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1 Introduction

Well-posedness is very important for both optimization theory and numeri-
cal methods of optimization problems, which guarantees that, for approximating
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solution sequences, there is a subsequence which converges to a solution. The
study of well-posedness originates from Tikhonov [1], which means the existence
and uniqueness of the solution and convergence of each minimizing sequence to
the solution. Levitin-Polyak [2] introduced a new notion of well-posedness that
strengthened Tykhonov’s concept as it required the convergence to the optimal
solution of each sequence belonging to a larger set of minimizing sequences. Sub-
sequently, some authors studied the Levitin-Polyak well-posedness for convex op-
timization problems with functional constraints (Konsulova and Revalski [3]), gen-
eral constrained nonconvex optimization problems (Huang and Yang [4]), general
constrained vector optimization problems (Huang and Yang [5]) and generalized
variational inequality problems with functional constraints (Huang and Yang [6]).

The notion of well-posedness for variational inequality problems was intro-
duced by Lucchetti and Patrone [7] based on the fact that an optimization prob-
lem of minimizing a function can be formulated as a variational inequality problem
involving the derivative of the objective. After that several researchers [8–13] have
explored the forms of well-posedness for various forms of variational inequality
problems. Lignola [8] considered two concepts of well-posednesses for quasivaria-
tional inequalities having a unique solution. Some equivalent characterizations of
these concepts and classes of well- posed quasivariational inequalities are presented.
In 2010, Zhong and Huang [14] studied the stability analysis for a class of Minty
mixed variational inequalities in reflexive Banach spaces, when both the map-
ping and the constraint set are perturbed. Fang, Huang and Yao [15] considered
an extension of the notion of well-posedness by perturbations for a minimization
problem, to a mixed variational inequality problem in a Banach space. Recently,
Li and Xia [16] introduced the concept of Levitin-Polyak well-posedness for the
generalized mixed variational inequality in Banach spaces and established some
characterizations of its Levitin-Polyak well-posedness.

However, to the best of our knowledge, there is no a result concerning the
Levitin-Polyak well-posedness for both (MQVI) and (SQVI), which include as
a special case the classical the generalized mixed variational inequality in [16].
Motivated by the work reported in [8,14–16], we introduce the concepts of Levitin-
Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense
of (MQVI) and (SQVI), respectively. Sufficient conditions for such problems to
be Levitin-Polyak well-posedness are established. We also introduce gap functions
for (MQVI) and (SQVI) and study their properties which are used to study the
Levitin-Polyak well-posedness for such problems.

2 Preliminaries

Let X,Y be normed spaces and C ⊂ Y be a closed, convex, pointed, and solid
cone. Let L(X,Y ) be the space of all linear continuous operators from X into Y ,
and A ⊂ X be a nonempty closed subset. Let K : A ⇒ A and T : A ⇒ L(X,Y )
be set-valued mappings. Let H : L(X,Y )→ L(X,Y ), f : A×A→ Y, η : A×A→
A,ψ : A → A be continuous single-valued mappings with η(x, ψ(x)) = 0 and
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f(x, ψ(x)) = 0 for every x ∈ A. 〈z, x〉 denotes the value of a linear operator
z ∈ L(X;Y ) at x ∈ X.

We consider the following two strong vector mixed quasivariational inequality
problems of the Minty type and the Stampacchia type, respectively.
(MQVI) Find x ∈ K(x) such that

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) ∈ C, ∀y ∈ K(x),∀z ∈ T (y).

(SQVI) Find x ∈ K(x) such that, there exists z ∈ T (x) and

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) ∈ C, ∀y ∈ K(x).

The solution sets of (MQVI) and (SQVI) are denoted by SM and SS , respec-
tively. In this paper we only focus on Levitin-Polyak well-posedness for (MQVI)
and (SQVI). We always assume that all kinds of solution sets of these problems are
nonempty. To provide our motivations for these settings, we discuss some special
cases of the problems.

(a) If X is a real reflexive Banach space, X∗ is its dual space, and H(z) =
{z},K(x) = K, η(y, ψ(x)) = y − x, f(y, ψ(x)) = f(y)− f(x), C = R+, then
(MQVI) reduces to the Minty mixed variational inequality studied in Zhong
and Huang [14].

(b) If H(z) = {z},K(x) = K(x), η(y, ψ(x)) = y − x, f(y, ψ(x)) = 0, C = R+,
and T is an operator from X into the collection of all continuous linear
X into Y then the problem (SQVI) reduces to the problem (QVI) studied
in [8].

(c) If X = Rn, Y = Rm, C = R+,K(x, γ) = A, T (x, γ) = T (x), f(x, z, y, γ) =
〈z, y− x〉, then the problem (SQVI) reduces to the Stampacchia variational
Inequalities (in short, (VI(T,A))) studied in [17].

Firstly, we recall some basic definitions and some of their properties.
Let X and Z be two metric spaces and G : X ⇒ 2Z be a multifunction.

(i) G is said to be lower semicontinuous (lsc) at x0 if G(x0) ∩ U 6= ∅ for some
open set U ⊆ Z implies the existence of a neighborhood V of x0 such that
G(x) ∩ U 6= ∅ for all xx ∈ V .

(ii) G is said to be upper semicontinuous (usc) at x0 if for each open set U ⊇
G(x0), there is a neighborhood V of x0 such that U ⊇ G(x) for all x ∈ V .

(iii) G is said to be closed at x0 if for each sequence {(xn, yn)} ⊆ graphG :=
{(x, y)|y ∈ G(x)}, (xn, yn)→ (x0, y0), it follows that (x0, y0) ∈ graphG.

Lemma 2.1. (See e.g., [18, 19])

(i) If Z is compact and G is closed at x0, then G is usc at x0.

(ii) If G is usc at x0 and G(x0) is closed, then G is closed at x0.
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(iii) If G(x0) is compact then G is usc at x0 if and only if, for any sequence {xn}
converging to x0 and for any sequence {yn} ⊆ G(xn), there is a subsequence
{ynk
} of {yn} converging to some y0 ∈ G(x0).

Lemma 2.2. (See e.g., [20–22]) For any fixed each e ∈ intC, y ∈ Y and the
nonlinear scalarization function ξe : Y → R defined by ξe(y) := min{r ∈ R : y ∈
re− C}:

(i) ξe is a continuous and convex function in Y ;

(ii) ξe(y) ≤ r ⇔ y ∈ re− C;

(iii) ξe(y) > r ⇔ y 6∈ re− C.

3 Levitin-Polyak Well-Posedness of (MQVI) and
(SQVI)

In this section we introduce the concepts of Levitin-Polyak well-posedness and
Levitin-Polyak well-posedness in the generalized sense for (MQVI) and (SQVI).
Sufficient conditions for such problems to be Levitin-Polyak well-posedness are
established. Since the study of the existence conditions for the class of these
problems has been intensively studied, we always assume that all kinds of solution
sets of these problems are nonempty.

Definition 3.1. A sequence {xn} ⊂ A is said to be a Levitin-Polyak approxi-
mating sequence for (MQVI)/or (SQVI), if there exists a sequence {εn} ⊆ R+

converging to 0 such that d(xn,K(xn)) ≤ εn, and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C, ∀y ∈ K(xn), z ∈ T (y),∀n ∈ N,
or

∃z ∈ T (xn) : 〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C, ∀y ∈ K(xn),∀n ∈ N,

respectively.

Definition 3.2. The problem (MQVI)/or (SQVI) is said to be Levitin-Polyak
well-posed, if

(i) the problem (MQVI)/or (SQVI) has a unique solution;

(ii) for every Levitin-Polyak approximating sequence {xn} for (MQVI)/or (SQVI)
converging to the unique solution of (MQVI)/or (SQVI), respectively.

Definition 3.3. The problem (MQVI)/or (SQVI) is said to be Levitin-Polyak
well-posed in the generalized sense, if

(i) the problem (MQVI)/or (SQVI) has solutions;

(ii) for every Levitin-Polyak approximating sequence {xn} for (MQVI)/or (SQVI)
must have a subsequence converging to an element in SM/or SS , respec-
tively.
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Remark 3.4. When X is a real reflexive Banach space with its dual X∗, K(x) ≡
K,H(z) = {z}, η(y, ψ(x)) = y − x, f(y, ψ(x)) = φ(y) − φ(x), where φ : X →
R ∪ {+∞} and e = 1. Definitions 3.2 and 3.3 reduce to the Definitions 3.2 and
3.3 of [16], respectively.

For ε > 0, we denote the ε-solution sets of (MQVI) and (SQVI), denoted by

S̃M (ε) and S̃S(ε), are defined as

S̃M (ε) ={x ∈ A : d(x,K(x)) ≤ ε and

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe ∈ C, ∀y ∈ K(x),∀z ∈ T (y)},

and

S̃S(ε) ={x ∈ A : d(x,K(x)) ≤ ε and ∃z ∈ T (x),

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe ∈ C, ∀y ∈ K(x)}, respectively.

Theorem 3.5. Assume that K is continuous with compact values on A. Then,

(i) for each ε ≥ 0, S̃M (ε) is compact, if T is lower semicontinuous on A;

(ii) for each ε ≥ 0, S̃S(ε) is compact, if T is upper semicontinuous on A.

Proof. As an example we present only the proof for (i). Let {xn} ⊂ S̃M (ε),

xn → x, we will prove that x ∈ S̃M (ε). For each n ∈ N , we have d(xn,K(xn)) ≤ ε,
and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εe ∈ C, ∀y ∈ K(xn),∀z ∈ T (y).

For each n, there is x̄n ∈ K(xn) such that

d(xn, x̄n) ≤ d(xn,K(xn)) +
1

n
≤ ε+

1

n
.

Since K is usc with compact values, we can assume that {x̄n} converges to an
element x̄ in K(x). So,

d(x,K(x)) ≤ d(x, x̄) = lim
n→∞

d(xn, x̄n) ≤ ε.

If x 6∈ S̃M (ε) then there are y ∈ K(x) and z ∈ T (y) such that

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe 6∈ C.

Since K and T are lsc, for each n, we can pick yn ∈ K(xn), zn ∈ T (yn) such that

{yn} → y and {zn} → z. As xn ∈ S̃M (ε) and η, ψ, f,H are continuous, we have,

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe ∈ C,

which is impossible. Hence, x ∈ S̃M (ε), i.e., S̃M (ε) is compact.
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Theorem 3.6.

(i) The problem (MQVI)/or (SQVI) is Levitin-Polyak well-posed in the gener-
alized sense, if and only if SM/or SS is a nonempty compact subset and

S̃M/or S̃S is upper semicontinuous at 0, respectively.

(ii) Suppose that SM and SS are singletons. Then, the problem (MQVI)/or

(SQVI) is Levitin-Polyak well-posed, if and only if S̃M/or S̃S is upper semi-
continuous at 0, respectively.

Proof. Since the proof techniques are similar, we discuss only the Levitin-Polyak
well-posedness in the generalized sense for (MQVI). Suppose that SM is a nonempty

compact subset and S̃M is usc at 0. Let {xn} be a Levitin-Polyak approximating
sequence for (MQVI). Then, there exists a sequence {εn} ⊂ (0,+∞), εn → 0 such
that, for any n, d(xn,K(xn)) ≤ εn, and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C, ∀y ∈ K(xn),∀z ∈ T (y).

So, xn ∈ S̃M (εn). Since SM = S̃M (0) is compact, Φ̃ is upper semicontinuous with
compact values at 0. Therefore, we can get a subsequence {xnk

} of {xn}, xnk

converges to x0, for some point x0 ∈ S̃M (0) = SM . Hence, (MQVI) is Levitin-
Polyak well-posed in the generalized sense.

Conversely, if (MQVI) is well-posed in the generalized sense then SM is a
nonempty compact subset. Let {εn} ⊆ (0,+∞) be an arbitrary sequence with

εn → 0 and xn ∈ S̃M (εn). For any n, we have d(xn,K(xn)) ≤ εn, and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C, ∀y ∈ K(xn),∀z ∈ T (y).

So, {xn} is a Levitin-Polyak approximating sequence for (MQVI). By the Levitin-
Polyak well-posedness in the generalized sense for (MQVI), {xn} much have a

subsequence converging to an element in SM = S̃M (0). Lemma 2.1(iii) implies the

fact that S̃M is usc at 0.

Theorem 3.7. Assume that K is continuous with compact values on A. Then,
the following statements are true:

(i) If T is lower semicontinuous on A then (MQVI) is Levitin-Polyak well-posed
if and only if

S̃M (ε) 6= ∅,∀ε > 0, and diamS̃M (ε)→ 0 as ε→ 0.

(ii) If T is upper semicontinuous with compact values on A then (SQVI) is
Levitin-Polyak well-posed if and only if

S̃S(ε) 6= ∅,∀ε > 0, and diamS̃S(ε)→ 0 as ε→ 0.
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Proof. As an example we demonstrate only (ii). If (SQVI) is Levitin-Polyak well-

posed then SS = {x0}, and hence S̃S(ε) 6= ∅, for any ε > 0. Suppose that

diamS̃S(ε) 6→ 0 as ε→ 0, i.e., then exist ρ > 0, {εn} ⊂ (0,+∞), εn → 0 and

diamS̃S(εn) > ρ.

So, there exist x1n, x
2
n ∈ S̃S(εn) such that d(x1n, x

2
n) > q

2 > 0. Since x1n, x
2
n ∈

S̃S(εn), we have d(x1n,K(x1n)) ≤ εn, d(x2n,K(x2n)) ≤ εn and there are z1n ∈ T (x1n)
and z2n ∈ T (x2n) such that

〈H(z1n), η(y, ψ(x1n))〉+ f(y, ψ(x1n)) + εne ∈ C, ∀y ∈ K(x1n),

〈H(z2n), η(y, ψ(x2n))〉+ f(y, ψ(x2n)) + εne ∈ C, ∀y ∈ K(x2n),

i.e., {x1n} and {x2n} are Levitin-Polyak approximating sequences for (SQVI), and
hence {x1n} and {x2n} converge to the unique solution x0 of (SQVI), contradicting
the fact that d(x1n, x

2
n) > ρ

2 > 0, for all n.
Conversely, let {xn} be a Levitin-Polyak approximating sequence for (SQVI).

For each n, there are {εn} → 0 and zn ∈ T (xn) such that, d(xn,K(xn)) ≤ εn and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C,∀y ∈ K(xn),∀z ∈ T (y),

and so xn ∈ S̃S(εn). Since diamS̃S(εn)→ 0 as εn → 0, we conclude that {xn} is a
Cauchy sequence and converges to an element x0 in A. As K is usc with compact
values, we have x0 ∈ K(x0). By using the same argument as for Theorem 3.5, we
also deduce that x0 belongs to SS . To accomplish the proof we prove that (SQVI)
has a unique solution. Suppose that SS has two distinct solution x1 and x2. Since,
for all ε > 0, x1, x2 ∈ S̃S(ε), we have

0 < d(x1, x2) ≤ diamS̃S(ε)→ 0 as ε→ 0,

which is impossible. Hence, (SQVI) is Levitin-Polyak well-posed.

Remark 3.8. If K(x) ≡ K,H(z) = {z}, η(y, ψ(x)) = y − x, f(y, ψ(x)) = φ(y) −
φ(x), where φ : X → R ∪ {+∞} the problem (SQVI) reduces to the generalized
mixed variational inequality (in short, (GMVI)) studied in [16]. Hence, Theorem
3.1 in [16] is particular case of Theorem 3.7. However, the assumptions and our
proof methods are very different from Theorem 3.1 in [16].

The following example shows that we can not replace the assumed Levitin-
Polyak well-posed in Theorem 3.7 by the Levitin-Polyak well-posedness in the
generalized sense.

Example 3.9. Let X = Y = R, e(x) = 1, A = [−1, 1], C = R+, ε ∈ int C. Let
ψ,H be identity maps, and let K : A ⇒ A, f : A × A → Y, η : A × A → A, and
T : A⇒ L(X,Y ) be defined by

K(x) = [0, 1], f(y, x) = 1,



390 Thai J. Math. 16 (2018)/ P. Boonman et al.

η(y, x) = x(x− y),

T (y) = {0}.

We show that the assumptions of Theorem 3.7 are easily seen to be fulfilled and

S̃M (ε) = {x ∈ A : d(x,K(x)) ≤ ε and

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe ∈ C,∀y ∈ K(x),∀z ∈ T (y)}
= {x ∈ [−1, 1] : d(x, [0, 1]) ≤ ε and

〈z, η(y, x)〉+ f(y, x) + εe ∈ C, ∀y ∈ [0, 1],∀z ∈ {0}}
= {x ∈ [−1, 1] : d(x, [0, 1]) ≤ ε and

〈0, x(x− y)〉+ 1 + ε ∈ C,∀y ∈ [0, 1]}
= [−1, 1].

Hence, the family {(MQVI)} is Levitin-Polyak well-posed at 0. But diam S̃M (ε) 9
0 as ε→ 0.

Next, we recall the Kurastowski measures of noncompactness.

Definition 3.10. ( [23]) Let M be a nonempty subset of X. The Kurastowki
measure of M is

ζ(M) = inf

{
ϑ > 0 : M ⊆

n⋃
i=1

Li, Li ⊆ X,diamLi < ϑ, i = 1, 2, ..., n, ∃ n ∈ N

}
,

where diam(.) denotes the diameter.

Remark 3.11. ( [24,25]) The function ζ is a regular measure of noncompactness,
i.e., it satisfies the following conditions:

(i) ζ(M) = +∞ if and only if the set M is unbounded;

(ii) ζ(M) = ζ(cl(M));

(iii) from ζ(M) = 0 it follows that M is a totally bounded set;

(iv) from N ⊂M it follows that ζ(N) ≤ ζ(M);

(v) if X is a complete space, and {Mn} is a sequence of closed subsets of X
such that Mn+1 ⊂Mn for each n ∈ N and limn→+∞ ζ(Mn) = 0, then M =⋂
n∈N Mn is a nonempty compact subset of X and limn→+∞H(Mn,M) = 0,

where H is Hausdorff metric.

Employing the Kuratowski measure of noncompactness of approximate so-
lution sets, we establish a metric characterization of the Levitin-Polyak well-
posedness in the generalized sense for (MQVI) and (SQVI).

Theorem 3.12. Assume that K is continuous with compact values on A. Then,
the following statements hold:
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(i) If T is lower semicontinuous on A then (MQVI) is Levitin-Polyak well-posed
in the generalized sense if and only if

S̃M (ε) 6= ∅,∀ε > 0, and ζ(S̃M (ε))→ 0 as ε→ 0.

(ii) If T is upper semicontinuous with compact values on A then (SQVI) is
Levitin-Polyak well-posed in the generalized sense if and only if

S̃S(ε) 6= ∅,∀ε > 0, and ζ(S̃S(ε))→ 0 as ε→ 0.

Proof. As an example we present only the proof for (i). Suppose that (MQVI) is
Levitin-Polyak well-posed in the generalized sense. Let {xn} be any sequence in
SM . Since {xn} is a Levitin-Polyak approximating sequence for (MQVI), there
exists a subsequence convergent to some point of SM . So, SM is compact. From
the Levitin-Polyak well-posedness of (MQVI), we conclude that SM 6= ∅. Hence,

S̃M (ε) 6= ∅ for any ε ≥ 0. Next, we will show that ζ(S̃M (ε))→ 0 as ε→ 0. Since

SM ⊆ S̃M (ε), for every ε ≥ 0, we have

H(S̃M (ε), SM ) = max{H∗(S̃M (ε), SM ), H∗(SM , S̃M (ε))}

= H∗(S̃M (ε), SM ),

where H∗(A,B) = sup{d(x,B) : x ∈ A}. Suppose that SM ⊆
⋃n
i=1 Li, diamLi <

ϑ, i = 1, 2, ..., n, for some n ∈ N.
Setting Ωi = {x ∈ A|d(x, Li) ≤ H(S̃M (ε), SM )}. We claim that S̃M (ε) ⊆⋃n

i=1 Ωi. Let x ∈ S̃M (ε), then d(x, SM ) ≤ H(S̃M (ε), SM ). Since SM ⊆
⋃n
i=1 Li,

we have

d(x,

n⋃
i=1

Li) ≤ H(S̃M (ε), SM ).

Hence, there is i0 such that

d(x, Li0) ≤ H(S̃M (ε), SM ),

i,e., x ∈ Ωi0 . Hence, S̃M (ε) ⊆
⋃n
i=1 Ωi. It is not hard to see that

diamΩi = diamLi + 2H(S̃M (ε), SM )

≤ ϑ+ 2H(S̃M (ε), SM ).

Therefore,
ζ(S̃M (ε)) ≤ ζ(SM ) + 2H(S̃M (ε), SM ).

Since SM is compact, we have ζ(SM ) = 0. So, ζ(S̃M (ε)) ≤ 2H∗(S̃M (ε), SM ).

Now we prove that H∗(S̃M (ε), SM ) → 0 as ε → 0. Suppose to the contrary that

H∗(S̃M (ε), SM ) 6→ 0 as ε → 0. Then, there are ρ > 0, {εn} ⊂ (0,+∞), εn → 0,

and xn ∈ S̃M (εn) such that, for each n, we have d(xn, SM ) ≥ ρ > 0. Since {xn} is
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a Levitin-Polyak approximating sequence for (MQVI), it must have a subsequence
converging to a point of SM , which is impossible as d(xn, SM ) ≥ ρ > 0, for all n.

Hence, ζ(S̃M (ε))→ 0 as ε→ 0.

Conversely, suppose that ζ(S̃M ) 6= ∅ for all ε ≥ 0 and ζ(S̃M (ε))→ 0 as ε→ 0.

By Theorem 3.5, S̃M (ε) is closed, for all ε > 0. Since ζ(S̃M (ε))→ 0 as ε→ 0, and

SM =
⋂
ε>0 S̃M (ε), the regular measure properties of ζ imply that SM is compact

and H(S̃M (ε), SM ) → 0 as ε → 0. Let {xn} be a Levitin-Polyak approximating
sequence for (MQVI), then there is a sequence {εn} ⊂ (0,+∞), εn → 0 such that,
for each n, d(xn,K(xn)) ≤ εn, and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C, ∀y ∈ K(xn),∀z ∈ T (y),

i.e., xn ∈ S̃M (εn). Hence, d(xn, SM ) ≤ H(S̃M (εn), SM ) → 0 as n → +∞. So,
there is x̄n ∈ SM such that d(xn, x̄n)→ 0 as n→ +∞. Since SM is compact, we
can assume that {x̄n} converges to an element x̄ in SM , and so {xn} also converges
to x̄. Thus, (MQVI) is Levitin-Polyak well-posed in the generalized sense.

Remark 3.13. If K(x) ≡ X,ψ(x) = x, η(y, ψ(x)) = y − x, f(y, ψ(x)) = φ(y) −
φ(x), where φ : X → R ∪ {+∞} the problem (SQVI) reduces to the generalized
mixed variational inequality (in short, (GMVI)) studied in [16]. Hence, Theorem
3.2 in [16] is particular cases of Theorem 3.12. However, the assumptions and our
proof methods are very different from Theorem 3.2 in [16].

The following example shows that all the assumptions of Theorem 3.12 are
fulfilled.

Example 3.14. Let X = Y = R, e(x) = 1, A = [0, 2], C = R+, ε ∈ int C. Let
ψ,H be identity maps, and let K : A ⇒ A, f : A × A → Y, η : A × A → A, and
T : A⇒ L(X,Y ) be defined by

K(x) = [0, 1], f(y, x) = 1,

η(y, x) = 2x(x− y),

T (y) = {0}.
We show that the assumptions of Theorem 3.12 are easily seen to be fulfilled and

S̃M (ε) = {x ∈ A : d(x,K(x)) ≤ ε and

〈H(z), η(y, ψ(x))〉+ f(y, ψ(x)) + εe ∈ C, ∀y ∈ K(x),∀z ∈ T (y)}
= {x ∈ [0, 2] : d(x, [0, 1]) ≤ ε and

〈z, η(y, x)〉+ f(y, x) + εe ∈ C, ∀y ∈ [0, 1],∀z ∈ {0}}
= {x ∈ [0, 2] : d(x, [0, 1]) ≤ ε and

〈0, 2x(x− y)〉+ [0, 1] + ε ∈ C, ∀y ∈ [0, 1]}
= [0, 1 + ε].

Hence, ζ(S̃M (ε)) → 0 as ε → 0, and the family {(MQVI)} is Levitin Polyak
well-posed in generalized sense at 0.
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4 Levitin-Polyak Well-Posedness via the Gap
Functions of (MQVI) and (SQVI)

In this section, we introduce the gap functions for (MQVI) and (SQVI), then
we study some their properties which are used to study the Levitin-Polyak well-
posedness for such problems.

Firstly, motivated and inspired by the statements studied in [4,26], we consider
the following assumptions:

(M): SM 6= ∅ and for any Levitin-Polyak approximating sequence for (MQVI),
we have

d(xn, SM )→ 0.

(S): SS 6= ∅ and for any Levitin-Polyak approximating sequence for (SQVI),
we have

d(xn, SS)→ 0.

Proposition 4.1. If (MQVI)/or (SQVI) is Levitin-Polyak well-posed in the gen-
eralized sense, then assumption (M)/or (S) holds, respectively. Conversely, if as-
sumption (M)/or (S) is satisfied and the solution SM/or SS is compact, then
(MQVI)/or (SQVI) is Levitin-Polyak well-posed in the generalized sense, respec-
tively.

Proof. As an example we discuss only the proof for (MQVI). Firstly, we prove
that, if (MQVI) is Levitin-Polyak well-posed in the generalized sense then (M)
holds. Since (MQVI) is Levitin-Polyak well-posed in the generalized sense, SM
is nonempty and compact. If (M) is not true then there exists a Levitin-Polyak
approximating sequence {xn} for (MQVI) and ρ > 0 such that d(xn, SM ) ≥ ρ for
n sufficiently large. Since {xn} is a Levitin-Polyak approximating sequence for
(MQVI), there exists a subsequence {xnk

} of {xn} converging to some point of
SM , which contradicts the fact that d(xn, SM ) ≥ ρ for n sufficiently large.

Conversely, suppose that (M) holds and SM is compact. We will show that
(MQVI) is Levitin-Polyak well-posed in the generalized sense. Let {xn} be a
Levitin-Polyak approximating sequence for (MQVI). Since (M) holds, we conclude
that d(xn, SM ) → 0 as n → ∞. As SM is compact, for each n, there is x̄n ∈ SM
such that d(xn, x̄n) = d(xn, SM ), and hence d(xn, x̄n) → 0 as n → ∞. Since SM
is compact, we can assume that tn → t0 for some t0 ∈ SM . By the compactness
of SM , there exists a subsequence {x̄nk

} of {x̄n} converging to x0 in SM . Then,
the corresponding subsequence {xnk

} of {xn} will converge to {x0}. So, (MQVI)
is Levitin-Polyak well-posed in the generalized sense.

Definition 4.2. A function g : A → R is said to be a gap function for (MQVI)
((SQVI), respectively), if:

(i) g(x) ≥ 0, for all x ∈ K(x);

(ii) g(x) = 0 if and only if x ∈ SM (x ∈ SS , respectively).
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In the sequel, we suppose that K and T have compact values in a neighborhood
of the reference point. We define two functions h, k : A→ R as follows

h(x) = max
z∈T (y)

max
y∈K(x)

ξe(〈H(z), η(ψ(x), y)〉 − f(y, ψ(x))), (4.1)

and

k(x) = min
z∈T (x)

max
y∈K(x)

ξe(〈H(z), η(ψ(x), y)〉 − f(y, ψ(x))). (4.2)

Combining the compact values of K and T with the continuity of ξe and f ,
we conclude that h and k are well-defined.

Theorem 4.3. The functions h and k defined as above are the gap functions for
(MQVI) and (SQVI), respectively.

Proof. Firstly, we define a function ϕ : A×B → R as follows

ϕ(x, z) = max
y∈K(x)

ξe(〈H(z), η(ψ(x), y)〉 − f(y, ψ(x))).

(i) We first prove that ϕ(x, z) ≥ 0 for every x ∈ E, where E = {x ∈ A : x ∈
K(x)}. Indeed, suppose to the contrary that there is (x0, z0) ∈ E × B, such that
ϕ(x0, z0) < 0, then

0 > ϕ(x0, z0) = max
y∈K(x0)

ξe(〈H(z0), η(ψ(x0), y)〉 − f(y, ψ(x0)))

≥ ξe(〈H(z0), η(ψ(x0), y)〉 − f(y, ψ(x0))),∀y ∈ K(x0).

When y = x0, we have

ξe(〈H(z0), η(x0, ξ(x0))〉 − f(x0, ξ(x0))) = ξe(0)

= min{r ∈ R : 0 ∈ re− C}
= min{r ∈ R : −re ∈ −C}
= min{r ∈ R : r ≥ 0} = 0,

which is a contradiction. Hence,

h(x) = max
z∈T (y)

max
y∈K(x)

ξe(〈H(z), η(y, ψ(x))〉 − f(y, ψ(x))) ≥ 0.

(ii) From the definition, it is clear that h(x̄) = 0 if and only if, for any y ∈ K(x̄)
and z ∈ T (y),

ξe(〈H(z), η(y, ψ(x̄))〉 − f(y, ψ(x̄))) ≤ 0.

By Lemma 2.2 (ii), the above inequality holds if and only if, for any y ∈ K(x̄) and
z ∈ T (y),

〈H(z), η(y, ψ(x̄))〉 − f(y, ψ(x̄)) ∈ −C,
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or
〈H(z), η(y, ψ(x̄))〉+ f(y, ψ(x̄)) ∈ C,

i.e., x̄ ∈ SM . Hence, h is a gap function for (MQVI).
In the turn of k, we consider a similar function τ : A×B → R given by

τ(x, z) = max
y∈K(x)

ξe(〈H(z), η(y, ψ(x0))〉 − f(y, ψ(x0))).

By employing the same argument as above, we also conclude that k is a gap
function for (SQVI).

Now, we consider the following quasioptimization problems:

(QOP1)

{
minimize h(x)

subject to x ∈ K(x)

and

(QOP2)

{
minimize k(x)

subject to x ∈ K(x),

where h(x) and k(x) are given by (4.1) and (4.2), respectively. We denote the
solution sets of (QOP1) and (QOP2) by S1 and S2, respectively.

Definition 4.4. A sequence {xn} ⊂ A is said to be a Levitin-Polyak minimiz-
ing sequence for (QOP1)/or (QOP2), if there exists a sequence {εn} ⊂ (0,+∞)
converging to 0 such that d(xn,K(xn)) ≤ εn and lim supn→+∞ h(xn) ≤ 0 or
lim supn→+∞ k(xn) ≤ 0, respectively.

Definition 4.5. The problem (QOP1)/or (QOP2) is said to be Levitin-Polyak
well-posed in the generalized sense, if

(i) (QOP1)/or (QOP2) has solution;

(ii) for every Levitin-Polyak minimizing sequence {xn} for (QOP1)/or (QOP2)
much have a subsequence converging to an element in S1/or S2, respectively.

Theorem 4.6. The problem (MQVI)/or (SQVI) is Levitin-Polyak well-posed in
the generalized sense if and only if (QOP1)/or (QOP2) is Levitin-Polyak well-posed
in the generalized sense, respectively.

Proof. As an example, we demonstrate only for the problem (SQVI). To obtain
the conclusions in the theorem, we need to show that a sequence {xn} is a Levitin-
Polyak approximating sequence for (SQVI) if and only if it is a Levitin-Polyak
approximating sequence for (QOP2). Then, there are a sequence {εn}, εn → 0,
d(xn,K(xn)) ≤ εn and z ∈ T (xn) such that

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C,∀y ∈ K(xn),∀n ∈ N,
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i.e.,

〈H(z), η(y, ψ(xn))〉 − f(y, ψ(xn)) ∈ εne− C,∀y ∈ K(xn),∀n ∈ N. (4.3)

From Lemma 2.2 (ii) and (4.3), we have

ξe(〈H(z), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn,∀n.

Since y ∈ K(xn) is arbitrary, we conclude that

max
y∈K(xn)

ξe(〈H(z), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn.

So,

k(xn) = min
z∈T (xn)

max
y∈K(xn)

ξe(〈H(z), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn.

As xn ∈ K(xn, γn) is arbitrary, we have

lim sup
n→+∞

k(xn) ≤ 0, as εn → 0,

and hence, {xn} is a Levitin-Polyak minimizing sequence for (QOP2).
Conversely, assume that {xn} is a Levitin-Polyak approximating sequence for

(QOP2). Then, d(xn,K(xn)) → 0, and lim supn→+∞ h(xn) ≤ 0. Thus, there
exists εn ∈ R+ convergent to 0 such that d(xn,K(xn)) ≤ εn, and

k(xn) = min
z∈T (xn)

max
y∈K(xn)

ξe(〈H(z), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn.

By the compactness of T (xn), there exists zn ∈ T (xn) such that

k(xn) = max
y∈K(xn)

ξe(〈H(zn), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn,

and hence,

ξe(〈H(zn), η(y, ψ(xn))〉 − f(y, ψ(xn))) ≤ εn,∀y ∈ K(xn).

By using Lemma 2.2 (ii), for each y ∈ K(xn), we have

〈H(zn), η(y, ψ(xn))〉 − f(y, ψ(xn)) ∈ εne− C,

i.e.,
〈H(zn), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C.

Hence, {xn} is a Levitin-Polyak approximating sequence for (SQVI).

Now we derive some criterion and characterizations for the Levitin-Polyak
well-posedness for (MQVI) and (SQVI). Firstly, we consider a real-valued function
p : [0,∞)× [0,∞)→ R satisfying

p(0, 0) = 0, p(t, s) ≥ 0,∀(t, s) ∈ [0,∞)× [0,∞). (4.4)

[sn → 0, tn ≥ 0, p(tn, sn)→ 0]⇒ [tn → 0]. (4.5)
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Theorem 4.7. If (MQVI)/or (SQVI) is Levitin-Polyak well-posed in the gener-
alized sense then there exists a function p satisfying (4.4) and (4.5) such that, for
each x ∈ A,

|h(x)| ≥ p(d(x, SM ), d(x,K(x))), (4.6)

or

|k(x)| ≥ p(d(x, SS), d(x,K(x))), (4.7)

respectively.

Proof. As an example, we discuss only for (MQVI). We consider a real function
p : [0,∞)× [0,∞)→ R given by

p(t, s) = inf{|h(x)| : d(x, SM ) = t, d(x,K(x)) = s}.

Then, p is satisfied (4.6), p(t, s) ≥ 0, for all (t, s) ∈ [0,∞)× [0,∞) and p(0, 0) = 0
as h is a gap function for (MQVI). Now let sn → 0, tn ≥ 0 and p(tn, sn) → 0.
Then there exists a sequence {xn} ⊂ A such that

d(xn, SM ) = tn, d(xn,K(xn)) = sn, h(xn)→ 0,

which implies that {xn} is a Levitin-Polyak minimizing sequence for (QOP1).
Using the same argument as in the proof for Theorem 4.6, {xn} is also a Levitin-
Polyak approximating sequence for (MQVI). Since (MQVI) is Levitin-Polyak well-
posed in the generalized sense, by applying Proposition 4.1, we conclude that
tn = d(xn, SM )→ 0.

Theorem 4.8. Suppose that SM/or SS is nonempty and compact and assume
further that (4.6)/or (4.7) holds for some p satisfied (4.4) and (4.5). Then
(MQVI)/or (SQVI) is Levitin-Polyak well-posed in the generalized sense, respec-
tively.

Proof. (a) Let {xn} be a Levitin-Polyak approximating sequence for (MQVI), then
there exists sequence {εn} ⊂ (0,+∞) converging to 0 such that d(xn,K(xn)) ≤ εn,
and

〈H(z), η(y, ψ(xn))〉+ f(y, ψ(xn)) + εne ∈ C,∀y ∈ K(xn),∀z ∈ T (y).

From (4.6), we have

|h(xn)| ≥ p(d(xn, SM ), d(xn,K(xn))). (4.8)

Let tn = d(xn, SM ) and sn = d(xn,K(xn)). It is easy to see that sn → 0. By using
the same argument as in the proof of Theorem 4.6, we conclude that {xn} is a
Levitin-Polyak minimizing sequence for (QOP1), and hence h(xn)→ 0. Employing
(4.5) and (4.8), we have tn = d(xn, SM )→ 0. Since SM is nonempty and compact,
Proposition 4.1 implies the fact that (MQVI) is Levitin-Polyak well-posed in the
generalized sense.

(b) The Levitin-Polyak well-posedness in the generalized sense for (SQVI) is
also established by using the same argument as above.
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