end{aligned}
$$

a contradiction.

Case 2: If $g p \in T p$, we have

$$
\begin{aligned}
G(p, g p, g p) \leq & H_{G}(f p, g p, T p) \\
\leq & \alpha G(p, p, p)+\beta[G(f p, p, p)+G(p, g p, p)+G(p, p, T p)] \\
& +\gamma[G(f p, p, p)+G(p, g p, p)+G(p, p, T p)] \\
= & (\beta+\gamma)[G(p, p, g p)+G(p, p, T p)] \\
\leq & 2(\beta+\gamma) G(p, p, g p) \\
\leq & 2(\beta+\gamma) G(p, g p, g p)
\end{aligned}
$$

a contradiction. Therefore, $p=g p=T p$. Analogously, following the similar arguments to those given above, we obtain a contradiction for $p \neq g p$ and $p \in T p$ or for $p=g p$ and $p \notin T p$. Hence in all the cases, we conclude that $p=g p \in T p$. The same conclusion holds if $p=g p$ or $p \in T p$.

Next, we will show that f, g and T have a unique common fixed point. Suppose x_{0} is an arbitrary point in X. Define $\left\{x_{n}\right\}$ by $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}$, $x_{3 n+3} \in T x_{3 n+2}, n=0,1,2, \ldots$. If $x_{n}=x_{n+1}$ for some n, with $n=3 m$, then $p=x_{3 m}$ is a fixed point of f and, by the first step, p is a common fixed point for f, g and T. The same holds if $n=3 m+1$ or $n=3 m+2$. Now, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, we have

$$
\begin{aligned}
& G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f x_{3 n}, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & \alpha G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+\beta\left[G\left(f x_{3 n}, x_{3 n}, x_{3 n}\right)+G\left(x_{3 n+1}, g x_{3 n+1}, x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n+2}, x_{3 n+2}, T x_{3 n+2}\right)\right]+\gamma\left[G\left(f x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(x_{3 n}, g x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+1}, T x_{3 n+2}\right)\right] \\
\leq & \alpha G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+\beta\left[G\left(x_{3 n+1}, x_{3 n}, x_{3 n}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+3}\right)\right]+\gamma\left[G\left(x_{3 n+1}, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(x_{3 n}, x_{3 n+2}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+1}, x_{3 n+3}\right)\right] \\
\leq & \alpha G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+\beta\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right]+\gamma\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right],
\end{aligned}
$$

that is

$$
(1-\beta-\gamma) G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq(\alpha+2 \beta+3 \gamma) G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

Hence,

$$
G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq \lambda G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

where $\lambda=\frac{\alpha+2 \beta+3 \gamma}{1-\beta-\gamma}$. Obviously $0<\lambda<1$. Repeating this process, we have for each n

$$
G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \leq \lambda G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq \cdots \leq \lambda^{n+1} G\left(x_{0}, x_{1}, x_{2}\right)
$$

Now, for any l, m, n with $l>m>n$,

$$
\begin{aligned}
G\left(x_{n}, x_{m}, x_{l}\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +\cdots+G\left(x_{l-1}, x_{l-1}, x_{l}\right) \\
\leq & G\left(x_{n}, x_{x+1}, x_{n+2}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \\
& +\cdots+G\left(x_{l-2}, x_{l-1}, x_{l}\right) \\
\leq & {\left[\lambda^{n}+\lambda^{n+1}+\cdots+\lambda^{l-2}\right] G\left(x_{0}, x_{1}, x_{2}\right) } \\
\leq & \frac{\lambda^{n}}{1-\lambda} G\left(x_{0}, x_{1}, x_{2}\right)
\end{aligned}
$$

The same is holds if $l=m>n$ and if $l>m=n$ we have

$$
G\left(x_{n}, x_{m}, x_{l}\right) \leq \frac{\lambda^{n-1}}{1-\lambda} G\left(x_{0}, x_{1}, x_{2}\right)
$$

Consequently, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$. This show that the sequence $\left\{x_{n}\right\}$ is a G-Cauchy in the complete space X. Thus, $\left\{x_{n}\right\}$ converges to u as $n \rightarrow \infty$. We claim that $f u=u$. If not, then consider

$$
\begin{aligned}
& G\left(f u, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f u, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & \alpha G\left(u, x_{3 n+1}, x_{3 n+2}\right)+\beta\left[G(f u, u, u)+G\left(x_{3 n+1}, g x_{3 n+1}, x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n+2}, x_{3 n+2}, T x_{3 n+2}\right)\right]+\gamma\left[G\left(f u, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(u, g x_{3 n+1}, x_{3 n+2}\right)+G\left(u, x_{3 n+1}, T x_{3 n+2}\right)\right] \\
\leq & \alpha G\left(u, x_{3 n+1}, x_{3 n+2}\right)+\beta\left[G(f u, u, u)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+3}\right)\right]+\gamma\left[G\left(f u, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.+G\left(u, x_{3 n+2}, x_{3 n+2}\right)+G\left(u, x_{3 n+1}, x_{3 n+3}\right)\right]
\end{aligned}
$$

Taking limit $n \rightarrow \infty$, we obtain that

$$
G(f u, u, u) \leq(\beta+\gamma) G(f u, u, u)
$$

a contradiction. Hence $f u=u$. Similarly it can be shown that $g u=u$ and $u \in T u$.
Finally, suppose that v is another common fixed point of f, g and T, then

$$
\begin{aligned}
G(u, v, v) \leq & H_{G}(f u, g v, T v) \\
\leq & \alpha G(u, v, v)+\beta[G(f u, u, u)+G(v, g v, v)+G(v, v, T v)] \\
& +\gamma[G(f u, v, v)+G(u, g v, v)+G(u, v, T v)] \\
\leq & \alpha G(u, v, v)+\beta[G(u, u, u)+G(v, v, v)+G(v, v, v)] \\
& +\gamma[G(u, v, v)+G(u, v, v)+G(u, v, v)] \\
= & (\alpha+3 \gamma) G(u, v, v)
\end{aligned}
$$

which gives that $G(u, v, v)=0$, and $u=v$. We can conclude that u is a unique common fixed point of f, g and T.

Theorem 3.2. Let (X, G) be a G-metric space. Assume that $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$ satisfy the following condition

$$
\begin{equation*}
G(f x, g y, T z) \leq a G(x, y, z)+b G(x, f x, f x)+c G(y, g y, g y)+d G(z, T z, T z) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in X$, where $0<a+2 b+2 c+6 d<1$. Then f, g and T have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and conversely.

Proof. First, we will show that any fixed point of f is a fixed point of g and T. Assume that $p \in X$ is such that $f p=p$. Now, we prove that $p=g p=T p$. If it is not the case, then for $p \neq g p$ and $p \notin T p$,

Case 1: If $g p \notin T p$, we have

$$
\begin{aligned}
G(p, g p, T p) & \leq H_{G}(f p, g p, T p) \\
& \leq a G(p, p, p)+b G(p, f p, f p)+c G(p, g p, g p)+d G(p, T p, T p) \\
& \leq a G(p, p, p)+b G(p, p, p)+c G(p, g p, T p)+4 d G(p, g p, T p) \\
& \leq(c+4 d) G(p, g p, T p),
\end{aligned}
$$

which is a contradiction.
Case 2: If $g p \in T p$, we have

$$
\begin{aligned}
G(p, g p, g p) & \leq H_{G}(f p, g p, T p) \\
& \leq a G(p, p, p)+b G(p, f p, f p)+c G(p, g p, g p)+d G(p, T p, T p) \\
& \leq a G(p, p, p)+b G(p, p, p)+c G(p, g p, g p)+6 d G(p, g p, g p) \\
& \leq(c+6 d) G(p, g p, g p),
\end{aligned}
$$

which is a contradiction. Similarly to the previous case, we obtain a contradiction for $p \neq g p$ and $p \in T p$ or for $p=g p$ and $p \notin T p$. Hence in all the cases, we conclude that $p=g p \in T p$. The same conclusion holds if $p=g p$ or $p \in T p$.

Let now show that f, g and T have a unique common fixed point. Suppose x_{0} is an arbitrary point in X. Define $\left\{x_{n}\right\}$ by $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}$, $x_{3 n+3} \in T x_{3 n+2}, n=0,1,2, \ldots$. If $x_{n}=x_{n+1}$ for some n, with $n=3 m$, then $p=x_{3 m}$ is a fixed point of f and, by the first step, p is a common fixed point for f, g and T. The same holds if $n=3 m+1$ or $n=3 m+2$. Now, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, we have

$$
\begin{aligned}
& G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f x_{3 n}, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & a G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+b G\left(x_{3 n}, f x_{3 n}, f x_{3 n}\right)+c G\left(x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right) \\
& +d G\left(x_{3 n+2}, T x_{3 n+2}, T x_{3 n+2}\right) \\
\leq & a G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+b G\left(x_{3 n}, x_{3 n+1}, x_{3 n+1}\right)+c G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
& +4 d G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right),
\end{aligned}
$$

that is

$$
(1-c-4 d) G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq(a+b) G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

Hence,

$$
G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq \lambda G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

where $\lambda=\frac{a+b}{1-c-4 d}$. Obviously $0<\lambda<1$. Continue this process, we obtain for each n,

$$
G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \leq \lambda G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq \cdots \leq \lambda^{n+1} G\left(x_{0}, x_{1}, x_{2}\right)
$$

Following similar arguments to those given in Theorem 3.1, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a G-Cauchy sequence. By G-completeness of X, there exists $u \in X$ such that $\left\{x_{n}\right\}$ converges to u as $n \rightarrow \infty$. We claim that $f u=u$. If not, then consider

$$
\begin{aligned}
& G\left(f u, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f u, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & a G\left(u, x_{3 n+1}, x_{3 n+2}\right)+b G(u, f u, f u)+c G\left(x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right) \\
& +d G\left(x_{3 n+2}, T x_{3 n+2}, T x_{3 n+2}\right) \\
\leq & a G\left(u, x_{3 n+1}, x_{3 n+2}\right)+b G\left(u, f u, x_{3 n+1}\right)+c G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right) \\
& +4 d G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)
\end{aligned}
$$

Taking limit $n \rightarrow \infty$, we obtain that

$$
G(f u, u, u) \leq b G(f u, u, u)
$$

a contradiction. Hence $f u=u$. Similarly it can be shown that $g u=u$ and $u \in T u$.
We next prove the uniqueness, suppose that v is another common fixed point of f, g and T, then

$$
\begin{aligned}
G(u, v, v) & \leq H_{G}(f u, g v, T v) \\
& \leq a G(u, v, v)+b G(u, f u, f u)+c G(v, g v, g v)+d G(v, T v, T v) \\
& \leq a G(u, v, v)+b G(u, u, u)+c G(v, v, v)+6 d G(v, v, v) \\
& \leq a G(u, v, v)
\end{aligned}
$$

which gives that $G(u, v, v)=0$, and $u=v$. Hence u is a unique common fixed point of f, g and T.

Definition 3.3. Let $f: X \rightarrow X$ be a single-valued mapping, $T: X \rightarrow C B(X)$ a multi-valued mapping on G-metric space X. Then, f and T are said to be commuting mappings if $f T x \subset T f x$ for all $x \in X$.
Example 3.4. Let $X=[0,1]$ and $G(x, y, z)=\max \{|x-y|,|y-z|,|z-x|\}$ be a G-metric on X. Define $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$ as

$$
f(x)=\left\{\begin{array}{ll}
\frac{x}{24} & \text { if } x \in\left[0, \frac{1}{2}\right) \\
\frac{x}{20} & \text { if } x \in\left[\frac{1}{2}, 1\right],
\end{array} \quad g(x)= \begin{cases}\frac{x}{16} & \text { if } x \in\left[0, \frac{1}{2}\right) \\
\frac{x}{12} & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}\right.
$$

and

$$
T(x)= \begin{cases}{\left[0, \frac{x}{10}\right]} & \text { if } x \in\left[0, \frac{1}{2}\right) \\ {\left[0, \frac{x}{6}\right]} & \text { if } x \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Note that f, g and T are discontinuous maps. Also

$$
\begin{array}{ll}
f g\left(\frac{1}{2}\right)=f\left(\frac{1}{24}\right)=\frac{1}{576}, & g f\left(\frac{1}{2}\right)=f\left(\frac{1}{40}\right)=\frac{1}{640} \\
g T\left(\frac{1}{2}\right)=g\left(\left[0, \frac{1}{12}\right]\right)=\left[0, \frac{1}{192}\right], & T g\left(\frac{1}{2}\right)=T\left(\frac{1}{24}\right)=\left[0, \frac{1}{240}\right] \\
f T\left(\frac{1}{2}\right)=g\left(\left[0, \frac{1}{12}\right]\right)=\left[0, \frac{1}{288}\right], & T f\left(\frac{1}{2}\right)=T\left(\frac{1}{40}\right)=\left[0, \frac{1}{400}\right]
\end{array}
$$

which shows that f, g and T does not commute to each other. For $x, y, z \in\left[0, \frac{1}{2}\right)$,

$$
\begin{aligned}
H_{G}(f x, g y, T z)= & \max \left\{\left|\frac{x}{24}-\frac{z}{10}\right|, \frac{x}{24},\left|\frac{x}{24}-\frac{y}{16}\right|,\left|\frac{y}{16}-\frac{z}{10}\right|, \frac{y}{16}\right\} \\
= & \frac{1}{16} \max \left\{\left|\frac{2 x}{3}-\frac{8 z}{5}\right|, \frac{2 x}{3},\left|\frac{2 x}{3}-y\right|,\left|y-\frac{8 z}{5}\right|, y\right\} \\
\leq & \frac{1}{16}[\max \{|x-z|,|y-z|,|z-x|\}+x+y+z] \\
= & \frac{1}{16} \max \{|x-z|,|y-z|,|z-x|\}+\frac{x}{16}+\frac{y}{16}+\frac{z}{16} \\
= & \frac{1}{16} \max \{|x-z|,|y-z|,|z-x|\}+\frac{3}{46}\left(\frac{23 x}{24}\right)+\frac{1}{15}\left(\frac{15 y}{16}\right) \\
& +\frac{5}{288}\left(\frac{18 z}{5}\right) \\
= & a G(x, y, z)+b G(x, f x, f x)+c G(y, g y, g y)+d G(z, T z, T z)
\end{aligned}
$$

Thus (3.2) is satisfied for $0<a+2 b+2 c+6 d=0.43<1$. The same conclusion holds in all cases. 0 is the unique common fixed point of f, g and T. Also any fixed point of f is a fixed point of g and T and conversely.

Example 3.5. Let $X=[0,1]$ and $G(x, y, z)=\max \{|x-y|,|y-z|,|z-x|\}$ be a G-metric on X. Define $f, g: X \rightarrow X, T: X \rightarrow C B(X)$ by $f(x)=\frac{x}{4}, g(x)=\frac{x}{8}$ and $T(x)=\left[0, \frac{x}{16}\right]$. without loss of generality, we assume that $z \leq y \leq x$. Consider

$$
\begin{aligned}
G(x, y, z) & =\max \{|x-y|,|y-z|,|z-x|\}=x-z \\
G(x, f x, f x) & =\max \left\{\left|x-\frac{x}{4}\right|,\left|\frac{x}{4}-\frac{x}{4}\right|,\left|\frac{x}{4}-x\right|\right\}=\frac{3 x}{4} \\
G(y, g y, g y) & =\max \left\{\left|y-\frac{y}{8}\right|,\left|\frac{y}{8}-\frac{y}{8}\right|,\left|\frac{y}{8}-y\right|\right\}=\frac{7 y}{8} \\
G(z, T z, T z) & =2 d_{G}(z, T z)=2 \inf _{t \in T z}\{G(z, t, t)+G(t, z, z)\} \\
& =4 \inf _{t \in T z}|z-t|=4\left(z-\frac{z}{10}\right)=\frac{15 z}{4}
\end{aligned}
$$

Now,

$$
\begin{aligned}
H_{G}(f x, g y, T z) & =\max \left\{\left|\frac{x}{4}-\frac{y}{8}\right|, \frac{x}{4}, \frac{y}{8}\right\} \\
& =\frac{x}{4} \\
& \leq \frac{1}{4}(x-z)+\frac{z}{4} \\
& \leq \frac{1}{4}(x-z)+\frac{x}{12}+\frac{y}{12}+\frac{z}{12} \\
& \leq \frac{1}{4}(x-z)+\frac{1}{9}\left(\frac{3 x}{4}\right)+\frac{2}{21}\left(\frac{7 y}{8}\right)+\frac{1}{45}\left(\frac{15 z}{4}\right) \\
& =a G(x, y, z)+b G(x, f x, f x)+c G(y, g y, g y)+d G(z, T z, T z)
\end{aligned}
$$

Thus (3.2) is satisfied for $0<a+2 b+2 c+6 d=0.79<1$. 0 is the unique common fixed point of f, g and T. Also any fixed point of f is a fixed point of g and T and conversely.

Theorem 3.6. Let (X, G) be a G-metric space. Assume that $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$ satisfy the following condition

$$
\begin{equation*}
G(f x, g y, T z) \leq a[G(y, f x, f x)+G(z, g y, g y)+G(x, T z, T z)] \tag{3.3}
\end{equation*}
$$

for all $x, y, z \in X$, where $0<a<\frac{1}{12}$. Then f, g and T have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T. Assume that $p \in X$ is such that $f p=p$. Now, we show that $p=g p=T p$. If it is not the case, then for $p \neq g p$ and $p \notin T p$,

Case 1: If $g p \notin T p$, we have

$$
\begin{aligned}
G(p, g p, T p) & \leq H_{G}(f p, g p, T p) \\
& \leq a[G(p, f p, f p)+G(p, g p, g p)+G(p, T p, T p)] \\
& \leq a[G(p, p, p)+G(p, g p, T p)+4 G(p, g p, T p)] \\
& \leq 5 a G(p, g p, T p)
\end{aligned}
$$

which is a contradiction.
Case 2: If $g p \in T p$, we have

$$
\begin{aligned}
G(p, g p, g p) & \leq H_{G}(f p, g p, T p) \\
& \leq a[G(p, f p, f p)+G(p, g p, g p)+G(p, T p, T p)] \\
& \leq a[G(p, p, p)+G(p, g p, g p)+6 G(p, g p, g p)] \\
& \leq 7 a G(p, g p, g p)
\end{aligned}
$$

which is a contradiction. Analogously, following the similar arguments to those given above, we obtain a contradiction for $p \neq g p$ and $p \notin T p$ and $g p \in T p$
or for $p \neq g p$ and $p \in T p$ or for $p=g p$ and $p \notin T p$. Hence in all the cases, we conclude that $p=g p \in T p$. The same conclusion holds if $p=g p$ or $p \in T p$.

Next, we will show that f, g and T have a unique common fixed point. Suppose x_{0} is an arbitrary point in X. Define $\left\{x_{n}\right\}$ by $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}$, $x_{3 n+3} \in T x_{3 n+2}, n=0,1,2, \ldots$. If $x_{n}=x_{n+1}$ for some n, with $n=3 m$, then $p=x_{3 m}$ is a fixed point of f and, by the first step, p is a common fixed point for f, g and T. The same holds if $n=3 m+1$ or $n=3 m+2$. Now, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, we have

$$
\begin{aligned}
& G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f x_{3 n}, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & a\left[G\left(x_{3 n+1}, f x_{3 n}, f x_{3 n}\right)+G\left(x_{3 n+2}, g x_{3 n+1}, g x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n}, T x_{3 n+2}, T x_{3 n+2}\right)\right] \\
\leq & a\left[G\left(x_{3 n+1}, x_{3 n+1}, x_{3 n+1}\right)+G\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+2}\right)\right. \\
& \left.+6 G\left(x_{3 n}, x_{3 n+3}, x_{3 n+3}\right)\right] \\
\leq & 6 a\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+1}\right)+G\left(x_{3 n+1}, x_{3 n+3}, x_{3 n+3}\right)\right] \\
\leq & 6 a\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right]
\end{aligned}
$$

that is

$$
(1-6 a) G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq 6 a G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

Hence,

$$
G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq \lambda G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

where $\lambda=\frac{6 a}{1-6 a}$. Obviously $0<\lambda<1$. Continue the above process, we obtain for each n,

$$
G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \leq \lambda G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq \cdots \leq \lambda^{n+1} G\left(x_{0}, x_{1}, x_{2}\right)
$$

As the proof of Theorem 3.1, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a G-Cauchy sequence. By \bar{G}-completeness of X, there exists $u \in X$ such that $\left\{x_{n}\right\}$ converges to u as $n \rightarrow \infty$. We claim that $f u=u$. If not, then consider

$$
\begin{aligned}
& G\left(f u, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f u, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & a\left[G\left(x_{3 n+1}, f u, f u\right)+G\left(x_{3 n+2}, g x_{3 n+1}, g x_{3 n+1}\right)+G\left(u, T x_{3 n+2}, T x_{3 n+2}\right)\right] \\
\leq & a\left[G\left(x_{3 n+1}, f u, f u\right)+G\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+2}\right)+6 G\left(u, x_{3 n+3}, x_{3 n+3}\right)\right] .
\end{aligned}
$$

Taking limit $n \rightarrow \infty$, we obtain that

$$
G(f u, u, u) \leq a G(u, f u, f u) \leq 2 a G(f u, u, u)
$$

a contradiction. Hence $f u=u$. Similarly it can be shown that $g u=u$ and $u \in T u$.
Now we show that u is unique. For this, assume that there exists another point
$v \in X$ such that $v=f v=g v \in T v$, then

$$
\begin{aligned}
G(u, v, v) & \leq H_{G}(f u, g v, T v) \\
& \leq a[G(v, f u, f u)+G(v, g v, g v)+G(u, T v, T v)] \\
& \leq a[G(v, u, u)+G(v, v, v)+6 G(u, v, v)] \\
& \leq a[2 G(u, v, v)+6 G(u, v, v)] \\
& \leq 8 a G(u, v, v),
\end{aligned}
$$

which implies that $G(u, v, v)=0$, and $u=v$. Hence u is a unique common fixed point of f, g and T.

Theorem 3.7. Let (X, G) be a G-metric space. Assume that $f, g: X \rightarrow X$ and $T: X \rightarrow C B(X)$ satisfy the following condition

$$
\begin{equation*}
G(f x, g y, T z) \leq k[G(x, f x, f x)+G(y, g y, g y)+G(z, T z, T z)] \tag{3.4}
\end{equation*}
$$

for all $x, y, z \in X$, where $0<k<\frac{1}{8}$. Then f, g and T have a unique common fixed point in X. Moreover, any fixed point of f is a fixed point of g and T and conversely.

Proof. First, we will prove that any fixed point of f is a fixed point of g and T. Assume that $p \in X$ is such that $f p=p$. Now, we prove that $p=g p=T p$. If it is not the case, then for $p \neq g p$ and $p \notin T p$,

Case 1: If $g p \notin T p$, we have

$$
\begin{aligned}
G(p, g p, T p) & \leq H_{G}(f p, g p, T p) \\
& \leq k[G(p, f p, f p)+G(p, g p, g p)+G(p, T p, T p)] \\
& \leq k[G(p, p, p)+G(p, g p, T p)+4 G(p, g p, T p)] \\
& \leq 5 k G(p, g p, T p),
\end{aligned}
$$

which is a contradiction.
Case 2: If $g p \in T p$, we have

$$
\begin{aligned}
G(p, g p, g p) & \leq H_{G}(f p, g p, T p) \\
& \leq k[G(p, f p, f p)+G(p, g p, g p)+G(p, T p, T p)] \\
& \leq k[G(p, p, p)+G(p, g p, g p)+6 G(p, g p, g p)] \\
& \leq 7 k G(p, g p, T p),
\end{aligned}
$$

which is a contradiction. Analogously, following the similar arguments to those given above, we obtain a contradiction for $p \neq g p$ and $p \notin T p$ and $g p \in T p$ or for $p \neq g p$ and $p \in T p$ or for $p=g p$ and $p \notin T p$. Hence in all the cases, we conclude that $p=g p \in T p$. The same conclusion holds if $p=g p$ or $p \in T p$.

Next, we will show that f, g and T have a unique common fixed point. Suppose x_{0} is an arbitrary point in X. Define $\left\{x_{n}\right\}$ by $x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}$, $x_{3 n+3} \in T x_{3 n+2}, n=0,1,2, \ldots$. If $x_{n}=x_{n+1}$ for some n, with $n=3 m$, then
$p=x_{3 m}$ is a fixed point of f and, by the first step, p is a common fixed point for f, g an $\mathrm{d} T$. The same holds if $n=3 m+1$ or $n=3 m+2$. Now, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, we have

$$
\begin{aligned}
& G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f x_{3 n}, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & k\left[G\left(x_{3 n}, f x_{3 n}, f x_{3 n}\right)+G\left(x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right)\right. \\
& \left.+G\left(x_{3 n+2}, T x_{3 n+2}, T x_{3 n+2}\right)\right] \\
\leq & k\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+1}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right)+4 G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right] \\
\leq & k\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)+4 G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right]
\end{aligned}
$$

that is

$$
(1-5 k) G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq k G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)
$$

Hence,

$$
G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq \lambda G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right),
$$

where $\lambda=\frac{k}{1-5 k}$. Obviously $0<\lambda<1$. Continue the procedure to obtain for each n,

$$
G\left(x_{n+1}, x_{n+2}, x_{n+3}\right) \leq \lambda G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq \cdots \leq \lambda^{n+1} G\left(x_{0}, x_{1}, x_{2}\right) .
$$

Following similar arguments to those given in Theorem 3.1, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a G-Cauchy sequence. By G-completeness of X, there exists $u \in X$ such that $\left\{x_{n}\right\}$ converges to u as $n \rightarrow \infty$. We claim that $f u=u$. If not, then consider

$$
\begin{aligned}
& G\left(f u, x_{3 n+2}, x_{3 n+3}\right) \\
\leq & H_{G}\left(f u, g x_{3 n+1}, T x_{3 n+2}\right) \\
\leq & k\left[G(u, f u, f u)+G\left(x_{3 n+1}, g x_{3 n+1}, g x_{3 n+1}\right)+G\left(x_{n+2}, T x_{3 n+2}, T x_{3 n+2}\right)\right] \\
\leq & k\left[G(u, f u, f u)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right)+6 G\left(x_{n+2}, x_{3 n+3}, x_{3 n+3}\right)\right] .
\end{aligned}
$$

Taking limit $n \rightarrow \infty$, we obtain that

$$
G(f u, u, u) \leq k G(u, f u, f u) \leq 2 k G(f u, u, u),
$$

a contradiction. Hence $f u=u$. Similarly it can be shown that $g u=u$ and $u \in T u$.
To prove the uniqueness, suppose that v is another common fixed point of f, g and T, then

$$
\begin{aligned}
G(u, v, v) & \leq H_{G}(f u, g v, T v) \\
& \leq k[G(u, f u, f u)+G(v, g v, g v)+G(v, T v, T v)] \\
& \leq k[G(u, u, u)+G(v, v, v)+6 G(v, v, v)] \\
& \leq 0
\end{aligned}
$$

which gives that $G(u, v, v)=0$, and $u=v$. Hence, u is a unique common fixed point of f, g and T.

Remark 3.8.

(1) Theorem 3.1 improves Theorem 2.1 of 10 in case $\alpha+3 \beta+4 \gamma<1$.
(2) Theorem 3.2 improves Theorem 2.4 of 10] in case $0<a+b+c+d<1$.
(3) Theorem 3.6 improves Theorem 2.8 of 10 in case $0 \leq a \leq \frac{1}{2}$.
(4) Theorem 3.7 improves Theorem 2.11 of 10 in case $0<k<\frac{1}{3}$.

Acknowledgement(s) : The authors are grateful to the referee for their useful comments, which help to improve the manuscript greatly. Moreover, the first author was supported by CMU Junior Research Fellowship Program.

References

[1] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 289-297.
[2] M. Abbas, W. Shatanawi, T. Nazir, Common coupled coincidence and coupled fixed point of C-contractive mappings in generalized metric spaces, Thai J. Math. 13 (2) (2015) 339-353.
[3] L. Gholizadeh, R. Saadati, W. Shatanawi, S.M. Vaezpour, Contractive mapping in generalized ordered metric spaces with application in integral equations, Mathematical Problems in Engineering 2011 (2011) doi:10.1155/2011/380784.
[4] W. Shatanawi, M. Abbas, Some fixed point results for multi-valued mappings in ordered G-metric spaces, Gazi University Journal of Science 25 (2012) 385392.
[5] W. Shatanawi, M. Postolache, Some fixed point results for a G-weak contraction in G-metric spaces, Abstract and Applied Analysis 2012 (2012) doi:10.1155/2012/815870.
[6] M. Abbas, B. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009) 262-269.
[7] G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences 9 (4) (1986) 771-779.
[8] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric space, Far East Journal of Mathematical Sciences 4 (1996) 199-215.
[9] Z. Mustafa, H. Obiedat, F. Awawdeh, Some common fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theorey and Applications 2008 (2008) doi:10.1155/2008/189870.
[10] M. Abbas, T. Nazir, P. Vetro, Common fixed point results for three maps in G-metric spaces, Filomat 25 (4) (2017) 1-17.
[11] A. Kaewcharoen, A. Kaewkhao, Common fixed points for single-valued and multi-valued mappings in G-metric spaces, Int. J. Math. Anal. 5 (2011) 17751790.
(Received 24 September 2015)
(Accepted 24 April 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

