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Abstract : In this paper, we present a numerical method for solving the high-
order linear Volterra-Fredholm integro - differential equations with constant argu-
ments and variable coefficients.The proposed method is based on the Euler poly-
nomials and collocation points which transforms the integro - differential equation
into a matrix equation. The matrix equation corresponds to a system of alge-
braic equations for which the unknown are Euler coefficients. Some examples are
provided to illustrate the validity of the method.
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1 Introduction

The integro-differential equations and their solutions play a major role in sci-
ence, economics and engineering [1–5]. The integro - differential equations with
constant arguments and variable coefficients are usually difficult to solve analyt-
icall, so a numerical method is needed. There are various techniques for solving
Fredholm integro - differential equations, e.g. Laguerre collocation method (LCM)
[1], Fibonacci collocation method (FCM) [3], Taylor matrix method [6], Cheby-
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shev collocation method [7], Legendre spectral collocation method [8] and hybrid
Euler-Taylor matrix method [9]. In addition, Adomain decomposition method
[10], Taylor-series expansion method [11], Romberg extrapolation on quadrature
method [12] and the Legendre spectral collocation method [13] were applied to
solving Volterra integral equations. Our goal is to develop a hybrid Euler-Taylor
matrix method [9] for solving the generalized high-order linear Volterra-Fredholm
integro - differential equations with constant arguments and variable coefficients
in the form

m1∑
k=0

n1∑
j=0

pkj(x)y(k)(x+ τkj) = f(x) +

m2∑
r1=0

n2∑
s1=0

∫ b

a

Kr1s1(x, t)y(r1)(t+ λr1s1)dt

+

m3∑
r2=0

n3∑
s2=0

∫ x

a

K̂r2s2(x, t)y(r2)(t+ γr2s2)dt, (1.1)

with mixed conditions

m1−1∑
i=0

[αily
(i)(a) + βily

(i)(b) + γily
(i)(c)] = µi, (1.2)

l = 0, 1, . . . ,m1 − 1, m1 ≥ m2,m3,

where y(x) is an unknown function to be determined. Also, pkj(x),Kr1s1(x, t),
Kr2s2(x, t) and f(x) are continuous functions defined on the interval 0 ≤ x, t ≤ b <
∞; αil, βil and γil are appropriated constants. Moreover, the functions Kr1s1(x, t)
and K̂r2s2(x, t) can be represented by Maclaurin series.

This paper is organized as follows: In Section 2, we present the basic concepts
of Euler polynomials and their properties. The method of constructing the Euler
matrix for solving the linear Volterra-Fredholm integro - differential equations
with constant arguments and variable coefficients is described in Section 3. The
numerical illustrations are provided in Section 4.

2 Preliminaries

Euler polynomials are very useful. They are classical tools for numerical meth-
ods and have a lot of applications in many fields in mathematics. Their basic
properties can be summarized as follows [14–19].

Euler polynomials En(x) can be defined in terms of exponential generating
function as follows

2ext

et + 1
=

n∑
n=0

En(x)
tn

n!
, |t| < π.

The recursive formula of Euler polynomials are constructed by using the following
relation

En(x) +

n∑
k=0

(
n
k

)
Ek(x) = 2xn, n = 0, 1, 2, . . . (2.1)
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Also, Euler polynomials En(x) can be defined as polynomials of degree n ≥ 0
satisfying the following properties

En(x+ 1) + En(x) = 2xn n = 1, 2, . . . , (2.2)

E′n(x) = nEn−1(x), n = 1, 2, . . . . (2.3)

If we take n = 0, the first Euler polynomial is E0(x) = 1. By using (2.1) or (2.2)
the next four Euler polynomials are given below,

E1(x) = 1, E2(x) = x2 − x, E3(x) = x3 − 3

2
x2 +

1

4
, E4(x) = x4 − 2x3 + x.

3 Main Results

In this section, we consider the equation (1.1) and find the corresponding
matrix forms of each term in the corresponding equation. Let yN (x) be an ap-
proximate solution of (1.1) expressed in the truncated Euler series form

y(x) ∼= yN (x) =

N∑
n=0

anEn(x), 0 ≤ a ≤ x ≤ b,

where an; n = 0, 1, . . . N are the Euler coefficient unknowns, and En(x); n =
0, 1, . . . N are Euler polynomials. We can rewrite the approximate solution yN (x)
to the matrix equation

yN (x) = E(x)A, (3.1)

where

E(x) = [E0(x) E1(x) . . . EN (x)],

and

A = [a0 a1 . . . aN ]T .

From the second property (2.3) and equation (3.1), the relation between the matrix
E(x) and its derivative E′(x) is

E′(x) = E(x)M,

and then, it follows that

E′′(x) = E′(x)M = E(x)M2

E′′′(x) = E′′(x)M = E(x)M3

...

E(k)(x) = E(k−1)(x)M = E(x)Mk, k = 0, 1, 2, . . . , (3.2)
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where

M0 is identity matrix and M =


0 1 0 . . . 0
0 0 2 . . . 0

...
0 0 0 . . . N
0 0 0 . . . 0

 .
Furthermore, if in equation (2.1) n varies from 0 to N , we obtain the linear matrix
equation as follows

1 0 0 . . . 0
1

2

(
1
0

)
1 0 . . . 0

1

2

(
2
0

)
1

2

(
2
1

)
1 . . . 0

...
1

2

(
N
0

)
1

2

(
N
1

)
1

2

(
N
2

)
. . . 1





E0(x)

E1(x)

E2(x)
...

EN (x)


=



1

x

x2

...

xN


or briefly

TET (x) = XT ⇒ E(x)TT = X(x),

where

T =



1 0 0 . . . 0
1

2

(
1
0

)
1 0 . . . 0

1

2

(
2
0

)
1

2

(
2
1

)
1 . . . 0

...
1

2

(
N
0

)
1

2

(
N
1

)
1

2

(
N
2

)
. . . 1


and the standard basis matrix

X(x) = [1 x x2 . . . xN ].

Since TT is a upper triangular matrix with nonzero diagonal elements, it is non-
singular and hence (TT )−1 exists. Thus, the Euler matrix can be given directly
from

E(x) = X(x)(TT )−1. (3.3)

By putting x→ x+ τkj in the equation (3.3), we have

E(x+ τkj) = X(x)D(τkj)(T
T )−1, (3.4)

where
D(0) is identity matrix and
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D(τkj) =



(
0
0

)
(τkj)

0

(
1
0

)
(τkj)

1 . . .

(
N
0

)
(τkj)

N

0

(
1
1

)
(τkj)

0 . . .

(
N
1

)
(τkj)

N−1

...

0 0 . . .

(
N
N

)
(τkj)

0


.

From the matrix relations (3.1), (3.2), (3.3) and (3.4), we obtain

y
(k)
N (x) ∼= X(x)(TT )−1MkA, k = 0, 1, 2, . . . (3.5)

and
y(k)(x+ τkj) ∼= X(x)D(τkj)(T

T )−1MkA, k = 0, 1, 2, . . . (3.6)

Now we transform the kernel function Kr1s1(x, t) and K̂r2s2(x, t) to the matrix
form by using Maclaurin’s expansion as

Kr1s1(x, t) = X(x)Kr1s1X
T (t) and K̂r2s2(x, t) = X(x)K̂r2s2X

T (t), (3.7)

where

Kr1s1 = [kmn
r1s1 ]; kmn

r1s1 =
1

m!n!

∂m+n

∂xm∂tn
Kr1s1(0, 0) m,n = 0, 1, 2, . . . , N

and

K̂r2s2 = [kmn
r2s2 ]; kmn

r2s2 =
1

m!n!

∂m+n

∂xm∂tn
K̂r2s2(0, 0) m,n = 0, 1, 2, . . . , N.

Thus, the matrix representation for the integral parts are obtained by∫ b

a

Kr1s1(x, t)y(r1)(t+ λr1s1)dt ' X(x)Kr1s1Gr1s1D(λr1s1)(TT )−1Mr1A, (3.8)

where

Gr1s1 = [gmn
r1s1 ] =

∫ b

a

XT (t)X(t)dt;

gmn
r1s1 =

bm+n+1 − am+n+1

m+ n+ 1
, m, n = 0, 1, . . . , N.

Similarly, we get the matrix form for
∫ x

a
K̂r2s2(x, t)y(r1)(t+ γr2s2)dt as follows∫ x

a

K̂r2s2(x, t)y(r1)(t+ γr2s2)dt 'Wr2s2(x)D(γr2s2)(TT )−1Mr2A, (3.9)

where
Wr2s2(x) = X(x)K̂r2s2Hr2s2(x),
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and

Hr2s2(x) = [hmn
r2s2(x)] =

∫ x

a

XT (t)X(t)dt;

hmn
r2s2(x) =

xm+n+1 − am+n+1

m+ n+ 1
, m, n = 0, 1, . . . , N.

Substituting the matrix forms (3.5) - (3.9) into equation (1.1), we obtain ∑m1

k=0

∑n1

j=0 pkj(x)X(x)D(τkj)(T
T )−1Mk

−
∑m2

r1=0

∑n2

s1=0 X(x)Kr1s1Gr1s1D(λr1s1)(TT )−1Mr1

−
∑m3

r2=0

∑n3

s2=0 Wr2s2(x)D(γr2s2)(TT )−1Mr2

A = f(x). (3.10)

In order to use equation (3.10) the collocation points are defined by

xi = a+
b− a
N

i, i = 0, 1, 2, . . . , N.

We have the system of the matrix equations ∑m1

k=0

∑n1

j=0 pkj(xi)X(xi)D(τkj)(T
T )−1Mk

−
∑m2

r1=0

∑n2

s1=0 X(xi)Kr1s1Gr1s1D(λr1s1)(TT )−1Mr1

−
∑m3

r2=0

∑n3

s2=0 Wr2s2(xi)D(γr2s2)(TT )−1Mr2

A = f(xi).

Therefore, the fundamental matrix equation are obtained as ∑m1

k=0

∑n1

j=0 PkjXD(τkj)(T
T )−1Mk

−
∑m2

r1=0

∑n2

s1=0 XKr1s1Gr1s1D(λr1s1)(TT )−1Mr1

−
∑m3

r2=0

∑n3

s2=0 Wr2s2D(γr2s2)(TT )−1Mr2

A = F, (3.11)

where
Pkj = diag[pkj(x0) pkj(x1) . . . pkj(xN )],

X =


X(x0)
X(x1)
X(x2)

...
X(xN )

 =


1 x0 x20 . . . xN0
1 x1 x21 . . . xN1

...
1 xN x2N . . . xNN

 ,

Wr2s2 =


Wr2s2(x0)
Wr2s2(x1)
Wr2s2(x2)

...
Wr2s2(xN )

 and F =


f(x0)
f(x1)
f(x2)

...
f(xN )

 .
The matrix equation (3.11) corresponds to a system of (N+1) algebraic equations
for (N+1) unknown Euler coefficients a0, a1, . . . , aN . Briefly, one can write (3.11)
in form

UA = F or [U; F], (3.12)



Euler-Taylor Matrix Method for Solving Volterra-Fredholm ... 407

where

U = [umn], m, n = 0, 1, . . . , N.

On the other hand, we can obtain the matrix forms for the mixed condition (1.2)
as

m1−1∑
i=0

[αilX(a) + βilX(b) + γilX(c)](TT )−1MiA = [µi]; i = 0, 1, . . . ,m1 − 1,

or briefly

ViA = [µi] or [Vi;µi], (3.13)

where

Vi = [vi0 vi1 . . . viN ], i = 0, 1, . . . ,m1 − 1.

Consequently, to obtain the solution of equation (1.1) with conditions (1.2), by
replacing the m rows of matrix (3.12) by the last row matrices (3.13), we have

ŨA = F̃ or [Ũ; F̃].

If the rankŨ = rank[Ũ; F̃] = N + 1 then the unknown Euler coefficients matrix

A is uniquely determined and A = Ũ
−1

F̃. Therefore, the system (1.1) with
conditions (1.2) has a unique solution. However, when |Ũ| = 0, if the rankŨ =
rank[Ũ : F̃], then we may find a particular solution. Otherwise if the rankŨ 6=
rank[Ũ : G̃] < N + 1, then it is not a solution.

The approximate solution yN (x) are obtained by proposed method has been
compared with that of obtained by other method on the basis of L∞ error. It can
be defined as

L∞ = max
a≤x≤b

|yN (x)− yexact(x)|.

This comparison has been discussed in Section 4.

4 Illustrative Examples

Example 4.1.

Let us consider the integro - differential equation with variable coefficients [5]

y′(x)− y(x) + xy′(x− 1) + y(x− 1) = (x− 2) +

∫ 1

−1
(x+ t)y(t− 1)dt

with mixed condition

y(−1)− 2y(0) + y(1) = 0.
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Then, for N = 2, the collocation points are x0 = −1, x1 = 0, x2 = 1.
The fundamental matrix equation for this problem is defined by(

P00X(TT )−1 + X(TT )−1M + XD(−1)(TT )−1

+P11XD(−1)(TT )−1M − XK00G00D(−1)(TT )−1
)
A = F

where

P00 =

 −1 0 0
0 −1 0
0 0 −1

 , P11 =

 −1 0 0
0 0 0
0 0 1

 ,
X =

 1 −1 1
1 0 0
1 1 1

 , M =

 0 1 0
0 0 2
0 0 0

 ,
(TT )−1 =

 1 − 1
2 0

0 1 −1
0 0 1

 , D(−1) =

 1 −1 1
0 1 −2
0 0 1

 ,
K00 =

 0 1 0
1 0 0
0 0 0

 , G00 =

 2 0 2
3

0 2
3 0

2
3 0 2

5

 ,
and F =

 −3
−2
−1

 .
From (3.12), The augmented matrix is obtained as

[U; F] =

 2 − 14
3

38
3 ; −3

0 − 2
3 3 ; −2

−2 10
3 − 8

3 ; −1

 .
Hence, the augmented matrix based on the condition
y(−1)− 2y(0) + y(1) = 0 is

[Ũ : F̃] =

 2 − 14
3

38
3 ; −3

0 − 2
3 3 ; −2

0 0 2 ; 0

 .
By solving this system, the unknown Euler coefficients matrix is obtained as

A =
[

11
2 3 0

]T
.

Therefore, the solutions of this problem becomes

y2(x) =
[

1 x− 1
2 x2 − x

] [
11
2 3 0

]T
= 3x+ 4,

which is the exact solution of this problem.
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Example 4.2.

Let us consider the integro - differential equation with variable coefficients [3],
[8]

y′′′(x)− xy′(x− 1) + y′′(x− 1)− xy(x− 1) = −(x+ 1)(sin(x− 1) + cosx)

− cos 2 + 1 +

∫ 1

−1
y(t− 1)dt

with conditions
y(0) = 0, y′(0) = 1, y′′(0) = 0.

The exact solution of this problem is y = sinx. Here p00(x) = p10(x) = −x,
K00(x, t) = 1 and f(x) = −(x+ 1)(sin(x− 1) + cosx)− cos 2 + 1. From equation
(3.12), the fundamental matrix equation for this problem is(
P00XD(−1)(TT )−1 + P10X(TT )−1M + XD(−1)(TT )−1M2 + X(TT )−1M3

− XG00D(−1)(TT )−1
)
A = F.

Thus, we obtain the approximate solution by the Euler polynomials of the problem
for N = 4, 6, 8 respectively,

y4(x) = −0.03059x4 − 0.18882x3 + x

y6(x) = 0.00258x6 + 0.01097x5 − 0.01298x4 − 0.149368x3 + x

y8(x) = −(3.17317e− 6)x8 − (1.65243e− 4)x7 − (1.31593e− 4)x5

+0.00826x5 + 0.00187x4 − 0.16898x3 + x.

Table 1 shows numerical results of the exact solutions and approximate solu-
tions for Example 4.2 for N = 4, 6, 8 by presented method. From Table 1, the
results of the solutions obtained by present method for N = 8 are more accurate
with the same number of the collocation points. Table 2 shows the L∞ errors of
the present method, Fibonacci collocation method (FCM) [3], and Legendre poly-
nomials [8]. As can be seen from Table 2, the presented method is more accurate
than the method given in [3] and [8].
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Table 1: Numerical results along with exact results for Example 4.2.
Present method

x Exact N = 4 N = 6 N = 8

−1 −0.841471 −0.841800 −0.872002 −0.837377
−0.8 −0.717356 −0.715868 −0.731758 −0.715423
−0.6 −0.564642 −0.563185 −0.570151 −0.563902
−0.4 −0.389418 −0.388700 −0.390874 −0.389222
−0.2 −0.198669 −0.198538 −0.198829 −0.198648
0 0 0 0 0
0.2 0.198669 0.198441 0.198788 0.198654
0.4 0.389418 0.387133 0.390231 0.389317
0.6 0.564642 0.555253 0.567028 0.564375
0.8 0.717356 0.690801 0.722478 0.716887
1 0.841471 0.780600 0.851202 0.840855

Table 2: L∞ error for Example 4.2.
Error Present method

N = 4 N = 6 N = 8

L∞ 6.088441e− 2 3.053102e− 2 4.094052e− 3

Error FCM [3] Legendre polynomials [8]
N = 8 N = 9 m = 6 m = 7

L∞ 3.937393e− 1 2.23705e− 0 3.84e− 2 5.05e− 3

Example 4.3.

As the next example, consider the following second-order pantograph Volterra
integro-differential equation of the neutral type

y′′(x)− (x+ 1)y′(x) + y(x) =

∫ x

−1
(xy(t) + y′(t) + ty′′(t))dt+ (x+ 1)(sinx− sin 1),

and the boundary conditions

y(−1) = cos 1, y(1) = cos 1,

correspond to the exact solution y(x) = cosx. Here p10(x) = −(x+1), K̂00(x, t) =
x, K̂10 = 1, K̂20(x, t) = t and f(x) = (x+ 1)(sinx− sin 1). From equation (3.12),
the fundamental matrix equation for this problem is(

X(TT )−1 + P10X(TT )−1M + X(TT )−1M2 − W00(TT )−1 −W10(TT )−1M

− W20(TT )−1M2
)
A = F.

Thereby, taking N = 4 and N = 9 respectively, we have the approximated solution
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by the Euler polynomials of this problem

y8(x) = −0.07973x8 − 0.10876x7 − 0.04048x6 − 0.07949x5 − 0.12887x4

−0.30957x3 − 0.66488x2 + 0.49782x+ 1.45427

y9(x) = 0.05614x9 + 0.02674x8 − 0.10715x7 − 0.12512x6 − 0.10855x5

−0.11913x4 − 0.31186x3 − 0.67749x2 + 0.47142x+ 1.43530.

Table 3 shows the numerical results of the exact solution and the approximate
solutions for N = 8, 9 by the present method. The L∞ errors are shown in Table
4.

Table 3: Numerical results along with exact results for Example 4.3.
Present method

x Exact N = 8 N = 9

−1 0.54030 0.54031 0.54030
−0.8 0.69671 0.76107 0.75764
−0.6 0.82534 0.97238 0.96596
−0.4 0.92106 1.16605 1.15602
−0.2 0.98007 1.33040 1.31625
0 1.00000 1.45427 1.43530
0.2 0.98007 1.52452 1.49975
0.4 0.92106 1.52270 1.49069
0.6 0.82534 1.41758 1.37519
0.8 0.69671 1.14287 1.09156
1 0.54030 0.54031 0.54030

Table 4: L∞ error for Example 4.3.
Error Present method

N = 8 N = 9

L∞ 0.60163 0.56963
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