Thai Journal of Mathematics Volume 16 (2018) Number 2 : 401-413
http://thaijmath.in.cmu.ac.th

Euler-Taylor Matrix Method for Solving Linear Volterra-Fredholm Integro Differential Equations with Variable Coefficients

Teeranush Suebcharoen
Center of Excellence in Mathematics and Applied Mathematics
Department of Mathematics, Faculty of Science, Chiang Mai
University, Chiang Mai 50200, Thailand
e-mail : teeranush.s@gmail.com

Abstract

In this paper, we present a numerical method for solving the highorder linear Volterra-Fredholm integro - differential equations with constant arguments and variable coefficients. The proposed method is based on the Euler polynomials and collocation points which transforms the integro - differential equation into a matrix equation. The matrix equation corresponds to a system of algebraic equations for which the unknown are Euler coefficients. Some examples are provided to illustrate the validity of the method.

Keywords : integro - differential equations; Euler polynomials. 2010 Mathematics Subject Classification : 34K28; 45A99.

1 Introduction

The integro-differential equations and their solutions play a major role in science, economics and engineering $1-5$. The integro - differential equations with constant arguments and variable coefficients are usually difficult to solve analyticall, so a numerical method is needed. There are various techniques for solving Fredholm integro - differential equations, e.g. Laguerre collocation method (LCM) [1], Fibonacci collocation method (FCM) [3], Taylor matrix method 6], Cheby-
shev collocation method [7], Legendre spectral collocation method [8 and hybrid Euler-Taylor matrix method [9]. In addition, Adomain decomposition method [10], Taylor-series expansion method [11], Romberg extrapolation on quadrature method 12 and the Legendre spectral collocation method [13] were applied to solving Volterra integral equations. Our goal is to develop a hybrid Euler-Taylor matrix method [9] for solving the generalized high-order linear Volterra-Fredholm integro - differential equations with constant arguments and variable coefficients in the form

$$
\begin{align*}
\sum_{k=0}^{m_{1}} \sum_{j=0}^{n_{1}} p_{k j}(x) y^{(k)}\left(x+\tau_{k j}\right) & =f(x)+\sum_{r_{1}=0}^{m_{2}} \sum_{s_{1}=0}^{n_{2}} \int_{a}^{b} K_{r_{1} s_{1}}(x, t) y^{\left(r_{1}\right)}\left(t+\lambda_{r_{1} s_{1}}\right) d t \\
& +\sum_{r_{2}=0}^{m_{3}} \sum_{s_{2}=0}^{n_{3}} \int_{a}^{x} \hat{K}_{r_{2} s_{2}}(x, t) y^{\left(r_{2}\right)}\left(t+\gamma_{r_{2} s_{2}}\right) d t \tag{1.1}
\end{align*}
$$

with mixed conditions

$$
\begin{gather*}
\sum_{i=0}^{m_{1}-1}\left[\alpha_{i l} y^{(i)}(a)+\beta_{i l} y^{(i)}(b)+\gamma_{i l} y^{(i)}(c)\right]=\mu_{i} \tag{1.2}\\
l=0,1, \ldots, m_{1}-1, \quad m_{1} \geq m_{2}, m_{3}
\end{gather*}
$$

where $y(x)$ is an unknown function to be determined. Also, $p_{k j}(x), K_{r_{1} s_{1}}(x, t)$, $K_{r_{2} s_{2}}(x, t)$ and $f(x)$ are continuous functions defined on the interval $0 \leq x, t \leq b<$ $\infty ; \alpha_{i l}, \beta_{i l}$ and $\gamma_{i l}$ are appropriated constants. Moreover, the functions $K_{r_{1} s_{1}}(x, t)$ and $\hat{K}_{r_{2} s_{2}}(x, t)$ can be represented by Maclaurin series.

This paper is organized as follows: In Section 2, we present the basic concepts of Euler polynomials and their properties. The method of constructing the Euler matrix for solving the linear Volterra-Fredholm integro - differential equations with constant arguments and variable coefficients is described in Section 3. The numerical illustrations are provided in Section 4.

2 Preliminaries

Euler polynomials are very useful. They are classical tools for numerical methods and have a lot of applications in many fields in mathematics. Their basic properties can be summarized as follows $14-19$.

Euler polynomials $E_{n}(x)$ can be defined in terms of exponential generating function as follows

$$
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{n} E_{n}(x) \frac{t^{n}}{n!}, \quad|t|<\pi
$$

The recursive formula of Euler polynomials are constructed by using the following relation

$$
\begin{equation*}
E_{n}(x)+\sum_{k=0}^{n}\binom{n}{k} E_{k}(x)=2 x^{n}, \quad n=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

Also, Euler polynomials $E_{n}(x)$ can be defined as polynomials of degree $n \geq 0$ satisfying the following properties

$$
\begin{align*}
E_{n}(x+1)+E_{n}(x) & =2 x^{n} \quad n=1,2, \ldots, \tag{2.2}\\
E_{n}^{\prime}(x) & =n E_{n-1}(x), \quad n=1,2, \ldots \tag{2.3}
\end{align*}
$$

If we take $n=0$, the first Euler polynomial is $E_{0}(x)=1$. By using 2.1) or (2.2) the next four Euler polynomials are given below,

$$
E_{1}(x)=1, \quad E_{2}(x)=x^{2}-x, \quad E_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{4}, \quad E_{4}(x)=x^{4}-2 x^{3}+x
$$

3 Main Results

In this section, we consider the equation 1.1) and find the corresponding matrix forms of each term in the corresponding equation. Let $y_{N}(x)$ be an approximate solution of 1.1 expressed in the truncated Euler series form

$$
y(x) \cong y_{N}(x)=\sum_{n=0}^{N} a_{n} E_{n}(x), \quad 0 \leq a \leq x \leq b
$$

where $a_{n} ; n=0,1, \ldots N$ are the Euler coefficient unknowns, and $E_{n}(x) ; n=$ $0,1, \ldots N$ are Euler polynomials. We can rewrite the approximate solution $y_{N}(x)$ to the matrix equation

$$
\begin{equation*}
y_{N}(x)=\mathbf{E}(x) \mathbf{A}, \tag{3.1}
\end{equation*}
$$

where

$$
\mathbf{E}(x)=\left[\begin{array}{llll}
E_{0}(x) & E_{1}(x) & \ldots & E_{N}(x)
\end{array}\right],
$$

and

$$
\mathbf{A}=\left[\begin{array}{llll}
a_{0} & a_{1} & \ldots & a_{N}
\end{array}\right]^{T}
$$

From the second property (2.3) and equation (3.1), the relation between the matrix $\mathbf{E}(x)$ and its derivative $\mathbf{E}^{\prime}(x)$ is

$$
\mathbf{E}^{\prime}(x)=\mathbf{E}(x) \mathbf{M}
$$

and then, it follows that

$$
\begin{align*}
\mathbf{E}^{\prime \prime}(x) & =\mathbf{E}^{\prime}(x) \mathbf{M}=\mathbf{E}(x) \mathbf{M}^{2} \\
\mathbf{E}^{\prime \prime \prime}(x) & =\mathbf{E}^{\prime \prime}(x) \mathbf{M}=\mathbf{E}(x) \mathbf{M}^{3} \\
& \vdots \tag{3.2}\\
\mathbf{E}^{(k)}(x) & =\mathbf{E}^{(k-1)}(x) \mathbf{M}=\mathbf{E}(x) \mathbf{M}^{k}, \quad k=0,1,2, \ldots,
\end{align*}
$$

where

$$
\mathbf{M}^{0} \quad \text { is identity matrix and } \quad \mathbf{M}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 2 & \ldots & 0 \\
& & \vdots & & \\
0 & 0 & 0 & \ldots & N \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Furthermore, if in equation $2.1 n$ varies from 0 to N, we obtain the linear matrix equation as follows

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
2 \\
0
\end{array}\right) & 1 & 0 & \ldots & 0 \\
\frac{1}{2}\binom{2}{1} & 1 & \ldots & 0 \\
\frac{1}{2}\binom{N}{0} & \frac{1}{2}\binom{N}{1} & \frac{1}{2}\binom{N}{2} & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
E_{0}(x) \\
E_{1}(x) \\
E_{2}(x) \\
\vdots \\
\\
E_{N}(x)
\end{array}\right]=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{N}
\end{array}\right]
$$

or briefly

$$
\mathbf{T} \mathbf{E}^{T}(x)=\mathbf{X}^{T} \Rightarrow \mathbf{E}(x) \mathbf{T}^{T}=\mathbf{X}(x)
$$

where

$$
\mathbf{T}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
2
\end{array}\right. & 1 & 0 & \ldots & 0 \\
\frac{1}{2}\binom{2}{0} & \frac{1}{2}\binom{2}{1} & 1 & \ldots & 0 \\
& & \vdots & & \\
\frac{1}{2}\binom{N}{0} & \frac{1}{2}\binom{N}{1} & \frac{1}{2}\binom{N}{2} & \ldots & 1
\end{array}\right]
$$

and the standard basis matrix

$$
\mathbf{X}(x)=\left[\begin{array}{llll}
1 & x & x^{2} & \ldots
\end{array} x^{N}\right]
$$

Since \mathbf{T}^{T} is a upper triangular matrix with nonzero diagonal elements, it is nonsingular and hence $\left(\mathbf{T}^{T}\right)^{-1}$ exists. Thus, the Euler matrix can be given directly from

$$
\begin{equation*}
\mathbf{E}(x)=\mathbf{X}(x)\left(\mathbf{T}^{T}\right)^{-1} \tag{3.3}
\end{equation*}
$$

By putting $x \rightarrow x+\tau_{k j}$ in the equation (3.3), we have

$$
\begin{equation*}
\mathbf{E}\left(x+\tau_{k j}\right)=\mathbf{X}(x) \mathbf{D}\left(\tau_{k j}\right)\left(\mathbf{T}^{T}\right)^{-1} \tag{3.4}
\end{equation*}
$$

where

$$
\mathbf{D}(0) \text { is identity matrix and }
$$

$$
\mathbf{D}\left(\tau_{k j}\right)=\left[\begin{array}{cccc}
\binom{0}{0}\left(\tau_{k j}\right)^{0} & \binom{1}{0}\left(\tau_{k j}\right)^{1} & \ldots & \left(\begin{array}{c}
N \\
0 \\
1 \\
1
\end{array}\right)\left(\tau_{k j}\right)^{N} \\
0 & \left(\tau_{k j}\right)^{0} & \ldots & \binom{N}{1}\left(\tau_{k j}\right)^{N-1} \\
\vdots & 0 & \cdots & \binom{N}{N}\left(\tau_{k j}\right)^{0}
\end{array}\right] .
$$

From the matrix relations (3.1), 3.2, 3.3) and (3.4, we obtain

$$
\begin{equation*}
y_{N}^{(k)}(x) \cong \mathbf{X}(x)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{k} \mathbf{A}, \quad k=0,1,2, \ldots \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{(k)}\left(x+\tau_{k j}\right) \cong \mathbf{X}(x) \mathbf{D}\left(\tau_{k j}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{k} \mathbf{A}, \quad k=0,1,2, \ldots \tag{3.6}
\end{equation*}
$$

Now we transform the kernel function $K_{r_{1} s_{1}}(x, t)$ and $\hat{K}_{r_{2} s_{2}}(x, t)$ to the matrix form by using Maclaurin's expansion as

$$
\begin{equation*}
K_{r_{1} s_{1}}(x, t)=\mathbf{X}(x) \mathbf{K}_{r_{1} s_{1}} \mathbf{X}^{T}(t) \quad \text { and } \quad \hat{K}_{r_{2} s_{2}}(x, t)=\mathbf{X}(x) \hat{\mathbf{K}}_{r_{2} s_{2}} \mathbf{X}^{T}(t) \tag{3.7}
\end{equation*}
$$

where

$$
\mathbf{K}_{r_{1} s_{1}}=\left[k_{r_{1} s_{1}}^{m n}\right] ; \quad k_{r_{1} s_{1}}^{m n}=\frac{1}{m!n!} \frac{\partial^{m+n}}{\partial x^{m} \partial t^{n}} K_{r_{1} s_{1}}(0,0) \quad m, n=0,1,2, \ldots, N
$$

and

$$
\hat{\mathbf{K}}_{r_{2} s_{2}}=\left[k_{r_{2} s_{2}}^{m n}\right] ; \quad k_{r_{2} s_{2}}^{m n}=\frac{1}{m!n!} \frac{\partial^{m+n}}{\partial x^{m} \partial t^{n}} \hat{K}_{r_{2} s_{2}}(0,0) \quad m, n=0,1,2, \ldots, N .
$$

Thus, the matrix representation for the integral parts are obtained by

$$
\begin{equation*}
\int_{a}^{b} K_{r_{1} s_{1}}(x, t) y^{\left(r_{1}\right)}\left(t+\lambda_{r_{1} s_{1}}\right) d t \simeq \mathbf{X}(x) \mathbf{K}_{r_{1} s_{1}} \mathbf{G}_{r_{1} s_{1}} \mathbf{D}\left(\lambda_{r_{1} s_{1}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{1}} \mathbf{A} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{G}_{r_{1} s_{1}} & =\left[g_{r_{1} s_{1}}^{m n}\right]=\int_{a}^{b} \mathbf{X}^{T}(t) \mathbf{X}(t) d t \\
g_{r_{1} s_{1}}^{m n} & =\frac{b^{m+n+1}-a^{m+n+1}}{m+n+1}, \quad m, n=0,1, \ldots, N .
\end{aligned}
$$

Similarly, we get the matrix form for $\int_{a}^{x} \hat{K}_{r_{2} s_{2}}(x, t) y^{\left(r_{1}\right)}\left(t+\gamma_{r_{2} s_{2}}\right) d t$ as follows

$$
\begin{equation*}
\int_{a}^{x} \hat{K}_{r_{2} s_{2}}(x, t) y^{\left(r_{1}\right)}\left(t+\gamma_{r_{2} s_{2}}\right) d t \simeq \mathbf{W}_{r_{2} s_{2}}(x) \mathbf{D}\left(\gamma_{r_{2} s_{2}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{2}} \mathbf{A} \tag{3.9}
\end{equation*}
$$

where

$$
\mathbf{W}_{r_{2} s_{2}}(x)=\mathbf{X}(x) \hat{\mathbf{K}}_{r_{2} s_{2}} \mathbf{H}_{r_{2} s_{2}}(x)
$$

and

$$
\begin{aligned}
\mathbf{H}_{r_{2} s_{2}}(x) & =\left[h_{r_{2} s_{2}}^{m n}(x)\right]=\int_{a}^{x} \mathbf{X}^{T}(t) \mathbf{X}(t) d t ; \\
h_{r_{2} s_{2}}^{m n}(x) & =\frac{x^{m+n+1}-a^{m+n+1}}{m+n+1}, \quad m, n=0,1, \ldots, N .
\end{aligned}
$$

Substituting the matrix forms (3.5) - (3.9) into equation (1.1), we obtain

$$
\left(\begin{array}{c}
\sum_{k=0}^{m_{1}} \sum_{j=0}^{n_{1}} p_{k j}(x) \mathbf{X}(x) \mathbf{D}\left(\tau_{k j}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{k} \tag{3.10}\\
-\sum_{r_{1}=0}^{m_{2}} \sum_{s_{2}}^{n_{2}=0} \mathbf{X}(x) \mathbf{K}_{r_{1} s_{1}} \mathbf{G}_{r_{1} s_{1}} \mathbf{D}\left(\lambda_{r_{1} s_{1}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{1}} \\
-\sum_{r_{2}=0}^{m_{3}} \sum_{s_{2}=0}^{n_{3}} \mathbf{W}_{r_{2} s_{2}}(x) \mathbf{D}\left(\gamma_{r_{2} s_{2}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{2}}
\end{array}\right) \mathbf{A}=f(x) .
$$

In order to use equation (3.10) the collocation points are defined by

$$
x_{i}=a+\frac{b-a}{N} i, \quad i=0,1,2, \ldots, N .
$$

We have the system of the matrix equations

$$
\left(\begin{array}{c}
\sum_{k=0}^{m_{1}} \sum_{j}^{n_{1}} p_{k j}\left(x_{i}\right) \mathbf{X}\left(x_{i}\right) \mathbf{D}\left(\tau_{k j}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{k} \\
-\sum_{r_{1}}^{m_{2}=0} \sum_{s_{1}=0}^{n_{2}=\mathbf{X}} \mathbf{X}\left(x_{i}\right) \mathbf{K}_{r_{1} s_{1}} \mathbf{G}_{r_{1} s_{1}} \mathbf{D}\left(\lambda_{r_{1} s_{1}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{1}} \\
-\sum_{r_{2}=0}^{m_{3}=\sum_{s_{2}=0}^{n_{3}} \mathbf{W}_{r_{2} s_{2}}\left(x_{i}\right) \mathbf{D}\left(\gamma_{r_{2} s_{2}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{2}}}
\end{array}\right) \mathbf{A}=f\left(x_{i}\right) .
$$

Therefore, the fundamental matrix equation are obtained as

$$
\left(\begin{array}{c}
\sum_{k=0}^{m_{1}} \sum_{j=0}^{n_{1}} \mathbf{P}_{k j} \mathbf{X D} \mathbf{X}\left(\tau_{k j}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{k} \tag{3.11}\\
-\sum_{r_{1}=0}^{m_{2}} \sum_{s_{1}=0}^{n_{2}=0} \mathbf{X} \mathbf{K}_{r_{1} s_{1}} \mathbf{G}_{r_{1} s_{1}} \mathbf{D}\left(\lambda_{r_{1} s_{1}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{1}} \\
-\sum_{r_{2}=0}^{m_{1}} \sum_{s_{2}=0}^{n_{3}} \mathbf{W}_{r_{2} s_{2} s_{2}} \mathbf{D}\left(\gamma_{r_{2} s_{2}}\right)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{r_{2}}
\end{array}\right) \mathbf{A}=\mathbf{F},
$$

where

$$
\begin{gathered}
\mathbf{P}_{k j}=\operatorname{diag}\left[p_{k j}\left(x_{0}\right) p_{k j}\left(x_{1}\right) \ldots p_{k j}\left(x_{N}\right)\right] \\
\mathbf{X}=\left[\begin{array}{c}
\mathbf{X}\left(x_{0}\right) \\
\mathbf{X}\left(x_{1}\right) \\
\mathbf{X}\left(x_{2}\right) \\
\vdots \\
\mathbf{X}\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{N} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{N} \\
& & \vdots & & \\
1 & x_{N} & x_{N}^{2} & \ldots & x_{N}^{N}
\end{array}\right] \\
\mathbf{W}_{r_{2} s_{2}}=\left[\begin{array}{c}
\mathbf{W}_{r_{2} s_{2}}\left(x_{0}\right) \\
\mathbf{W}_{r_{2} s_{2}}\left(x_{1}\right) \\
\mathbf{W}_{r_{2} s_{2}}\left(x_{2}\right) \\
\vdots \\
\mathbf{W}_{r_{2} s_{2}}\left(x_{N}\right)
\end{array}\right] \text { and } \quad \mathbf{F}=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right] .
\end{gathered}
$$

The matrix equation (3.11) corresponds to a system of $(N+1)$ algebraic equations for ($\mathrm{N}+1$) unknown Euler coefficients $a_{0}, a_{1}, \ldots, a_{N}$. Briefly, one can write (3.11) in form

$$
\begin{equation*}
\mathbf{U A}=\mathbf{F} \quad \text { or } \quad[\mathbf{U} ; \mathbf{F}], \tag{3.12}
\end{equation*}
$$

where

$$
\mathbf{U}=\left[u_{m n}\right], \quad m, n=0,1, \ldots, N .
$$

On the other hand, we can obtain the matrix forms for the mixed condition (1.2) as

$$
\sum_{i=0}^{m_{1}-1}\left[\alpha_{i l} \mathbf{X}(a)+\beta_{i l} \mathbf{X}(b)+\gamma_{i l} \mathbf{X}(c)\right]\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{i} \mathbf{A}=\left[\mu_{i}\right] ; \quad i=0,1, \ldots, m_{1}-1
$$

or briefly

$$
\begin{equation*}
\mathbf{V}_{i} \mathbf{A}=\left[\mu_{i}\right] \quad \text { or } \quad\left[\mathbf{V}_{i} ; \mu_{i}\right], \tag{3.13}
\end{equation*}
$$

where

$$
\mathbf{V}_{i}=\left[\begin{array}{llll}
v_{i 0} & v_{i 1} & \ldots & v_{i N}
\end{array}\right], \quad i=0,1, \ldots, m_{1}-1 .
$$

Consequently, to obtain the solution of equation (1.1) with conditions 1.2), by replacing the m rows of matrix (3.12) by the last row matrices 3.13), we have

$$
\tilde{\mathbf{U}} \mathbf{A}=\tilde{\mathbf{F}} \quad \text { or } \quad[\tilde{\mathbf{U}} ; \tilde{\mathbf{F}}] .
$$

If the $\operatorname{rank} k \tilde{\mathbf{U}}=\operatorname{rank}[\tilde{\mathbf{U}} ; \tilde{\mathbf{F}}]=N+1$ then the unknown Euler coefficients matrix \mathbf{A} is uniquely determined and $\mathbf{A}=\tilde{\mathbf{U}}^{-1} \tilde{\mathbf{F}}$. Therefore, the system 1.1 with conditions 1.2 has a unique solution. However, when $|\tilde{\mathbf{U}}|=0$, if the $\operatorname{rank} \tilde{\mathbf{U}}=$ $\operatorname{rank}[\tilde{\mathbf{U}}: \tilde{\mathbf{F}}]$, then we may find a particular solution. Otherwise if the $\operatorname{rank} \tilde{\mathbf{U}} \neq$ $\operatorname{rank}[\tilde{\mathbf{U}}: \tilde{\mathbf{G}}]<N+1$, then it is not a solution.

The approximate solution $y_{N}(x)$ are obtained by proposed method has been compared with that of obtained by other method on the basis of L_{∞} error. It can be defined as

$$
L_{\infty}=\max _{a \leq x \leq b}\left|y_{N}(x)-y_{\text {exact }}(x)\right| .
$$

This comparison has been discussed in Section 4.

4 Illustrative Examples

Example 4.1.

Let us consider the integro - differential equation with variable coefficients 5

$$
y^{\prime}(x)-y(x)+x y^{\prime}(x-1)+y(x-1)=(x-2)+\int_{-1}^{1}(x+t) y(t-1) d t
$$

with mixed condition

$$
y(-1)-2 y(0)+y(1)=0
$$

Then, for $N=2$, the collocation points are $x_{0}=-1, x_{1}=0, x_{2}=1$.
The fundamental matrix equation for this problem is defined by

$$
\begin{aligned}
&\left(\mathbf{P}_{00} \mathbf{X}\left(\mathbf{T}^{T}\right)^{-1}+\mathbf{X}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}\right.+\mathbf{X D}(-1)\left(\mathbf{T}^{T}\right)^{-1} \\
&\left.\quad+\mathbf{P}_{11} \mathbf{X D}(-1)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}-\mathbf{X K}_{00} \mathbf{G}_{00} \mathbf{D}(-1)\left(\mathbf{T}^{T}\right)^{-1}\right) \mathbf{A}=\mathbf{F}
\end{aligned}
$$

where

$$
\begin{gathered}
\mathbf{P}_{00}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad \mathbf{P}_{11}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \\
\mathbf{X}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right], \quad \mathbf{M}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right], \\
\left(\mathbf{T}^{T}\right)^{-1}=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{D}(-1)=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right], \\
\mathbf{K}_{00}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{G}_{00}=\left[\begin{array}{ccc}
2 & 0 & \frac{2}{3} \\
0 & \frac{2}{3} & 0 \\
\frac{2}{3} & 0 & \frac{2}{5}
\end{array}\right], \\
\text { and } \quad \mathbf{F}=\left[\begin{array}{l}
-3 \\
-2 \\
-1
\end{array}\right] .
\end{gathered}
$$

From (3.12), The augmented matrix is obtained as

$$
[\mathbf{U} ; \mathbf{F}]=\left[\begin{array}{ccccc}
2 & -\frac{14}{3} & \frac{38}{3} & ; & -3 \\
0 & -\frac{2}{3} & 3 & ; & -2 \\
-2 & \frac{10}{3} & -\frac{8}{3} & ; & -1
\end{array}\right]
$$

Hence, the augmented matrix based on the condition $y(-1)-2 y(0)+y(1)=0$ is

$$
[\tilde{\mathbf{U}}: \tilde{\mathbf{F}}]=\left[\begin{array}{ccccc}
2 & -\frac{14}{3} & \frac{38}{3} & ; & -3 \\
0 & -\frac{2}{3} & 3 & ; & -2 \\
0 & 0 & 2 & ; & 0
\end{array}\right]
$$

By solving this system, the unknown Euler coefficients matrix is obtained as

$$
\mathbf{A}=\left[\begin{array}{lll}
\frac{11}{2} & 3 & 0
\end{array}\right]^{T}
$$

Therefore, the solutions of this problem becomes

$$
y_{2}(x)=\left[\begin{array}{lll}
1 & x-\frac{1}{2} & x^{2}-x
\end{array}\right]\left[\begin{array}{ccc}
\frac{11}{2} & 3 & 0
\end{array}\right]^{T}=3 x+4,
$$

which is the exact solution of this problem.

Example 4.2.

Let us consider the integro - differential equation with variable coefficients [3], 8)

$$
\begin{aligned}
y^{\prime \prime \prime}(x)-x y^{\prime}(x-1)+y^{\prime \prime}(x-1)-x y(x-1)= & -(x+1)(\sin (x-1)+\cos x) \\
& -\cos 2+1+\int_{-1}^{1} y(t-1) d t
\end{aligned}
$$

with conditions

$$
y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=0
$$

The exact solution of this problem is $y=\sin x$. Here $p_{00}(x)=p_{10}(x)=-x$, $K_{00}(x, t)=1$ and $f(x)=-(x+1)(\sin (x-1)+\cos x)-\cos 2+1$. From equation (3.12), the fundamental matrix equation for this problem is

$$
\begin{aligned}
\left(\mathbf{P}_{00} \mathbf{X D}(-1)\left(\mathbf{T}^{T}\right)^{-1}+\mathbf{P}_{10} \mathbf{X}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}\right. & +\mathbf{X D}(-1)\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{2}+\mathbf{X}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{3} \\
& \left.-\mathbf{X G}_{00} \mathbf{D}(-1)\left(\mathbf{T}^{T}\right)^{-1}\right) \mathbf{A}=\mathbf{F}
\end{aligned}
$$

Thus, we obtain the approximate solution by the Euler polynomials of the problem for $N=4,6,8$ respectively,

$$
\begin{aligned}
y_{4}(x)= & -0.03059 x^{4}-0.18882 x^{3}+x \\
y_{6}(x)= & 0.00258 x^{6}+0.01097 x^{5}-0.01298 x^{4}-0.149368 x^{3}+x \\
y_{8}(x)= & -(3.17317 e-6) x^{8}-(1.65243 e-4) x^{7}-(1.31593 e-4) x^{5} \\
& +0.00826 x^{5}+0.00187 x^{4}-0.16898 x^{3}+x
\end{aligned}
$$

Table 1 shows numerical results of the exact solutions and approximate solutions for Example 4.2 for $N=4,6,8$ by presented method. From Table 1. the results of the solutions obtained by present method for $N=8$ are more accurate with the same number of the collocation points. Table 2 shows the L_{∞} errors of the present method, Fibonacci collocation method (FCM) 3], and Legendre polynomials [8]. As can be seen from Table 2, the presented method is more accurate than the method given in 3] and [8].

Table 1: Numerical results along with exact results for Example 4.2.

		Present method		
x	Exact	$N=4$	$N=6$	$N=8$
-1	-0.841471	-0.841800	-0.872002	-0.837377
-0.8	-0.717356	-0.715868	-0.731758	-0.715423
-0.6	-0.564642	-0.563185	-0.570151	-0.563902
-0.4	-0.389418	-0.388700	-0.390874	-0.389222
-0.2	-0.198669	-0.198538	-0.198829	-0.198648
0	0	0	0	0
0.2	0.198669	0.198441	0.198788	0.198654
0.4	0.389418	0.387133	0.390231	0.389317
0.6	0.564642	0.555253	0.567028	0.564375
0.8	0.717356	0.690801	0.722478	0.716887
1	0.841471	0.780600	0.851202	0.840855

Table 2: $\quad L_{\infty}$ error for Example 4.2.

Error	Present method		
	$N=4$	$N=6$	$N=8$
L_{∞}	$6.088441 e-2$	$3.053102 e-2$	$4.094052 e-3$

Error	FCM $\overline{3}$		Legendre	polynomials
	$N=\overline{8}$	$N=9$	$m=6$	$m=7$
L_{∞}	$3.937393 e-1$	$2.23705 e-0$	$3.84 e-2$	$5.05 e-3$

Example 4.3.

As the next example, consider the following second-order pantograph Volterra integro-differential equation of the neutral type
$y^{\prime \prime}(x)-(x+1) y^{\prime}(x)+y(x)=\int_{-1}^{x}\left(x y(t)+y^{\prime}(t)+t y^{\prime \prime}(t)\right) d t+(x+1)(\sin x-\sin 1)$,
and the boundary conditions

$$
y(-1)=\cos 1, \quad y(1)=\cos 1,
$$

correspond to the exact solution $y(x)=\cos x$. Here $p_{10}(x)=-(x+1), \hat{K}_{00}(x, t)=$ $x, \hat{K}_{10}=1, \hat{K}_{20}(x, t)=t$ and $f(x)=(x+1)(\sin x-\sin 1)$. From equation (3.12), the fundamental matrix equation for this problem is

$$
\begin{aligned}
\left(\mathbf{X}\left(\mathbf{T}^{T}\right)^{-1}+\mathbf{P}_{10} \mathbf{X}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}+\mathbf{X}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{2}\right. & -\mathbf{W}_{00}\left(\mathbf{T}^{T}\right)^{-1}-\mathbf{W}_{10}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M} \\
& \left.-\mathbf{W}_{20}\left(\mathbf{T}^{T}\right)^{-1} \mathbf{M}^{2}\right) \mathbf{A}=\mathbf{F}
\end{aligned}
$$

Thereby, taking $N=4$ and $N=9$ respectively, we have the approximated solution
by the Euler polynomials of this problem

$$
\begin{aligned}
y_{8}(x)= & -0.07973 x^{8}-0.10876 x^{7}-0.04048 x^{6}-0.07949 x^{5}-0.12887 x^{4} \\
& -0.30957 x^{3}-0.66488 x^{2}+0.49782 x+1.45427 \\
y_{9}(x)= & 0.05614 x^{9}+0.02674 x^{8}-0.10715 x^{7}-0.12512 x^{6}-0.10855 x^{5} \\
& -0.11913 x^{4}-0.31186 x^{3}-0.67749 x^{2}+0.47142 x+1.43530 .
\end{aligned}
$$

Table 3 shows the numerical results of the exact solution and the approximate solutions for $N=8,9$ by the present method. The L_{∞} errors are shown in Table 4

Table 3: Numerical results along with exact results for Example 4.3 .

		Present method	
x	Exact	$N=8$	$N=9$
-1	0.54030	0.54031	0.54030
-0.8	0.69671	0.76107	0.75764
-0.6	0.82534	0.97238	0.96596
-0.4	0.92106	1.16605	1.15602
-0.2	0.98007	1.33040	1.31625
0	1.00000	1.45427	1.43530
0.2	0.98007	1.52452	1.49975
0.4	0.92106	1.52270	1.49069
0.6	0.82534	1.41758	1.37519
0.8	0.69671	1.14287	1.09156
1	0.54030	0.54031	0.54030

Table 4: $\quad L_{\infty}$ error for Example 4.3 .

Error	Present method	
	$N=8$	$N=9$
L_{∞}	0.60163	0.56963

Acknowledgement(s) : I would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by the National Research Council of Thailand and Chiang Mai University, Thailand.

References

[1] B. Gurbuz, M. Sezer, C. Guler, Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments, J. Appl. Math. 2014 (2014) 1-12.
[2] S. Yalcinbas, T. Akkaya, A numerical approach for solving linear integro-differential-difference equations with Boubaker polynomial bases, Ain Shams Eng. 3 (2012) 153-161.
[3] A. Kurt, S. Yalcinbas, M. Sezer, Fibonacci collocation method for solving high-order linear Fredholm integro-differential-difference equations, Int. J. Math. Sci. 2013 (2013) doi:10.1155/2013/486013.
[4] S.B.G. Karakoc, A. Eryilmaz, M. Basbuk, The approximate solutions of Fredholm integrodifferential-difference equations with variable coefficients via homotopy analysis method, Math. Probl. Eng. 2013 (2013) doi:10.1155/2013/261645.
[5] P.K. Sahu, S.S. Ray, Legendre spectral collocation method for Fredholm integro-differential-difference equations with variable coefficients and mixed conditions, Appl. Math. Comput. 268 (2015) 575-580.
[6] M. Gulsu, Y. Ozturk, M. Sezer, A new collocation method for solution of mixed linear integro-differential-difference equation of high order, Frankin Inst. 343 (2006) 720-737.
[7] M. Gulsu, M. Sezer, Approximations to the solution of linear Fredholm integro-differential-difference equations, J. Appl. Math. Comput. 216 (2010) 2183-2198.
[8] A. Saadatmandi, M. Dehghan, Numerical solution of the higher-order linear Fredholm integro-differential-difference equations with variable coefficients, Appl. Math. Comput. 59 (2010) 2996-3004.
[9] M.A., Balci, M. Sezer, Hybrid Euler-Taylor matrix method for solving of generalized linear Fredholm integro-differential-difference equations, Appl. Math. Comput. 273 (2016) 33-41.
[10] E. Balolian, A. Davari, Numerical implemention of Adomain decomposition method for linear Volterra integral equations of the second kind, Appl. Math. Comput. 165 (2005) 223-227.
[11] K. Maleknejad, N. Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. 161 (2005) 915-922.
[12] M. Mestrovi, E. Ocvirk, An application of Romberg extrapolation on quadrature method for solving linear Volterra integral equations of the second kind, Appl. Math. Comput. 194 (2007) 389-393.
[13] Y. Wei, Y. Chen, Legendre spectral collocation method for neutral and highorder Volterra integro-differential-difference equations, Appl. Numer. Math. 81 (2014) 15-29.
[14] G. Bretti, P.E. Ricci, Euler polynomials and the related quadrature rule, Georgian Math. 83 (2001) 447-453.
[15] G.S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett 16 (2003) 365-368.
[16] W. Chu, R.R. Zhou, Convolutions of Bernoulli and Euler polynomials, Sarajevo J. Math. 18 (2010) 147-163.
[17] H. Pan, Z.W. Sun, New identities involving Bernoulli and Euler polynomials, Comb. Theory Ser. 113 (2006) 156-175.
[18] E.E. Scheufens, Euler polynomials, Fourier series and Zeta numbers, Int. Pure Appl. Math. 78 (2012) 37-47.
[19] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1995.
(Received 14 July 2017)
(Accepted 10 September 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

