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1 Introduction

Variational inequality theory is the well known theory, which was introduced
by Stampacchia [1], in 1964. The interesting and fascinating of this theory are
to provide the most natural, direct, simple, unified and efficient framework for a
general treatment of vary of different fields in linear and nonlinear problem. Then,
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the variational inequality theory is simple for application in a wide class of prob-
lems, such as, industry, finance, economics, social and pure and applied sciences,
see [2–6]. Consequently, the variational inequality theory is a power tool and useful
for creating many researches in both theory and applications. By this reasons, this
theory has been attracted the attention from many authors by using this idea and
technique to develop many researches. A generalization of variational inequality is
the quasi variational inequality, which was studied, in 1978, by A. Bensoussan and
J. Lion [7] that depended on some problems of random impulse control. The quasi
variational inequality problem has been applied in various aspects, for instance,
mathematical programming, optimization and equilibrium problems of economics
and transportation, social and game theory, etc. (see [8–12]). Get inspired by the
variety of the previous applications, many researchers attend to focus on the quasi
variational inequality problem.

On the other hand, many problems which was studied in the past was anal-
ysed in the concept of convex sets but it is not enough for applications. Then,
many researchers have been needed to develop the various problems on nonconvex
sets (see [13–17]). Starting from in 1995, F. H. Clarke et. al. [18] introduced and
presented the nonconvex sets as the proximally smooth set. This set attracted
many researchers for solving problems on nonconvex set, especially the variational
inequality problems. So, this implies to obtain many qualitative paper for applica-
tion. In 2003, M. Bounkhel et. al. [19] introduced a formulation of the set-valued
variational inequality problems on nonconvex set as uniformly prox-regular set and
showed the convergence of such solution. Subsequently, in 2013, J. Suwannawit and
N. Petrot [20] considered and analyzed the quasi-variational inequality problem
on uniformly prox-regular set and showed the existence and convergence of such
problem and, moreover, some conditions which was considered in M. Bounkhel et.
al. [19] was omitted.

Furthermore, the sensitivity analysis is still the motivation to develop the
variational inequality problems. The sensitivity analysis of variational inequality,
which was introduced by S. Dafermos [21] in 1988, was considered to generalize the
variational inequality problem by using some conditions for the local uniqueness,
continuity and differentiability of a solution of parametric variational inequalities.
Then, the sensitivity analysis of variational inequality is useful for many appli-
cations, such as, for analysis and calculation the transportation equilibrium, for
planning the governing system equilibrium and for designing the other equilib-
rium. By this results, in mathematical and engineering, the sensitivity analysis of
variational inequality has still many useful because it can be obtained some new
ideas for creating many researches. The following papers are the example of the
sensitivity analysis in variational inequality. In 1992, R. N. Mukherjee and H. L.
Verma [22] studied the sensitivity analysis of solutions of generalized variational
inequality which extended S. Dafermos [23]. In 1997, M. A. Noor [24] used the
Wiener-Hopf equations technique without assuming the differentiability to study
a sensitivity analysis for quasi-variational inequalities on nonconvex sets. Later, in
1999, A. Moudafi and M. A. Noor [25] studied and analyzed the sensitivity analysis
of variational inclusion relying on Wiener-Hopf equation techniques. After that,
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by interesting concept of sensitivity analysis and nonconvex sets, this implies that,
in 2013, M. A. Noor and K. I. Noor [26] studied and considered the sensitivity
analysis of the general nonconvex variational inequalities by using the projection
method and they considered the equivalence of the general nonconvex variational
inequality with Wiener-Hopf equation. In recent times, J. K. Kim [27] showed
the sensitivity analysis for general nonlinear nonconvex set-valued variational in-
equalities and presented the parametric general Wiener-Hopf equation of a such
problem.

By the above motivation, we are interested to consider the sensitivity analysis
for the quasi variational inequality on uniformly prox-regular sets. The equivalent
relation of the parametric quasi variational inequality problem and a parametric
Wiener-Hopf equation is showed. We desire that our results extend and improve
the literature results for the variational inequalities.

2 Preliminaries

In this section, we will recall some basic concepts and useful results which will
be used in this paper.

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let K be a closed subset of H. For each K ⊆ H, we
denote by d(·,K) for the usual distance function on H with respect to K, that is,
d(u,K) = infv∈K ‖u− v‖, for all u ∈ H. A point v ∈ K is called the closest point
or the projection of u onto K if d(u,K) = ‖u − v‖. The set of all such closest
points is denoted by ProjK(u), that is , ProjK(u) = {v ∈ K : d(u,K) = ‖u−v‖}.
The proximal normal cone to K at u is given by

NP
K(u) = {v ∈ H : ∃ρ > 0 such that u ∈ ProjK(u+ ρv)}.

Notice that, ProjK = (I +NP
K)−1 where I is an identity operator.

In 1995, Clarke et al. [18] presented a new class of nonconvex sets, namely
proximally smooth sets, and this sets are important to apply in many fields such
as optimization and dynamical systems. In recent years, many researchers studied
and analyzed variational inequality problem and variational inclusion problem in
the sense of proximally smooth sets (see [3, 14–17,19,20]). The original definition
of proximally smooth set was presented in the sense of the differentiability of the
distance function (see [18,28]), and we now will recall the definition of proximally
smooth sets in the following characterization, which was proved in [29].

Definition 2.1. For a given r ∈ (0,+∞], a subset K of H is said to be uniformly
prox-regular with respect to r, say, uniformly r-prox-regular set, if for all x ∈ K
and for all 0 6= z ∈ NP

K(x), one has〈
z

‖z‖
, x− x

〉
≤ 1

2r
‖x− x‖2, for all x ∈ K.
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Remark 2.2. For the case of r = ∞, the uniform r-prox-regularity K is equiv-
alent to the convexity of K (see [18]). Moreover, it is known that the class of
uniformly prox-regular sets is sufficiently large to include the class p-convex sets,
C1,1submanifolds (possibly with boundary) of H, the images under a C1,1 diffeo-
morphism of convex sets and many other nonconvex sets, see [28, 29].

For the sake of simplicity, from now on, we will use the following notation: for
each r ∈ (0,+∞], we write

Kr := {x ∈ H : d(x,K) < r}.

Lemma 2.3. [29] Let r ∈ (0,+∞] and K be a nonempty closed subset of H. If K
is a uniformly r-prox-regular set, then the following holds

(i) For all x ∈ Kr, P rojK(x) 6= ∅;

(ii) For all s ∈ (0, r), P rojK is a r
r−s -Lipschitz on Ks;

(iii) The proximal normal cone is closed as a set-valued mapping.

Definition 2.4. A set-valued mapping C : H → 2H is said to be a κ-Lipschitz
continuous if there exists a real number κ > 0 such that

|d(y, C(x))− d(y′, C(x′))| ≤ ‖y − y′‖+ κ‖x− x′‖

for all x, x′, y, y′ ∈ H.

Lemma 2.5. [19] Let r ∈ (0,+∞] and let C : H → 2H be a κ-Lipschitz set
valued mapping with uniformly r-prox regular values then the following closedness
property holds: ”For any xn → x∗, yn → y∗ and un → u∗ with yn ∈ C(xn) and
un ∈ NC(xn)(yn), one has u∗ ∈ NC(x∗)(y

∗).”

Let T : H → H be a mapping and C : H → C(H) be a set-valued mapping,
where C(H) is a family of all nonempty closed subsets of H. In [20], the authors
considered the existence theorems of the following quasi variational inequality
problem on uniformly prox regular sets: find x∗ ∈ C(x∗) such that

−Tx∗ ∈ NP
C(x∗)(x

∗). (NQVI)

Furthermore, in [19], M. Bounkhel showed that, for r ∈ (0,+∞], the problem
(NQVI) is equivalent to the following problem: find x∗ ∈ C(x∗) such that

〈T (x∗), x− x∗〉+
‖Tx∗‖

2r
‖x− x∗‖2 > 0, for all x ∈ C(x∗), (NQVI’)

where C : H → [Cl(H)]r is a set-valued mapping that [Cl(H)]r denotes for class
of all uniformly r-prox regular subsets of H.
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In this work, we are interested to study sensitivity analysis of the quasi vari-
ational inequality problem on uniformly-prox regular sets. That is, we now intro-
duce the parametric problem of (NQVI) as follows. Let Ω be a subset of H, in
which the parameter λ take values. Let T : H × Ω → H be a nonlinear mapping
and C : H ×Ω→ 2H/{∅} be a set-valued mapping. For each λ ∈ Ω, the paramet-
ric quasi variational inequality problem on uniformly prox-regular sets is to find
x∗ ∈ C(x∗, λ) =: Cλ(x∗) such that

0 ∈ T (x∗, λ) +NP
Cλ(x∗)(x

∗), (PNQV Iλ)

where C(· , λ) is uniformly prox-regular sets.

In this work, we will concern with the following class of mappings.

Definition 2.6. A mapping T : H × Ω → H is said to be a ξλ- locally Lipschitz
continuous if for each λ ∈ Ω, there exists a real number ξλ > 0 such that

‖T (x, λ)− T (y, λ)‖ ≤ ξλ‖x− y‖,

for all x, y ∈ H. For the case ξλ ∈ (0, 1), the mapping T is said to be a ξλ-locally
contractive mapping.

Definition 2.7. A mapping T : H × Ω → H is said to be a βλ-locally strongly
monotone if for each λ ∈ Ω, there exists a real number βλ > 0 such that

〈T (x, λ)− T (y, λ), x− y〉 ≥ βλ‖x− y‖2,

for all x, y ∈ H.

3 Main Results

We will start by the following lemma, which is important tool to obtain our
main results.

Lemma 3.1. Let λ ∈ Ω. Let T : H × Ω → H and Cλ : H × {λ} → [Cl(H)]r be
mappings. Then, we have the following statements:

1. if x∗ is a solution of the problem (PNQV Iλ), then for any constants η > 0
we have

x∗ = ProjCλ(x∗) (x∗ − ηT (x∗, λ)) ,

2. if there is a constant η > 0 such that

x∗ = ProjCλ(x∗) (x∗ − ηT (x∗, λ)) ,

then, x∗ is a solution of the problem (PNQV Iλ).
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Proof. 1. Let x∗ be a solution of the problem (PNQV Iλ). We obtain that

0 ∈ T (x∗, λ) +NP
Cλ(x∗)(x

∗).

Let η > 0 be given. We see that

x∗ − ηT (x∗, λ) ∈ x∗ +NP
Cλ(x∗)(x

∗),

this implies

x∗ − ηT (x∗, λ) ∈
(
I +NP

Cλ(x∗)

)
(x∗).

This means,

x∗ =
(
I +NP

Cλ(x∗)

)−1

(x∗ − ηT (x∗, λ)) .

Hence,

x∗ = ProjCλ(x∗) (x∗ − ηT (x∗, λ)) ,

this proves (i).

2. Assume that there exists a constant η > 0 such that
x∗ = ProjCλ(x∗) (x∗ − ηT (x∗, λ)) . That is

x∗ =
(
I +NP

Cλ(x∗)

)−1

(x∗ − ηT (x∗, λ)) .

It follows that

x∗ − ηT (x∗, λ) ∈ x∗ +NP
Cλ(x∗)(x

∗).

Therefore,

0 ∈ T (x∗, λ) +NP
Cλ(x∗)(x

∗),

this completes the proof.

Next, we will present the parametric Wiener-Hopf equation of the quasi varia-
tional inequality problem on uniformly prox-regular sets. Let (λ, x∗, η) ∈ Ω×H ×
(0,∞) be fixed. We are interesting to find z∗ := z∗(λ, x∗, η) ∈ H such that

0 = QCλ(x∗)(z
∗) + ηT (ProjCλ(x∗)(z

∗), λ), (WH(λ, x∗, η))

where QCλ(x) = I + ProjCλ(x), for all x ∈ H.

In [20], under some suitable control conditions, the authors showed that the
problem (NQVI) has a unique solution. By employing such obtained result, for a
fixed λ ∈ Ω, we let x∗ be a unique solution of the problem (PNQV Iλ). Next, we
will show that, for a given (λ, x∗, η) ∈ Ω×H× (0,∞), the problem (WH(λ, x∗, η))
has a unique solution. To do this, the following lemma is important.
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Lemma 3.2. Let T : H × Ω → H be a mapping and λ be fixed in Ω. Assume
that the mapping ProjCλ satisfies (3.3). Then, the parametric quasi variational
inequality problem on uniformly prox regular sets (PNQV Iλ) has a solution x∗ if
and only if the parametric Wiener-Hopf equation (WH(λ, x∗, η)) has a solution,
z∗ ∈ H with

z∗ = x∗ − ηT (x∗, λ) (3.1)

and

z∗ = ProjCλ(x∗)(z
∗)− ηT (x∗, λ), (3.2)

where η is a positive constant.

Proof. (⇒) Suppose that x∗ is a solution of (PNQV Iλ). Let η be a fixed positive
real number. We now show that z∗ ∈ H, which satisfies (3.1) and (3.2), is a
solution of the problem (WH(λ, x∗, η)). By Lemma 3.1, we know that

x∗ = ProjCλ(x∗)(x
∗ − ηT (x∗, λ)).

Subsequently, it follows, from (3.1) and (3.2), that

z∗ = ProjCλ(x∗)(x
∗ − ηT (x∗, λ))− ηT (ProjCλ(x∗)(x

∗ − ηT (x∗, λ)), λ),

= ProjCλ(x∗)(z
∗)− ηT (ProjCλ(x∗)(z

∗), λ).

Using this one, since QCλ(x∗) = I − ProjCλ(x∗), we obtain that

QCλ(x∗)(z
∗) = −ηT (ProjCλ(x∗)(z

∗), λ).

This yields the required result.
(⇐) Let x∗ ∈ H be such that z∗, which are satisfied by (3.1) and (3.2), is a solution
of the problem (WH(λ, x∗, η)) for some η > 0. Firstly, we note that (3.1) and (3.2)
implies x∗ ∈ Cλ(x∗). Next, we will show that such x∗ is a solution of the problem
(PNQV Iλ). Since z∗ is a solution of the problem (WH(λ, x∗, η)), we know that

0 = (I − ProjCλ(x∗))(z
∗) + ηT (ProjCλ(x∗)(z

∗), λ).

Thus, by using (3.1) and (3.2), we obtain that

0 = z∗ − ProjCλ(x∗)(z
∗) + ηT (ProjCλ(x∗)(z

∗), λ)

= x∗ − ηT (x∗, λ)− ProjCλ(x∗)(z
∗) + ηT (z∗ + ηT (x∗, λ), λ)

= x∗ − ηT (x∗, λ)− ProjCλ(x∗)(z
∗) + ηT (x∗, λ).

This implies that

x∗ = ProjCλ(x∗)(x
∗ − ηT (x∗, λ)).

By Lemma 3.1 (ii), we conclude that x∗ is a solution of the problem (PNQV Iλ).
This completes the proof.
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Remark 3.3. Let λ ∈ Ω be fixed and η ∈
(

0, 1
ξλ(ψλ+1)

)
. We define the mapping

gη,λ : H → H by

gη,λ(x) = ηT (x, λ), for all x ∈ H,

where T : H × Ω → H is a ξλ-locally Lipschitz continuous mapping. Also, for a
fixed z ∈ H, we define a mapping hz,λ : H → H by

hz,λ(x) = ProjCλ(z+x)(z)− x,

for all x ∈ H. If there is ψλ ∈ [0, 1) such that

‖ProjCλ(x)(z)− ProjCλ(y)(z)‖ ≤ ψλ‖x− y‖ (3.3)

for all x, y, z ∈ H, then we can check that the mapping hz,λ ◦ gη,λ is a contractive
mapping. Subsequently, hz,λ ◦ gη,λ has a unique fixed point, that is,

‖(hz,λ ◦ gη,λ)(x)− (hz,λ ◦ gη,λ)(y)‖
= ‖hz,λ(gη,λ(x))− hz,λ(gη,λ(y))‖
= ‖hz,λ(ηT (x, λ))− hz,λ(ηT (y, λ))‖
= ‖ProjCλ(z+ηT (x,λ))(z)− ηT (x, λ)− ProjCλ(z+ηT (y,λ))(z) + ηT (y, λ)‖
≤ ‖ProjCλ(z+ηT (x,λ))(z)− ProjCλ(z+ηT (y,λ))(z)‖+ η‖T (x, λ)− T (y, λ)‖
≤ ψλ‖z + ηT (x, λ)− z − ηT (y, λ)‖+ η‖T (x, λ)− T (y, λ)‖
= ψλ‖ηT (x, λ)− ηT (y, λ)‖+ η‖T (x, λ)− T (y, λ)‖
= ηψλ‖T (x, λ)− T (y, λ)‖+ η‖T (x, λ)− T (y, λ)‖
≤ ηξλ(ψλ + 1)‖x− y‖.

Hence ηξλ(ψλ + 1) < 1, and so hz,λ ◦ gη,λ is a contractive mapping.

Now, we will consider the sensitivity analysis of the quasi variational inequality
problem (PNQV Iλ) on uniformly prox-regular sets. More precisely, we assume
that for some λ ∈ Ω, the problem (WH(λ̄, x∗, η)) has a solution z, and X is a
closure of a ball in H centered at z. We want to investigate the conditions under
which, for each λ in a neighborhood of λ, the associated problem (WH(λ, x∗, η))
has a unique solution z near z̄ and the function z := z(λ) is a continuous or
Lipschitz continuous.

The following assumption will be proposed as the sufficient conditions.

Assumption A Let λ ∈ Ω and rλ ∈ (0,+∞]. Let T : X × Ω → X and
C : H × Ω→ 2H/{∅} be nonlinear mappings which satisfy:

(i) T (· , λ) is a βλ-locally strongly monotone and ξλ-locally Lipschitz continuous
mapping;

(ii) C(· , λ) is uniformly rλ-prox regular sets and a κλ-locally Lipschitz contin-
uous mapping;
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(iii) there is ψλ ∈ [0, 1) such that

‖ProjCλ(x)(z)− ProjCλ(y)(z)‖ 6 ψλ‖x− y‖

for all x, y, z ∈ H;

(iv) there is r∗λ ∈
(

0, rλ
1−κλ

)
such that for each z ∈ X,

M
r∗λ
z,λ = {x ∈ (PNQV Iλ)|d(z, Cλ(x)) ≤ r∗λ}

is a nonempty set.

Remark 3.4. By Assumption A, we can check that Mz,λ is a closed set. Indeed,

if xn ∈M
r∗λ
z,λ and xn → x ∈ H. Then, by using the condition (ii), we see that

d(x,Cλ(x)) = |d(x,Cλ(x))− d(xn, Cλ(xn))|
≤ ‖x− xn‖+ κλ‖x− xn‖,

by taking n→∞, we have d(x,Cλ(x)) = 0. This implies that x ∈ Cλ(x). Further,
since −T (xn, λ) ∈ NP

Cλ(xn)(xn) and T is continuous mapping, by using Lemma 2.5,

we get −T (x, λ) ∈ NP
Cλ(x)(x). Thus x ∈ (PNQV Iλ). Next, by using Assumption

A (ii), we obtain that

d(z, Cλ(x)) ≤ κλ‖x− xn‖+ d(z, Cλ(xn))

≤ κλ‖x− xn‖+ r∗λ.

Taking n→∞, we have d(z, Cλ(x)) ≤ r∗λ. Hence, x ∈Mz,λ.

Now, we define a mapping fz,λ : M
r∗λ
z,λ →M

r∗λ
z,λ by

fz,λ(x) = ProjCλ(x)(z), (3.4)

for all x ∈Mr∗λ
z,λ. If Assumption A (iii) holds, then it is easy to check that fz,λ has

a unique fixed point. Indeed,

‖fz,λ(x)− fz,λ(y)‖ = ‖ProjCλ(x)(z)− ProjCλ(y)(z)‖
≤ ψλ‖x− y‖.

Assume that d(z, Cλ(z)) < (1− κλ)r∗λ, we have ProjCλ(x)(z) ∈M
r∗λ
z,λ. Indeed,

d(z, Cλ(ProjCλ(x)(z))) ≤ d(z, Cλ(z)) + κλ‖ProjCλ(x)(z)− z‖
< (1− κλ)r∗λ + κλr

∗
λ

= r∗λ.
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Remark 3.5. If x ∈Mr∗λ
z,λ, for each z̃ ∈ B(z, ε), then

d(z̃, Cλ(z̃)) < (1− κλ)r∗λ,

where ε = (0, Γ ) with Γ =
(1−κλ)r∗λ−(1+κλ)‖z−x‖

1+κλ
, and x is a solution of (PNQV Iλ)

such that

‖z − x‖ < (1− κλ)r∗λ
1 + κλ

.

Moreover, If X = B(z, ε), then fz,λ(Mz,λ) ⊆Mz,λ,

Proof.

d(z̃, Cλ(z̃)) ≤ (1 + κλ)‖z̃ − z‖+ (1 + κλ)‖z − x‖+ d(x,Cλ(x))

= (1 + κλ)‖z̃ − z‖+ (1 + κλ)‖z − x‖

< (1 + κλ)

(
(1− κλ)r∗λ − (1 + κλ)‖z − x‖

1 + κλ

)
+ (1 + κλ)‖z − x‖

= (1− κλ)r∗λ − (1 + κλ)‖z − x‖+ (1 + κλ)‖z − x‖
= (1− κλ)r∗λ.

Remark 3.6. If we define Gλz,η : H → H by

Gλz,η(x) = z + ηT (x, λ), for all x ∈ H.

If T is a ξλ-locally Lipschitz continuous mapping, then

‖Gλz,η(x1)−Gλz,η(x2)‖ = ‖z + ηT (x1, λ)− z − ηT (x2, λ)‖
= η‖T (x1, λ)− T (x2, λ)‖
≤ ηξλ‖x1 − x2‖.

Thus, if and η ∈ (0, 1
ξλ

), we see that Gλz,η is a contractive mapping. Hence, if

we define ∆z,λ = {x|x− z = ηT (x, λ), for some η > 0}, then ∆z,λ is nonempty
set. Observing, if we choose 0 < η < r

δλ
, where δλ = sup{‖T (x, λ)‖ : x ∈ H},

then ‖x − z‖ < r. Therefore, the best choice of η for using in our results is η ∈(
0,min

{
1

ξλ(ψλ+1) ,
r
δλ

})
.

Now, we consider the case when the solutions of parametric Wiener-Hopf equa-
tions (WH(λ, x∗, η)) lie in the interior of X. For each λ ∈ Ω and a positive constant
η, we define a mapping F ηλ : X → X by

F ηλ (z) = x− ηT (x, λ), for all z ∈ X, (3.5)

where x is a unique fixed point of fz,λ which was defined in (3.4).
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Theorem 3.7. Let λ ∈ Ω and rλ ∈ (0,+∞]. Let T : X×Ω→ X and C : H×Ω→
2H/{∅} be nonlinear mappings. Assume that Assumption A holds and

∣∣∣∣η − βλ
ξ2
λ

∣∣∣∣ <
√
β2
λt

2
r∗λ
− ξ2

λ(t2r∗λ
− (1− ψλ)2)

ξ2
λtr∗λ

(3.6)

where tr∗λ = rλ
rλ−r∗λ

and r∗λ ∈
(

0, rλ

(
1−
√
ξ2
λ−β

2
λ

ξλ(1−ψλ)

)]
. Then F ηλ , which is defined

in (3.5), has a unique fixed point.

Proof. Given z̃, ẑ ∈ X,λ ∈ Ω and for some constants η. By using (3.5), we have

‖F ηλ (z̃)− F ηλ (ẑ)‖2

= ‖(x̃− ηT (x̃, λ))− (x̂− ηT (x̂, λ))‖2

= ‖(x̃− x̂)− η(T (x̃, λ)− T (x̂, λ))‖2

≤ ‖x̃− x̂‖2 − 2η〈T (x̃, λ)− T (x̂, λ), x̃− x̂〉+ η2‖T (x̃, λ)− T (x̂, λ)‖2

≤ ‖x̃− x̂‖2 − 2ηβλ‖x̃− x̂‖2 + η2ξ2
λ‖x̃− x̂‖2

= (1− 2ηβλ + η2ξ2
λ)‖x̃− x̂‖2.

This implies that ‖F ηλ (z̃) − F ηλ (ẑ)‖ ≤
√

1− 2ηβλ + η2ξ2
λ‖x̃ − x̂‖. By using (3.5)

and Assumption A (iii), we see that

‖x̃− x̂‖
= ‖ProjCλ(x̃)(z̃)− ProjCλ(x̂)(ẑ)‖
≤ ‖ProjCλ(x̃)(z̃)− ProjCλ(x̃)(ẑ)‖+ ‖ProjCλ(x̃)(ẑ)− ProjCλ(x̂)(ẑ)‖
≤ tr∗λ‖z̃ − ẑ‖+ ψλ‖x̃− x̂‖.

Thus,
(1− ψλ)‖x̃− x̂‖ ≤ tr∗λ‖z̃ − ẑ‖.

This implies that

‖x̃− x̂‖ ≤
tr∗λ

1− ψλ
‖z̃ − ẑ‖.

Hence,

‖F ηλ (z̃)− F ηλ (ẑ)‖ ≤
tr∗λ
√

1− 2ηβλ + η2ξ2
λ

1− ψλ
‖z̃ − ẑ‖

= θ‖z̃ − ẑ‖

where θ =
tr∗
λ

√
1−2ηβλ+η2ξ2

λ

1−ψλ . By the assumption of η and r∗λ, we can check that

θ < 1. Then, we conclude that F ηλ is a contractive mapping. Therefore, F ηλ has a
unique fixed point.
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Theorem 3.8. Let λ ∈ Ω and η be a positive constant. Assume that all of
assumptions of Theorem 3.7 hold and if x∗ is a solution of the problem (PNQV Iλ).
Then, z∗, which is a solution of the problem (WH(λ, x∗, η)), is a fixed point of F ηλ .

Proof. By Theorem 3.7, we see that F ηλ has a fixed point. Assume that x∗ is a
solution of the problem (PNQV Iλ). By Lemma 3.1 (i) and Lemma 3.2, we obtain
that z∗ is the solution of the problem (WH(λ, x∗, η)), where

z∗ = x∗ − ηT (x∗, λ),

and

x∗ = ProjCλ(x∗)(x
∗ − ηT (x∗, λ)).

This implies that

x∗ = ProjCλ(x∗)(z
∗).

From Definition of F ηλ in (3.5), we have

F ηλ (z∗) = z∗

Hence, z∗ is a fixed point of F ηλ . This completes the proof.

Remark 3.9. Let λ ∈ Ω, we see that the mapping F ηλ has a unique fixed point
z := z(λ), that is,

z(λ) = F ηλ (z).

By assumption, for λ = λ̄, the function z̄ is a solution of parametric Wiener-Hopf
equation (WH(λ̄, x∗, η)). Using Theorem 3.8, we see that z̄, for λ = λ̄, is a fixed
point of F ηλ (z) and also it is a fixed point of F η

λ̄
(z). Subsequently, we conclude that

z̄ = z(λ̄) = F η
λ̄

(z(λ̄)).

Theorem 3.10. Let λ ∈ Ω and rλ ∈ (0,+∞]. Let T : X × Ω → X and C :
H × Ω → 2H/{∅} be nonlinear mappings. Assume that all of assumptions of
Theorem 3.8 hold and for fixed x, z ∈ X the operator T (x, ·) is a locally Lipschitz
continuous with a constant δ and the map λ → ProjCλ(x)(z) is continuous or
Lipschitz continuous at λ = λ̄ with a constant τ. Then, the function z(λ) is a
continuous or Lipschitz continuous at λ = λ̄.

Proof. Let λ, λ̄ ∈ Ω and η is a positive constant. By using Theorem 3.7 and
Theorem 3.8, we have

‖z(λ)− z(λ̄)‖ = ‖F ηλ (z(λ))− F η
λ̄

(z(λ̄))‖
≤ ‖F ηλ (z(λ))− F ηλ (z(λ̄))‖+ ‖F ηλ (z(λ̄))− F η

λ̄
(z(λ̄))‖

≤ θ‖z(λ)− z(λ̄)‖+ ‖F ηλ (z(λ̄))− F η
λ̄

(z(λ̄))‖.
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Then, by using the definition of F ηλ , we have

‖F ηλ (z(λ̄))− F η
λ̄

(z(λ̄))‖
= ‖ProjCλ(x(λ̄))(z(λ̄))− ηT (x(λ̄), λ)− ProjCλ̄(x(λ̄))(z(λ̄)) + ηT (x(λ̄), λ̄)‖
≤ ‖ProjCλ(x(λ̄))(z(λ̄))− ProjCλ̄(x(λ̄))(z(λ̄))‖+ η‖T (x(λ̄), λ)− T (x(λ̄), λ̄)‖
≤ τ‖λ− λ̄‖+ ηδ‖λ− λ̄‖
= (τ + ηδ)‖λ− λ̄‖.

Thus,

‖z(λ)− z(λ̄)‖ ≤ θ‖z(λ)− z(λ̄)‖+ (τ + ηδ)‖λ− λ̄‖.

We see that

(1− θ)‖z(λ)− z(λ̄)‖ ≤ (τ + ηδ)‖λ− λ̄‖.

Hence,

‖z(λ)− z(λ̄)‖ ≤ (τ + ηδ)

(1− θ)
‖λ− λ̄‖.

We conclude that z(λ) is a Lipshitz continuous at λ = λ̄.

Next, we will present the main result of this paper.

Theorem 3.11. Let x̄ be a solution of parametric quasi variational inequality
problem in uniformly prox-regular sets (PNQV Iλ̄) and let z̄ be a solution of para-
metric Wiener-Hopf equation (WH(λ̄, x∗, η)), for λ = λ̄. Assume that Assumption
A holds. If for fixed x, z ∈ X, the operator T (x, ·) is a locally Lipschitz contin-
uous and λ → ProjCλ(x)(z) is a continuous or Lipschitz continuous at λ = λ̄.
Then, there exists a neighborhood N ⊆ Ω of λ̄ such that for λ ∈ N the paramet-
ric Wiener-Hopf equation (WH(λ, x∗, η)) has a solution, z(λ), in the interior of
X, z(λ̄) = z̄ and z(λ) is a continuous or Lipschitz continuous at λ = λ̄.

Proof. Follow from Theorem 3.7, Theorem 3.8 and Theorem 3.10.

Theorem 3.12. Let λ ∈ Ω and rλ ∈ (0,+∞]. Let T : X×Ω→ X and C : H×Ω→
2H/{∅} be nonlinear mappings. Assume that all of assumptions of Theorem 3.10
hold and ηξλ < 1. Then, the function x(λ) is a continuous or Lipschitz continuous
at λ = λ̄.

Proof. Let λ, λ̄ ∈ Ω and η is a positive constant. By using Theorem 3.10, we have

‖x(λ)− x(λ̄)‖ = ‖z(λ) + ηT (x(λ), λ)− z(λ̄)− ηT (x(λ̄), λ̄)‖
≤ ‖z(λ)− z(λ̄)‖+ η‖T (x(λ), λ)− T (x(λ̄), λ̄)‖
≤ ‖z(λ)− z(λ̄)‖+ η

(
‖T (x(λ), λ)− T (x(λ), λ̄)‖

+ ‖T (x(λ), λ̄)− T (x(λ̄), λ̄)‖
)

≤
(
τ + ηδ

1− θ

)
‖λ− λ̄‖+ η

(
δ‖λ− λ̄‖+ ξλ̄‖x(λ)− x(λ̄)‖

)
.
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This implies that

(1− ηξλ̄)‖x(λ)− x(λ̄)‖ ≤
(
τ + ηδ

1− θ
+ ηδ

)
‖λ− λ̄‖.

Then,

‖x(λ)− x(λ̄)‖ ≤
(

τ + ηδ(2− θ)
(1− θ)(1− ηξλ)

)
‖λ− λ̄‖.

We conclude that x(λ) is a Lipschitz continuous at λ = λ̄.

Theorem 3.13. Let x̄ be a solution of parametric quasi variational inequality
problem in uniformly prox-regular sets (PNQV Iλ̄) and let z̄ be a solution of para-
metric Wiener-Hopf equation (WH(λ̄, x∗, η)), for λ = λ̄. Assume that Assumption
A holds and ηξλ < 1. If for fixed x, z ∈ X the operator T (x, ·) is a locally Lips-
chitz continuous and λ −→ ProjCλ(x)(z) is a continuous or Lipschitz continuous
at λ = λ̄. Then, there exists a neighborhood M ⊆ Ω of λ̄ such that for λ ∈ M,
the parametric quasi variational inequality problem in uniformly prox-regular sets
(PNQV Iλ) has a solution, x(λ), in the interior of X,x(λ̄) = x̄ and x(λ) is a
continuous or Lipschitz continuous at λ = λ̄.

Proof. Follow from Theorem 3.7, Theorem 3.8 and Theorem 3.12.

4 Conclusion

In this work, we study and consider the parametric quasi variational inequality
problem on uniformly prox-regular sets and a parametric Wiener-Hopf equation.
The equivalent relation of the both problem is studied. Furthermore, we use this
equivalence to consider the sensitivity analysis of the quasi variational inequality
problem on nonconvex sets. We desire that the results which presented here will be
useful and valuable for researchers who study the branch of variational inequality
and related applications.
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