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1 Introduction

Throughout this paper, a ring R is an associative ring with identity and all
modules are unitary right R-modules. Let β(R), βco(R) and N (R) be the prime
radical, generalized nil radical (also called the completely prime radical) and the set
of all nilpotent elements of R, respectively. An ideal I of R is called 2-primal [1,
Definition 1.1] if β(R/I) = N (R/I). Thus, a ring R is 2-primal if and only if
the zero ideal is 2-primal, i.e., β(R) = N (R). 2-primal rings were first studied
in [1] (although not so-called at that time). Birkenmeier et al. [1, Proposition
2.1] showed that R is 2-primal if and only if β(R) = βco(R). In [2], Marks gave
a detailed study of 2-primal rings. The definition of a prime submodule has been
defined by Dauns in [3] and the notion of a completely prime submodule has been
defined in [4]. Using these definitions, 2-primal modules are given by Groenewald
and Ssevviiri in [5]. In modifying the structure of prime ideals and prime rings,
many authors transferred the notion of prime ideals to modules. There are many
ways to generalize these notions. For examples, Andrunakievich (1962) [6], Beachy
(1975) [7], Dauns (1978) [3], Bican et al. (1980) [8], C. P. Lu (1995) [9], Behboodi
and Koohy (2004) [10] gave some definitions of prime submodules. In 2008, N.
V. Sanh et al. [11] proposed a new definition of prime submodules. By using this
definition, they found many beautiful properties of prime submodules that are
similar to prime ideals. They could construct some new notions such as nilpotent
submodules, nil submodules, a prime radical, a nil radical and a Levitzki radical
of a right module M over R and described all properties of them as generalizations
of nilpotent ideals, nil ideals, a prime radical, a nil radical and a Levitzki radical
of rings.

The notion of 2-primal modules exists in literature for other algebraic struc-
tures such as near-rings (for example, see [12]). In this paper, by using the defini-
tion of prime, completely prime (strongly prime) submodules introduced by Sanh
et al. [11,13–15] and Bac et al. [16], we extend it to modules by defining 2-primal
(sub)modules.

The rest of this paper is organized as follows. Preliminaries concept and some
properties of prime submodules are shown in Section 2. We give some results
about the prime, semiprime and strongly prime submodules. We provide some
properties of symmetric modules and submodules in Section 3. In Section 4, 2-
primal submodules are investigated.

2 Preliminaries

Denote S =EndR(M), the endomorphism ring of the module M . A submodule
X of M is called a fully invariant submodule if f(X) ⊂ X, for any f ∈ S.
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Especially, a right ideal of R is a fully invariant submodule of RR if it is a two-
sided ideal of R. The class of all fully invariant submodules of M is non-empty and
closed under intersections and sums. A right R-module M is finitely generated if
there are m1,m2, . . . ,mk ∈ M such that M =

∑k
i=1miR. This is equivalent to

the condition that there is an epimorphism Rk −→M , for some k ∈ Z+.
Following Sanh et al. [11], a fully invariant proper submodule X of M is

called a prime submodule of M if for any ideal I of S =EndR(M), and any fully
invariant submodule U of M , if I(U) ⊂ X, then either I(M) ⊂ X or U ⊂ X. A
fully invariant submodule X of M is called a completely prime submodule (called
a strongly prime submodule in [11]) of M if for any ϕ ∈ S =EndR(M) and any
m ∈M , if ϕ(m) ∈ X, then either ϕ(M) ⊂ X or m ∈ X.

Definition 2.1. [13, Definition 2.1]. A submodule X of a right R-module M is
said to have the “ insertion factor property” (briefly, an IFP-submodule) if for any
endomorphism φ of Mand any element m ∈ M , if φ(m) ∈ X, then φSm ∈ X. A
right ideal I is an IFP-right ideal if it is an IFP-submodule of RR, that is for any
a, b ∈ R, if ab ∈ I, then aRb ⊆ I. A right R-module M is called an IFP-module if
0 is an IFP-submodule of M . A ring R is IFP if 0 is an IFP-ideal.

Definition 2.2. [14, Definition 2.1] A fully invariant submodule X of a right
R-module M is called a semiprime submodule if it is an intersection of prime
submodules of M . A right R-module M is called a semiprime module if 0 is
a semiprime submodule of M . Consequently, R is a semiprime ring if RR is
semiprime. By symmetry, R is a semiprime ring if RR is a semiprime left R-
module.

Definition 2.3. [17] A fully invariant proper submodule X of M is called com-
pletely semiprime if for any ψ ∈ S and m ∈M , ψ2(m) ∈ X implies ψSm ⊆ X.

3 Symmetric Modules and Submodules

Definition 3.1. [18, Definition 2.2] A submodule of a right R-module M is a
symmetric submodule if for endomorphisms φ and α of S and any element m ∈M ,
if φαm ∈ X, then αφm ∈ X. The right R-module M is a symmetric module if for
endomorphisms φ and α of S and any element m ∈M , if φαm = 0, then αφm = 0.

We have some properties of symmetric submodules as follows.

Proposition 3.2. Let M be a right R-module. If X is a fully invariant submodule
which is symmetric, then X has IFP.

Proof. Let α ∈ S =EndR(M) and m ∈ M such that α(m) ∈ X. Since X is a
fully invariant submodule, we have for every β ∈ S that βα(m) ∈ X. Since X is
symmetric, we have αβ(m) ∈ X and thus αSm ⊆ X, i.e., X has IFP.
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Proposition 3.3. Let M be a right R-module. The submodule X is completely
prime if and if it is prime and symmetric.

Proof. Suppose that X is a prime and symmetric submodule and α(m) ∈ X. Since
X is a fully invariant submodule, we can see that βα(m) ∈ X for all β ∈ S. This
follows that αβ(m) ∈ X for all β ∈ S, by the symmetric property of X. Hence,
αS(m) ∈ X, proving that X has IFP. Applying [16, Theorem 2.11], we conclude
that X is a completely prime submodule.

For the converse, suppose that X is completely prime and βα(m) ∈ X. It is
well-known in [16, Proposition 2.3] that if X is a completely prime submodule, then
X is also a prime submodule. Since βα(m) ∈ X, by the definition of completely
prime submodules, we have either α(m) ∈ X or β(M) ⊆ X. If α(m) ∈ X, then
αS(m) ⊆ X, showing that αβ(m) ∈ X. If β(M) ⊆ X, then αβ(m) ∈ X, implying
that X is symmetric.

It is routine to prove the following result.

Proposition 3.4. Let M be a right R-module. If X is a symmetric submodule,
then IX is a symmetric ideal of S.

We give an example of symmetric modules.

Example 3.5. Let p be any prime integer and M = (Z/pZ) ⊕ Q a Z-module.
Then the endomorphism ring S of the module M is isomorphic to the matrix ring{[

a 0
0 b

]
: a ∈ Zp, b ∈ Q

}
. It is evident that M is a symmetric module.

The following result gives a relationship between a symmetric module and its
endomorphism ring.

Theorem 3.6. If M is a symmetric module, then S is a symmetric ring. The
converse is true if for all m ∈M , there exists g ∈ S such that mR = g(M) or M
is a free R-module.

Proof. Suppose that f, g, h ∈ S such that fgh = 0. This implies that fgh(m) = 0
for all m ∈ M . Since M is a symmetric module, we have fgh(m) = gfh(m) = 0.
Hence, gfh = 0, proving that S is a symmetric ring. For the converse, suppose
that fh(m) = 0, then fh(mR) = 0. Applying the hypothesis, we have fhg(M) = 0
for some g ∈ S. This implies that fhg = 0. Since S is a symmetric ring, we have
hfg = 0. Hence, hfg(m) = 0 for all m ∈ M . This follows that hf(mR) = 0,
showing that hf(m) = 0. From this, we can conclude that M is a symmetric
module.

Let F = M be a free R-module. Clearly, for every m ∈ F there exists f ∈
S =EndR(M) such that fF = Rm. This implies that F = M is a symmetric
module.

We provide a couple of lemmas as follows.
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Lemma 3.7. A completely semiprime submodule is symmetric.

Proof. Assume that fg(m) ∈ X. Since X is a fully invariant submodule, we have
(gfg)2(m) = gfggfg(m) ∈ X. This implies that gfgS(m) ⊆ X because X is a
completely semiprime submodule. From gfgS(m) ⊆ X, we have gfgf(m) ∈ X.
Again, since X is a completely semiprime submodule, we have gfS(m) ⊆ X. It
follows that gf(m) ∈ X, concluding that X is a symmetric submodule.

Lemma 3.8. Let X be a submodule of a right R-module M . If X is a symmetric
submodule and M is quasi-projective, then M/X is a symmetric submodule. Con-
versely, if M/X is symmetric and X is fully invariant, then X is a symmetric
submodule of M .

Proof. Suppose that X is a symmetric submodule of M and φ̄ϕ̄(m̄) = 0̄, where
φ̄, ϕ̄ ∈ S̄ =EndR(M/X) and m̄ ∈ M/X. By the quasi-projectivity of M , there
are φ, ϕ ∈ S such that νφ = φ̄ν, and νϕ = ϕ̄ν, where ν : M → M/X is the
natural epimorphism. It follows that φϕ(m) ∈ X. Since X is symmetric, we have
ϕφ(m) ∈ X. Thus, ϕ̄φ̄(m̄) = ϕ̄φ̄ν(m) = ϕ̄νφ(m) = νϕφ(m) = 0̄. Hence, ϕ̄φ̄(m̄) =
0̄ and consequently M/X is a symmetric module. For the converse, suppose that
X is a fully invariant submodule of M and M/X is symmetric. Let φϕ(m) ∈ X
with φ, ϕ ∈ S and m ∈ M . Since M is quasi-projective, there are φ̄, ϕ̄ ∈ S̄ such
that νφ = φ̄ν and νϕ = ϕ̄ν. From φϕ(m) ∈ X, we have νφϕ(m) = 0̄. Therefore,
φ̄ϕ̄(m̄) = φ̄ϕ̄ν(m) = νφϕ(m) = 0̄. By using the fact that M/X is symmetric, we
have ϕ̄φ̄(m̄) = 0̄ . This implies that ϕ̄φ̄(m̄) = ϕ̄φ̄ν(m) = ϕ̄νφ(m) = νϕφ(m) = 0̄.
Thus, ϕφ(m) ∈ X, proving that X is a symmetric submodule of M .

The following result is given in [16].

Lemma 3.9. [16, Lemma 2.8] Let M,N be right R-modules and f : M −→ N be
an epimorphism. Suppose that Kerf is a fully invariant submodule of M . Then,

(1) For any ϕ ∈ S, there exists φ ∈ S̄ =End(N) such that φf = fϕ.

(2) If V is a fully invariant submodule of N , then U = f−1(V ) is a fully
invariant submodule of M .

We provide some properties of symmetric submodules.

Lemma 3.10. Let M be a quasi-projective module, and P a symmetric submodule
of M . If A ⊂ P is a fully invariant submodule of M , then P/A is a symmetric
submodule of M/A.

Proof. Let ϕ, φ ∈ S̄ = EndR(M/A), and m + A ∈ M/A such that ϕφ(m + A) ∈
P/A. By the quasi-projectivity of M , we can find endomorphisms f, g ∈ S such
that ϕν = νf and φν = νg where ν : M −→ M/A is the natural epimorphism.
From fg(m) +A = νfg(m) = ϕφν(m) = ϕφ(m+A) ∈ P/A, we see that fg(m) ∈
P . By the symmetric property of P , we have gf(m) ∈ P . This implies that ϕφ(m+
A) = fg(m) +A ∈ P/A, showing that P/A is symmetric.
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Proposition 3.11. Let M be a quasi-projective module, and f : M −→ N be an
epimorphism such that Kerf is a fully invariant submodule of M . Then,
(1) If Y is a symmetric submodule of N , then X = f−1(Y ) is a symmetric sub-
module of M .
(2) If X is a symmetric submodule of M , then f(X) is a symmetric submodule of
N .

Proof. (1) By Lemma 3.9, X = f−1(Y ) is a fully invariant submodule of M . It is
easy to see that X is different from M . Suppose that ϕ, φ ∈ S and m ∈ M such
that ϕφ(m) ∈ X. We will show that φϕ(m) ∈ X. From Lemma 3.9, there exists
γ, β ∈ S′

=End(N) such that γf = fϕ and βf = fφ. From ϕφ(m) ∈ X, we see
that fϕφ(m) ∈ f(X) = Y . Since γf = fϕ, and βf = fφ, we have γβf(m) ∈ Y .
By symmetric property of Y , we can see that βγf(m) ∈ Y . From γf = fϕ and
βf = fφ, we have fφϕ(m) ∈ Y . This implies that φϕ(m) ∈ X, proving that X is
a symmetric submodule.

(2) Note that f(X) is a fully invariant submodule of N . Suppose that f(X) =
N = f(M). Then we have M ⊂ X + Kerf = X, a contradiction. This implies
that f(X) is different from N . Let γα(n) ∈ f(X), where γ, α ∈ S′ =End(N).
Since M is a quasi-projective module, there are ϕ, φ ∈ S such that γf = fϕ
and αf = fφ. From this, we see that γα(n) = γα(f(f−1)(n)) = γfφ(f−1(n)) =
fϕφ(f−1(n)) ⊂ f(X). It follows that ϕφ(f−1(n)) ⊂ X + Kerf = X. If X is a
symmetric submodule, then we have φϕ(f−1(n)) ∈ X. Thus αγ(n) ∈ f(X). This
shows that f(X) is a symmetric submodule.

4 On 2-Primal Submodules

For a right R-module M , let P (M) be the intersection of all prime submodules
of M and C(M), the intersection of all completely prime submodules of M . P (M)
is the prime radical of M and C(M) is the completely prime radical of M . By
applying the fact that a ring is 2-primal if and only if β(R) = βco(R), we now give
the definition of a 2-primal module as follows:

Definition 4.1. A submodule X of an R-module M is 2-primal if P (M/X) =
C(M/X). An R-module M is 2-primal if P (M) = C(M).

Recall from [16] that in a duo module, every prime submodule is completely
prime submodule and a submodule X is a completely prime submodule if and only
if it is prime and IFP. These results lead the following lemma.

Lemma 4.2.

(1) Duo modules are 2-primal.

(2) IFP modules are 2-primal.

(3) Symmetric modules are 2-primal .
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The following result gives a relationship between a 2-primal module and its
endomorphisms ring.

Theorem 4.3. Let M be a quasi-projective and finitely generated right R-module
which is a self-generator. Then M is 2-primal if and only if S =EndR(M) is
2-primal.

Proof. Suppose that M is 2-primal, i.e., P (M) = C(M), where P (M) is the prime
radical ofM and C(M) is the completely prime radical ofM . By applying [19, 18.4],
we have β(S) = IP (M) and N (S) = IC(M), where β(S) is the prime radical of S
and N (S) is the generalized nil radical (completely prime radical) of S. Since
P (M) = C(M), we have β(S) = IP (M) = IC(M) = N (S) and consequently
β(S) = N (S). Hence, S is 2-primal. For the converse, assume that S is 2-primal,
i.e., β(S) = N (S). Applying [19, 18.4] again, we have IP (M) = β(S) = N (S) =
IC(M) and consequently P (M) = C(M). Hence, M is 2-primal.

We recall two propositions appeared in [11].

Proposition 4.4. [11, Proposition 2.1] Let M be a right R-module which is a
self-generator. Then we have the following:

(1) If X is a minimal prime submodule of M , then IX is a minimal prime ideal
of S.

(2) If P is a minimal prime ideal of S, then X := P (M) is a minimal prime
submodule of M and IX = P .

Proposition 4.5. [11, Proposition 1.8] If P is a prime submodule of a right R-
module M , then P contains a minimal prime submodule of M .

Using Proposition 4.5, we have the following result.

Proposition 4.6. Let M be a right R-module. Then

P (M) =
⋂
{P : P is a minimal prime submodule of M}.

Proof. Let Pm(M) =
⋂
{P : P is a minimal prime submodule of M}. Applying

Proposition 4.5, it follows that Pm(M) ⊆ P (M). It is easy to see that P (M) ⊆
Pm(M), showing our proof.

Clearly P (M) ⊆ C(M). Since P (M) =
⋂
{P : P is a minimal prime submodule

of M} and every minimal prime submodule of M is completely prime, we have
C(M) ⊆ P (M). Hence, M is 2-primal. We summarize our discussion in the
following proposition.

Proposition 4.7. Let M be a right R-module. If every minimal prime submodule
of M is completely prime, then M is 2-primal.

We give a characterization of 2-primal modules as follows.
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Theorem 4.8. Let M be a quasi-projective and finitely generated right R-module
which is a self-generator. Then M is 2-primal if and only if every minimal prime
submodule of M is completely prime.

Proof. We only have to show that if M is 2-primal, then every minimal prime
submodule of M is completely prime. Let X be a minimal prime submodule of
M . From Proposition 4.4, IX = P is a minimal prime ideal of S. From Theorem
4.3 and from [20, Proposition 1.11], we conclude that P is completely prime.
By applying [16, Proposition 2.13], X is completely prime. This completes the
proof.

Proposition 4.9. Let M be a quasi-projective right R-module. The submodule X
is completely prime if and only if X is prime and 2-primal.

Proof. Suppose that X is completely prime. Then X is prime and has IFP.
Therefore, X is 2-primal. Now assume that X is prime and 2-primal. This im-
plies that P (M/X) = C(M/X). Since X is prime, M/X is a prime module and
0 = P (M/X) = C(M/X). This implies that C(M/X) is completely semiprime.
Hence, M/X is a completely semiprime module, i.e., X is a completely semiprime
submodule of M ., as required.

Let M be a right R-module and X, a submodule of M . Denote P(X) =
⋂
{P

is a prime submodule of M such that X ⊆ P}. Let v: M → M/X. If x ∈ P(X),
then x̄ = v(x) = (x+X) ∈ P (M/X).

Proposition 4.10. Let M be a quasi-projective right R-module. The submodule
X is 2-primal if and only if P(X) is completely semiprime.

Proof. Let X be 2-primal, i.e., P (M/X) = C(M/X). We show P(X) is completely
semiprime. Let f ∈ S =HomR(M) and m ∈ M such that f2(m) ∈ P(X). Hence,
v(f2(m)) = f2(m) + X ∈ P (M/X). Since M is quasi-projective, there exists
f̄ ∈ S̄ =HomR(M/X) such that vf = x̄v. From this, we can see that f̄2(m̄) =
f̄2v(m) = vf2(m) ∈ P (M/X). By quasi-projectivity, if γ ∈ S, then there exists
γ̄ ∈ S such that vγ = γ̄v. Using the fact that P (M/X) is completely semiprime,
we must have f̄ γ̄ m̄ ∈ P (M/X). Hence, vfγm = f̄vγm = f̄ γ̄ vm = f̄ γ̄
m̄ ∈ P (M/X). It follows that fγm ∈ P(X). Since γ ∈ S was arbitrary, we have
fSm ⊆ P(X). Therefore, P(X) is completely semiprime.

For the converse, we will show that if P(X) is completely semiprime, then
P (M/X) is completely semiprime which will give C(M/X) ⊆ P (M/X) ⊆ C(M/X).
Let f̄ ∈ S̄ and m̄ ∈ M/X such that f̄2m̄ ∈ P (M/X). As discussion above, since
M is quasi-projective, there exists f ∈ S such that vf = f̄v. This shows that
vf2m = f̄2vm = f̄2m̄ ∈ P (M/X) and consequently f2m ∈ P(X). Because P(X)
is completely semiprime, we have fSm ⊆ P(X) . Using quasi-projectivity again,
if γ̄ ∈ S, then there is γ ∈ S such that vγ = γ̄v. From this equation, we can see
that f̄ γ̄ m̄ = f̄ γ̄vm = f̄vγm = vfγm ∈ P (M/X). Hence,
f̄ S̄ m̄ ⊆ P (M/X) and P (M/X) is completely semiprime.
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Proposition 4.11. Let M be a quasi-projective right R-module. Then M is 2-
primal if and only if M/P (M) is a completely semiprime module.

Proof. Let M be a 2-primal module, i.e., P (M) = C(M). Hence, P (M) is a
completely semiprime submodule of M . Using [17, Lemma 2.2], M/P (M) is a
completely semiprime module. For the converse, suppose that M/P (M) is a com-
pletely semiprime module. Again, from [17, Lemma 2.2], it follows that P (M) is
a completely semiprime submodule of M . Therefore, C(M) ⊆ P (M) ⊆ C(M) and
we have P (M) = C(M). Thus, M is a 2-primal module.

Lemma 4.12. Let M be a right R-module, and X a prime submodule. If A and
B are left ideals of S and m ∈M such that ABm ⊆ P , then Am ⊆ P or Bm ⊆ P .

Proof. Let A and B be left ideals of S and m ∈M such that ABm ⊆ P . From [11,
Theorem 1.2 (4)] and ASBm ⊆ ABm ⊆ P , we have either AM ⊆ P or Bm ⊆ P .
Hence, either Am ⊆ P or Bm ⊆ P , completing our proof.

Lemma 4.13. Let M be a right R-module, and X a submodule with IFP. If
f, g ∈ S and m ∈M such that fg(m) ∈ X, then 〈f〉〈g〉(m) ⊆ X.

Proof. Let f, g ∈ S and m ∈M such that fg(m) ∈ X. Since X is a submodule with
IFP, as in [16, Theorem 2.6 (2)] we can see that (g(m) : X) = {h ∈ S : hg(m) ∈ X}
is a two-sided ideal of S. Now, since f ∈ (g(m) : X), we have 〈f〉g(m) ⊆ X. Using
the fact that X has IFP, we get 〈f〉gSm ⊆ X and 〈f〉SgSm ⊆ X. Since 〈f〉 is an
ideal of S, we can prove that 〈f〉Sg(m) ⊆ X. Hence, 〈f〉〈g〉(m) ⊆ X.

Definition 4.14. Let M be a right R-module. A submodule X of M is called
semi-symmetric if for f ∈ S and m ∈M , f2(m) ∈ X implies 〈f〉2(m) ⊆ X.

As a direct consequence, we have the following corollary.

Corollary 4.15. Let M be a right R-module. If P is an IFP submodule of M ,
then P is a semi-symmetric submodule of M .

Theorem 4.16. Let M be a right R-module. If P is a semi-symmetric submodule
of M , then P is a 2-primal submodule of P .

Proof. It is enough to show that if P is a prime submodule which is also semi-
symmetric, then it is a completely prime submodule of M . Suppose P is both prime
and semi-symmetric. Let f ∈ S =HomR(M) and m ∈ M such that f(m) ∈ P .
This implies that f2(m) ∈ P . Since P is a semi-symmetric submodule, we have
〈f〉2(m) ⊆ P . By the primeness of P , we can see that 〈f〉(m) ⊆ P . If m ∈ P ,
then we are done. Assume that m /∈ P . Now 〈f〉Sm ⊆ 〈f〉(m) ⊆ P and from [11,
Theorem 1.2] we conclude that 〈f〉M ⊆ P . Hence, P is completely prime, as
required.

Proposition 4.17. Let M be a right R-module. If X is a submodule of M such
that X ⊆ P (M), then M is 2-primal if and only if X is 2-primal.



424 Thai J. Math. 16 (2018)/ Nguyen T. Bac et al.

Proof. Since X ⊆ P (M), X ⊆ P , where P is any prime submodule of M . Hence,
P (M) = P(X). Assume that M is 2-primal, i.e., C(M) = P (M) = P(X). Thus,
P(X) is a completely semiprime submodule of M . By using Proposition 4.10, X is
2-primal. For the converse, assume now X is 2-primal. It follows from Proposition
4.10 that P(X) is a completely semiprime submodule of M . Since P (M) = P(X),
P (M) is a completely semiprime submodule of M . Hence, C(M) ⊆ P (M) ⊆ C(M)
and M is 2-primal.

5 Conclusion

In this paper, we studied some properties of symmetric submodules and mod-
ules [Propositions 3.2, 3.3, 3.11; Lemmas 3.7, 3.8, 3.10]. The relationship between
a symmetric module and its endomorphism ring is provided [Theorem 3.6]. We
proved that if M is a quasi-projective and finitely generated right R-module which
is a self-generator, then M is 2-primal if and only if S = EndR(M) is 2-primal
[Theorem 4.3]. We also gave some characterizations of 2-primal modules [Theorem
4.8, Propositions 4.9, 4.10, 4.11].
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