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1 Introduction

1.1 Magic Squares

A magic square of order n is a square with n rows and n columns filled with
positive integers such that the sum of these integers in each row, in each column
and in each of the two principal main diagonals is the same.

If the integers forming a n× n magic square are consecutive positive numbers
from 1 to n2, the square is said to be a normal magic square of the nth order.
Otherwise it is a non-normal magic square which integers are not restricted
in 1 to n2. However, magic squares are used as a general term to cover both the
normal and non-normal ones [1]. For example, the normal magic square of the 3th
order is shown below.

8 1 6
3 5 7
4 9 2

The sum of numbers on each row, each column and the each principle diagonal
is called the magic constant or magic sum of the magic square. For a normal
magic square of order n, the magic sum is 1

2n(n2 + 1). For example, the magic
constants of normal magic squares of orders n = 3, 4, 5, 6, 7 and 8 are 15, 34, 65,
111, 175 and 260, respectively [1].

A normal magic square of order 3 has exactly one but it can be rotated and
reflected to produce 8 trivially distinct squares. In 1675, Bernard Frenicle de
Bessey was the first who found that there were exactly 880 normal magic squares
of order 4 and it could be generated to 7, 040 different magic squares.

In 1973, Richard Schroeppel was the first to compute the number of magic
squares of order 5. He found that there were exactly 68, 826, 306 magic squares
which could be 275, 305, 224 of 5 × 5 magic squares. However, for the 66 case,
the exact number of all magic squares is unknown but it was estimated to be
approximately 1.7745± 0.0016× 1019 magic squares [2].

In 2015, Jos M. Pacheco and Isabel Fernndez had a trip to Barcelona. They
observed a non-normal magic square of order 4 in the Gauds Sagrada Famlia
Temple in Barcelona. It is a large magic square artwork over 1m1m, located in
the wall. Its magic constant is 33 and it features on rows, columnns, diagonals
and 2/2 broken diagonals (not all broken diagonals), and on any 22 subsquares [3].
Their study emphasised the role of more or less hidden symmetries in preserving
the magic constant.

1 14 14 4
11 7 6 9
8 10 10 5
13 2 3 15

A magic square is said to be pandiagonal (sometimes diabolic or Nasik) if
the magic square has additional properties that its all broken diagonals also add
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up to the magic constant. For example, the magic square of order 4 below was
found in Khajurado, India in 1904 [1].

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

It is a pandiagonal magic square because not only the numbers in rows,
columns and pricipal diagonals add to a magic constant 34, but also the num-
bers in all broken diagonals add to 34, such as 7 6 10 11, 2 12 15 5, 16 13 1 4,
14 2 3 15, 1 11 16 6 and 12 8 5 9.

In 1937, Barkley Rosser and R. J. Walker studied on normal 4 × 4 magic
squares. They found there were 384 pandiagonal magic squares by using abstract
algebra [4].

1.2 Lanna Yantra

Lanna was a kingdom located in present-day Northern Thailand from the 13th
to 18th centuries. Its center was in Chiang Mai. Lanna had their own culture,
language and letters [5].

Lanna Yantra is talisman of Lanna people. It was recorded by using Lanna
letters or Myanmar numbers in fabric or thin silver or copper plates. There are
a lot of Lanna Yantra with different supernatural. Lanna people kept Yantra at
home or brought it with themselves [6].

In 2011, Jeeraporn Kongjai [7] mentioned in her work that Atichart Kettapun
and his research team interested in one of Lanna Yantra in a form of magic square
containing many interesting mathematics patterns. Lanna People believed that
this Yantra could help them have safe journeys [6]. The numbers in that Yantra
are Myanmar numbers used widely in Lanna Kingdom. They translated these
numbers into Arabic numbers as shown below.

However, they agreed that the number in the 3rd row the 2nd column should
be 20 because of following reasons:

1. Since it was copied from generations to generations by hand writing, a mis-
take could occur.

2. The Myanmar numbers 1 and 2 are very similar. The main different is the
length of bottom tails. Therefore, error in reading and copying numbers could
happen. The table below shows the Arabic numbers and Myanmar numbers.
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3. It is clear that if we change the number 10 in the 3rd row and the 2nd
column to be 20, we will get a magic square of order 4 with the magic constant
56. Moreover, this magic square is pandiagonal. Since we have found many magic
squares in Lanna Yantra, it is reasonable to change 10 to be 20.

Thus, they changed the number 10 in that position to 20 and got the following
square.

16 14 18 8
19 7 17 13
10 20 12 14
11 15 9 21

The square is a magic square of order 4 with the magic constant 56. His team
called it Buddha Khunnung 56 Yantra, as used by many people nowadays,
which means the number of syllables in one of Buddhism prayer [6].

In this paper, we focus on finding the number of all pandiagonal magic squares
of order 4 generated from numbers found in the Buddha Khunnung 56 Yantra by
using a concept group action in Abstract Algebra.

However, we reduce the numbers 7-12 with double 14 in the Buddha Khunnung
56 Yantra to the number 1-15 with double 8 by substracting 6 from each original
number. Therefore, the magic constant is changed from 56 to 32. We reduce the
number for making it similar to a normal magic square and easier to study.

After reduced, the new square is the following.

10 8 12 2
13 1 11 7
4 14 6 8
5 9 2 15

We call this new square the specific Lanna magic square. Clearly, this
square is a pandiagonal magic square of order 4 with the magic constant 32.

Moreover, we call pandiagonal magic squares of order 4 created by numbers
1− 15 with repeated number 8 that pandiagonal Lanna magic squares. That
means the sum of each row, each column, each of 2 main diagonals and each of 6
broken diagonals is 32. An example is shown below.
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2 7 13 10
12 11 1 8
3 6 14 9
15 8 4 5

2 Preliminaries

We show some important base concepts of Abstract Algebra for our study
here. For more details, see Algebra by Thomas W. Hungerford [8].

Let A be the finite set {1, 2, 3, , n }. The group of all permutations of A is a
symmetric group on n letters, and is denoted by Sn. Note that Sn has n! elements,
where n! = n(n− 1)(n− 2)(3)(2)(1).

Let G be a group and let ai ∈ G for i ∈ I. The smallest subgroup of G
containing {ai|i ∈ I} is the subgroup generated by {ai|i ∈ I} and denoted
by < ai >. If this subgroup is G, then < ai > generates G and the ai are
generators of G.

If there is a finite set {ai|i ∈ I} that generates G, then G is finitely generated.
If a ∈ G, the subgroup < a > is called the cyclic subgroup generated by a.

Theorem 2.1. If G is a group and X is a nonempty subset of G, then the subgroup
< X > generated by X consists of all finite products an1

1 an2...
2 anm

m (ai ∈ X;ni ∈ Z).
In particular for every a ∈ G,< a >= {an |n ∈ Z}.

The order of an element a ∈ G is the least positive integer n such that an = 1.
If no such integer exists, the order of a is infinite. We denote it by |a|.

An action of a group G on a set S is a function G× S → S (usually denoted
by (g, x) 7→ gx) such that for all x ∈ S and g1, g2 ∈ G:

ex = x and (g1g2)x = g1(g2x).

When such an action is given, we say that G acts on the set S.

Theorem 2.2. Let G be a group that acts on a set S.
1. The relation on S defined by x ∼ x′ ↔ gx = x′ for some g ∈ G is an equivalence
relation.
2. For each x ∈ S,Gx = {g ∈ G | gx = x} is a subgroup of G.

The equivalence classes of the equivalence relation of Theorem 2.2(1) are called
orbits of G on S; the orbit of x ∈ S is denoted x̄. The subgroup Gx is called the
stabilizer of x.

Theorem 2.3. If a group G acts on a set S, then the cardinal number of the orbit
of x ∈ S is the index [G : Gx].

Definition 2.4. Let G be a group acting on a set S. G is transitive if for each
x, y ∈ S, there exists g ∈ G such that gx = y.

Theorem 2.5. Let G be a transitive group acting on a set S. For x ∈ S, the orbit
x of x is S (or there is only one orbit). (Theorem 2.5 is the exercise 6(a) in page
93 of [8]).
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3 Pandiagonal Lanna Magic Squares

Let L be a pandiagonal Lanna magic square written as L =

a b c d
e f g h
i j k l
m n o p

and let T1, T2, T3, T4 and T5 be transformations of the pandiagonal Lanna magic
square where
T1 is the reflection about the a, f, k, p diagonal,
T2 is the rotation through 90 ◦ counter-clockwise,
T3 is the move of the first column to the last column,
T4 is the move of the first row to the last row,
T5 is the transformation of the pandiagonal Lanna magic square L into

a d h e
b c g f
n o k j
m p l i

.

If we consider the transformations T1, T2, T3, T4 and T5 of pandiagonal Lanna
magic squares L in permutation forms of subgroups of S16 where the numbers 1-16
represent the positions in the square

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

.

We get
T1: (1)(6)(11)(16)(2 5)(3 9)(4 13)(7 10)(8 14)(12 15),
T2: (1 13 16 4)(2 9 15 8)(3 5 14 12)(6 10 11 7),
T3: (1 4 3 2)(5 8 7 6)(9 12 11 10)(13 16 15 14),
T4: (1 13 9 5)(2 14 10 6)(3 15 11 7)(4 16 12 8) and
T5: (1)(7)(11)(13)(2 5 4)(3 6 8)(9 16 14)(10 12 15).

When (i1 i2 · · · ir) is a cycle of length r or a r-cycle. The notation (i1 i2 · · · ir)
means that i1 is replaced by i2, i2 by i3, · · · , ir−1 by ir and ir by i1. Clearly that
the transformations T1, T2, T3, T4, T5 ∈ S16.

Now we will prove that a pandiagonal Lanna magic square preserves to be a
pandiagonal Lanna magic square after applying the transformations T1, T2, T3, T4
and T5.

Since L is a pandiagonal Lanna magic square, for all 4 rows, 4 columns, 2 main
diagonals (i.e. a, f, k, p and d, g, j,m) and 6 broken diagonals (i.e. a, n, k, h, e, b, o, l
and i, f, c, p), the sum of each one is 32.
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T1 : By applying the transformation T1 to L, we have

T1L =

a e i m
b f j n
c g k o
d h l p

.

The transformation T1 carries rows into columns and columns into rows.
Therefore, the sum of each row, column, main diagonal and broken diagonal is
32. Thus, a pandiagonal Lanna magic square remains a pandiagonal Lanna magic
square after applying T1.

T2 : By applying transformation T2 to L, we have

T2L =

d h l p
c g k o
b f j n
a e i m

.

Similar to the transformation T1, the transformation T2 carries rows into
columns and columns into rows. Therefore, the sum of each row, column, main
diagonal and broken diagonal is 32. Thus, a pandiagonal Lanna magic square
remains a pandiagonal Lanna magic square after applying T2.

T3 : By applying transformation T3 to L, we have

T3L =

b c d a
f g h e
j k l i
n o p m

.

T3 carries rows into rows and columns into columns. Therefore, the sum of
each row, column, main diagonal and broken diagonal is 32. Thus, a pandiagonal
Lanna magic square remains a pandiagonal Lanna magic square after applying T3.

T4 : By applying transformation T4 to L, we have

T4L =

e f g h
i j k l
m n o p
a b c d

.

Similar to the transformation T3, the transformation T4 carries rows into rows
and columns into columns. Therefore, the sum of each row, column, main diagonal
and broken diagonal is 32. Thus, a pandiagonal Lanna magic square remains a
pandiagonal Lanna magic square after applying T4.

For T5, we need the following lemmas.
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Lemma 3.1. The four elements of any 2×2 of a pandiagonal Lanna magic square
add up to 32.

Proof. For a pandiagonal Lanna magic square L, the sum of each row, column and
diagonal is 32. Therefore,
(a+ f + k + p) + (d+ g + j +m) + (e+ f + g + h)+

(i+ j + k + l)− (a+ e+ i+m)− (d+ h+ l + p) = 64
2(f + g + j + k) = 64
f + g + j + k = 32.

By using of transformations T3 and T4, this result can be applied to any square
of order two.

Lemma 3.2. The sum of two opposite corners of any 3×3 of a pandiagonal Lanna
magic square is 16.

Proof. For a pandiagonal Lanna magic square L,
(a+ b+ c+ d) + (i+ j + k + l) + (a+ e+ i+m) + (c+ g + k + o)+
(a+ f + k + p) + (a+ n+ k + h)− (e+ b+ o+ l)− (i+ f + c+ p)−

(m+ j + g + d)− (i+ n+ c+ h) = 64
a+ k = 16.

By using of transformations T3 and T4, this result can be applied to any pair
of two opposite corners of all 3× 3 of a pandiagonal Lanna magic square.

Now we can prove that the transformation T5 preserves a pandiagonal Lanna
magic square properties.

T5 : By applying the transformation T5 to L, we have

T5L =

a d h e
b c g f
n o k j
m p l i

.

By Lemma 3.1 and 3.2, it is easily seen that the transformation T5 applied to
a pandiagonal Lanna magic square remains a pandiagonal Lanna magic square.

We can now conclude that a pandiagonal Lanna magic square remains a pan-
diagonal Lanna magic square after applied transformations T1, T2, T3, T4 and T5.

Let G =< T1, T2, T3, T4, T5 > be a subgroup of S16 generated by T1, T2, T3, T4,
and T5, e be the identity of G, and L be a set of all pandiagonal Lanna magic
squares.

Define F : G× L→ L by (g, L) 7→ gL = L ◦ g,∀g ∈ G,L ∈ L.

Since TiL = L ◦ Ti ∈ L ∀i ∈ {1, 2, 3, 4, 5} and G =< T1, T2, T3, T4, T5 >, we
have F is an action of the group G.
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Theorem 3.3. All pandiagonal Lanna magic squares can be derived from a single
one (the Lanna magic square) by successive transformations of T1, T2, T3, T4, and T5.

Proof. For any pandiagonal Lanna magic square, by using of T3 and T4, 1 can
be brought into the second row and the second column. So, there is no loss of
generality in taking f = 1. By Lemma 3.2, we have p = 15. Then g and h
can be at most 13 and 14. Thus, g + h ≤ 27 and we get e ≥ 4. Similarly,
g ≥ 4, h ≥ 4, b ≥ 4, j ≥ 4, n ≥ 4, a ≥ 4, k ≥ 4 and p ≥ 4.

Using b + c + f + g = 32, e + f + i + j = 32 and Lemma 3.1, we also get
c ≥ 4, i ≥ 4. Thus, 2 and 3 can only occur in d, l, m and o.

If 2 occurs in o, it can be brought into l by taking T5 twice. If it occurs in l,
it can be brought into d by taking T3 twice. If 2 occurs in m, it can be brought
into d by taking T1. Hence, we take d = 2 and we then get j = 14. If 3 occurs in
l, it can be brought into o by taking T5. If 3 occurs in m, it can be brought into
o by taking T3 twice. So, one can take o = 3 and then e = 13. By Lemma 3.1, we
also get i = 4 and c = 12.

Now m = 15 − a, g = a + 1, n = a − 1, b = 18 − a. By Lemma 3.1,
k = 16 − a, l = a − 2 and h = 17 − a. So, we have to find values of a such that
15 − a, a + 1, a − 1, 18 − a, 16 − l, a − 2 and 17 − a are 5, 6, 7, 8, 9, 10 and 11 in
some order. By substitution, a can be only 7 or 10.

For a = 7, we get

7 11 12 2
13 1 8 10
4 14 9 5
8 6 3 15

and for a = 10, we get exactly the same as the Lanna magic square

10 8 12 2
13 1 11 7
4 14 6 8
5 9 3 15

.

The square a = 7 can be the same as the square a = 10 by applying T 2
2 T1T

3
2 T5T

2
3 .

Thus, all pandiagonal Lanna magic squares can be obtained from the Lanna
magic square by applying application T1, T2, T3, T4, and T5 .

From Theorem 3.3, we can say that the group G =< T1, T2, T3, T4, T5 > acts
on L is transitive.

The proof of the next theorem is similar to Theorem 4 in [4]. However, for the
sake of completeness, we describe below.

Theorem 3.4. The order of subgroup of S16 generated by T1, T2, T3, T4 and T5 is
384.
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Proof. If TX and TY are two transformations, we denote TXTY as the transfor-
mation effected by applying TY first and then TX .

Consider (a) T2T1 = T1T
3
2 , (b) T3T1 = T1T4, (c) T4T1 = T1T3, (d) T3T2 =

T2T4, (e) T4T2 = T2T
3
3 , (f) T4T3 = T3T4, (g) T5T1 = T1T

2
2 T3T4T5, (h) T 2

5 T1 =
T 2
2 T3T4T

2
5 , (i) T5T2 = T 3

2 T3T4T5, (j) T 2
5 T2 = T1T2T3T4T

2
5 , (k) T5T3 = T 3

3 T
2
5 ,

(l) T 2
5 T3 = T 2

2 T3T
2
4 T5, (m) T5T4 = T1T

2
2 T4T5, (n) T 2

5 T4 = T1T
2
2 T4T5 and (o)

T 2
1 = T 4

2 = T 4
3 = T 4

4 = T 3
5 . They are identical transformations. By inspection

from (a)-(o), for any product of T1, T2, T3, T4 and T5, all can get T1 to the left, then
T2 next to T1, then T3, T4 and T5 are on the right. So, any product of T1, T2, T3, T4
and T5 is equal to the form Tα1 T

β
2 T

γ
3 T

δ
4 T

ε
5 , [4].

It is clearly that T2, T3, T4 are independent. Moreover, T5 or T 2
5 is not the

product of T1, T2, T3 and T4 since all of T1, T2, T3 and T4 carry rows into rows,
columns into columns, columns into rows or rows into colums which can not yield
neither T5 nor T 2

5 . Besides the transformations T2, T3 and T4 preserve the orien-
tation so, T1 is not a product of T2, T3 anad T4.

Therefore, Tα1 T
β
2 T

γ
3 T

δ
4 T

ε
5 = T a1 T

b
2T

c
3T

d
4 T

e
5 if and only if α ≡ a, β ≡ b, γ ≡ c,

δ ≡ d and ε ≡ e, [4].
Hence, the order of subgroups generated by T1, T2, T3, T4, and T5 is 2× 4× 4×

4× 3 = 384.

Theorem 3.5. There are 384 pandiagonal Lanna magic squares.

Proof. Since G acts on L, for each L ∈ L there is only the identity e of G such
that gL = L. So, GL =< e >.

From Theorem 3.3 the group G acts on L is transitive. Therefore, by Theorem
2.5 for L ∈ L we have that the orbit of L is L.

From Theorem 2.3, the cardinal number of the orbit L ∈ L is [G : GL] and from
Theorem 3.4, |G| = 384. We have |L| = |L| = [G : GL] = [G :< e >] = |G| = 384.

Hence, there are 384 pandiagonal Lanna magic squares.

4 Conclusion

In this paper, we try to figure out the number of possible pandiagonal Lanna
magic squares. We start from descibing all 5 transformations and using a concept
of group action in Abstract Algebra to help us generate all pandiagonal Lanna
magic squares. Finally, we found that there were 384 pandiagonal Lanna magic
squares.
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