

www.math.science.cmu.ac.th/thaijournal

ON k - NUC **Property in Some Sequence Spaces**

Involving Lacunary Sequence

MAHPEYKER ÖZTÜRK AND METİN BAŞARIR

Abstract : In this paper, we introduce a new sequence space involving Lacunary sequence and investigate k - NUC property of this space which is equipped with the Luxemburg norm.

 $\mathbf{Keywords}$: Cesaro sequence space, Lacunary sequence, k-NUC property, Luxemburg norm

2002 Mathematics Subject Classification : 46A45,46B20,46B46

1 Introduction

Let $X = (X, \|.\|)$ be a real Banach space and B(X) and S(X) be the closed unit ball and the unit sphere of X, respectively.

A Banach space X is called uniformly convex (UC) if for each $\varepsilon > 0$, there is $\delta > 0$ such that for $x, y \in S(X)$, the inequality $||x - y|| > \varepsilon$ implies that

$$\left\|\frac{1}{2}\left(x+y\right)\right\| < 1-\delta.$$

Clarkson introduced the concept of uniform convexity which implies reflexivity of Banach spaces.

For any $x \notin B(X)$, the drop determined by x is the set

$$D(x, B(X)) = conv(\{x\} \cup B(X))$$

A Banach space X has the drop property (D) if for every closed set C disjoint with B(X), there exists an element $x \in C$ such that

$$D(x, B(X)) \cap C = \{x\}$$

A Banach space X is said to have the Kadec-Klee property (or H- property) if every weakly convergent sequence on the unit sphere is convergent in norm.

In [5], Rolewicz proved that if the Banach space X has the drop property, then X is reflexive. Montesinos [4] extended this result by showing that X has the drop property if and only if X is reflexive and has the property (H).

Recall that a sequence is said to be ε -seperated sequence for some $\varepsilon > 0$ if

$$sep(x_n) = \inf \{ \|x_n - x_m\|, n \neq m \} > \varepsilon$$

A Banach space is said to be nearly uniformly convex (NUC) if for every $\varepsilon > 0$ there exists $\delta \in (0,1)$ such that for every sequence $\{x_n\} \subseteq B(X)$ with $sep(x_n) > \varepsilon$, we have

$$conv\left(x_{n}\right)\cap\left(\left(1-\delta\right)B\left(X\right)\right)\neq\varnothing.$$

A Banach space is said to have the uniform Kadec-Klee property (UKK) if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every sequence (x_n) in S(X) with $sep(x_n) > \varepsilon$ and $x_n \xrightarrow{w} x$, we have

$$\|x\| < 1 - \delta.$$

Every (UKK) Banach space has (H) property [2]. Huff [2] proved that every (NUC) Banach space is reflexive and it has property (H), he also proved that X is (NUC) if and only if X is reflexive and (UKK).

Kutzarova[3] has defined k-nearly uniformly convex Banach spaces. Let $k \geq 2$ be an integer. A Banach space X is said to be k-nearly uniformly convex (k - NUC) if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any sequence $(x_n) \subset B(X)$ with $sep(x_n) > \epsilon$, there are $n_1, n_2, ..., n_k$ such that

$$\left\|\frac{x_{n_1}+x_{n_2}+\ldots+x_{n_k}}{k}\right\| < 1-\delta.$$

Of course a Banach space is (NUC) whenever it is (k-NUC) for some integer $k\geq 2$.

A Banach space X is said to have the Opial property if every sequence $\{x_n\}$ weakly convergent to x_0 satisfies

$$\liminf_{n \to \infty} \|x_n - x_0\| \le \liminf_{n \to \infty} \|x_n - x\|$$

for every $x \in X$.

Opial has proved in [16] that the sequnce spaces $l_p (1 have this property but <math>L_p [0, 2\pi]$ $(p \neq 2, 1 do not have it.$

A Banach space X is said to have the uniform Opial property if for every $\varepsilon > 0$ there exists r > 0 such that for each weakly null sequence $\{x_n\} \subset S(X)$ and $x \in X$ with $||x|| \ge \varepsilon$, we have

$$1 + r \le \liminf_{n \to \infty} \|x_n + x\|.$$

For a bounded subset $A \subset X$, the set-measure of noncompactness was defined in [17] by

 $\alpha\left(A\right) = \inf\left\{\varepsilon > 0 : A \text{ can be covered by finitely many sets of diameter } \le \varepsilon\right\}.$

The ball-measure of noncompactness is defined by

 $\beta(A) = \inf \{ \varepsilon > 0 : A \text{ can be covered by finitely many balls of diameter } \le \varepsilon \}.$

The functions α and β are called the Kuratowski measure of noncompactness and the Hausdorff measure of noncompactness in X, respectively. We can associate these functions with the notions of the set-contraction and the ball-contraction [15].

For each $\varepsilon > 0$ define

 $\Delta\left(\varepsilon\right)=\inf\left\{1-\inf\left[\|x\|:x\in A\right]:A\text{ is a closed convex subset of }B\left(X\right) \text{ with }\beta\left(A\right)\geq\varepsilon\right\}.$

The function Δ is called the modulus of noncompact convexity [18].

A Banach space X is said to have property (L) if $\lim_{\varepsilon \to 1^-} \Delta(\varepsilon) = 1$. It has been proved in [15] that property (L) is a useful tool in the fixed point theory and that a Banach space X has property (L) if and only if it is reflexive and has the uniform Opial property.

By a Lacunary sequence $(\theta) = (k_r)$ where $k_0 = 0$, we mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$. We write $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . The space of lacunary strongly convergent sequences N_{θ} was defined by Freedman and denoted by

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_k - l| = 0, \text{ for some } l \right\}.$$

It is well known that there exists very close connection between the space of lacunary strongly convergent sequences and the space of strongly Cesaro summable sequences. This connection can be found in [9], [10], [11].

2 BASIC FACTS AND DEFINITIONS

Let w be the space of all real sequences. Let $p = p_r$ be a bounded sequence of the positive real numbers. In this paper we define a new sequence space $l(p, s, \theta)$ involving lacunary sequence and denoted by:

$$l(p, s, \theta) = \left\{ x = (x_k) : \sum_{r=1}^{\infty} \left(\frac{1}{h_r} \sum_{k \in I_r} k^{-s} |x_k| \right)^{p_r} < \infty, \ s \ge 0 \right\}.$$

Paranorm on $l(p, s, \theta)$ is given by

$$\|x\|_{l(p,s,\theta)} = \left(\sum_{r=1}^{\infty} \left(\frac{1}{h_r} \sum_{k \in I_r} k^{-s} |x_k|\right)^{p_r}\right)^{\frac{1}{M}}$$

where $M = \max(1, H)$ and $H = \sup_r p_r$.

It is easy to see that the space $l(p, s, \theta)$ with $||x||_{l(p,s,\theta)}$ is a complete paranormed space. By using the properties of lacunary sequence in the space $l(p, s, \theta)$, we get the following sequence spaces: If $\theta = 2^r$, then $l(p, s, \theta) = C(s, p)$, C(s, p)sequences space is introduced by T.Bilgin [7]. If we take $\theta = 2^r$ and s = 0 then we obtain Ces(p) sequences space [12], [13].

For $x \in l(p, s, \theta)$, let

$$\rho(x) = \sum_{r=1}^{\infty} \left(\frac{1}{h_r} \sum_{k \in I_r} k^{-s} |x_k| \right)^{p_r}$$

and define the Luxemburg norm on $l(p, s, \theta)$ by

$$||x|| = \inf \left\{ \varepsilon > 0 : \rho\left(\frac{x}{\varepsilon}\right) \le 1 \right\}.$$

The Luxemburg norm on $l(p, s, \theta)$ can be reduced to usual norm on $l(p, s, \theta)$, that is, $||x||_{l(p,s,\theta)} = ||x||$. It is clear and we omit it [14].

The main purpose of this work is to show that the space $l(p, s, \theta)$ equipped with Luxemburg norm is a modular space and to investigate geometric property k - NUC of this space.

3.MAIN RESULTS

We give a theorem which showing the connection between $l(p, s, \theta)$ and C(s, p) [14].

Theorem 1 If $\liminf q_r > 1$, then $C(s, p) \subset l(p, s, \theta)$. **Proof.** : It is trivial and we omit it.

And now we give a property about ρ on $l\left(p,s,\theta\right)$ which is necessary for our consideration.

A modular ρ is said to satisfy the δ_2 - condition if for any $\varepsilon > 0$, there exist constants $K \ge 2, a > 0$ such that

$$\rho\left(2u\right) \le K\rho\left(u\right) + \varepsilon$$

for all $u \in l(p, s, \theta)$ with $\rho(u) \leq a$.

If satisfies ρ the δ_2 - condition for all a > 0 with $K \ge 2$ dependent on a, we say that ρ satisfies the strong δ_2 - condition ($\rho \in \delta_2^s$).

For $x \in l(p, s, \theta)$, it is easy to see that; the modular ρ and Luxemburg norm $\|.\|$ on $l(p, s, \theta)$ satisfies the following properties and lemmas:

1. If $0 < \alpha < 1$; then $\alpha^{H} \rho\left(\frac{x}{\alpha}\right) \leq \rho(x)$ and $\rho(\alpha x) \leq \rho(x)$;

- 2. If $\alpha > 1$; then $\alpha^{H} \rho\left(\frac{x}{\alpha}\right) \ge \rho(x)$;
- 3. If $\alpha \ge 1$; then $\rho(\alpha x) \ge \alpha \rho(x) \ge \rho(x)$.

Lemma 2.1 For any $x \in l(p, s, \theta)$, we have

- 1. If ||x|| < 1; then $\rho(x) \le ||x||$;
- 2. If ||x|| > 1; then $\rho(x) \ge ||x||$;
- 3. ||x|| = 1 if and only if $\rho(x) = ||x||$;
- 4. ||x|| < 1 if and only if $\rho(x) < ||x||$;
- 5. ||x|| > 1 if and only if $\rho(x) > ||x||$;
- 6. If $0 < \alpha < 1$ and $||x|| > \alpha$; then $\rho(x) > \alpha^{H}$;
- 7. If $\alpha \geq 1$, $||x|| < \alpha$, then $\rho(x) < \alpha^{H}$.

Lemma 2.2 If $\rho \in \delta_2^s$, then for any L > 0 and $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left|\rho\left(u+v\right)-p\left(u\right)\right|<\varepsilon$$

whenever $u,v\in l\left(p,s,\theta\right)$ with $\rho\left(u\right)\leq L$ and $\rho\left(v\right)\leq\delta$.

Lemma 2.3 1. If $\rho \in \delta_2^s$, then for any $x \in l(p, s, \theta)$, ||x|| = 1 if and only if $\rho(x) = 1$.

2. If $\rho \in \delta_2^s$, then for any $\{x_n\} \subset l(p, s, \theta)$, $||x_n|| \to 0$ if and only if $\rho(x_n) \to 0$.

Lemma 2.4 If $\rho \in \delta_2^s$, then for any $\varepsilon \in (0,1)$, there exists $\delta \in (0,1)$ such that $\rho(x) \leq 1 - \varepsilon$ implies $||x|| \leq 1 - \delta$.

And now we give our basic theorem.

Theorem 2 The space $l(p, s, \theta)$ is k - NUC for any integer $k \ge 2$. **Proof.** : Let $\varepsilon > 0$ and $(x_n) \subset B(l(p, s, \theta))$ with $sep(x_n) \ge \varepsilon$. For e

Proof. : Let $\varepsilon > 0$ and $(x_n) \subset B(l(p, s, \theta))$ with $sep(x_n) \ge \varepsilon$. For each $m \in \mathbb{N}$, let

$$(1.2.1) x_n^{(m)} = (0, 0, ..., x_n(m), x_n(m+1), ...)$$

Since for each $i \in \mathbb{N}$, $(x_n(i))_{i=1}^{\infty}$ is bounded, by using the diagonal method, we have for each $m \in \mathbb{N}$, we can find a subsequence (x_{n_j}) of (x_n) such that $(x_{n_j}(i))$ converges for each $i \in \mathbb{N}$, $1 \leq i \leq m$. Therefore, there exists an increasing sequence of positive integer t_m such that $sep\left(\left(x_{n_j}^m\right)_{j\geq t_m}\right) \geq \epsilon$. Hence, there is a

sequence of positive integers $(r_m)_{m=1}^{\infty}$ with $r_1 < r_2 < \dots$ such that $||x_{r_m}^m|| \ge \frac{\varepsilon}{2}$ for all $m \in \mathbb{N}$. Then by Lemma 4 (2), we may assume that there exists $\eta > 0$ such that

$$(1.2.2) \qquad \rho\left(x_{r_m}^m\right) \ge \eta, \ \forall m \in \mathbb{N}$$

Let $\alpha > 0$ be such that $1 < \alpha < \liminf_{n \to \infty} p_n$. For fixed integer $k \ge 2$, let $\varepsilon_1 = \frac{k^{\alpha-1}}{(k-1)k^{\alpha}} \left(\frac{\eta}{2}\right)$. Then by Lemma 5, there is a $\delta > 0$ such that

$$(1.2.3) \qquad \left|\rho\left(u+v\right)-\rho\left(u\right)\right| < \varepsilon_1$$

whenever $\rho(u) \leq 1$ and $\rho(v) \leq \delta$. Since by Lemma 2 (1) for all $n \in \mathbb{N}$, there exist positive integers $m_i = (i = 1, 2, ..., k - 1)$ with $m_1 < m_2 < ... m_{k-1}$ such that $\rho(x_i^{m_i}) \leq \delta$ and $\alpha \leq p_j$ for all $j \geq m_{k-1}$. Define $m_k = m_{k-1} + 1$. Since $\rho(x_{r_m}^m) \geq \eta, \forall m \in \mathbb{N}$, we have $\rho(x_{r_mk}^m) \geq \eta$. Let $s_i = i$ for $1 \leq i \leq k - 1$ and $s_k = r_{m_k}$. Then in virtue of (1.2.1), (1.2.2), (1.2.3) and the convexity of function

$$f_i(u) = |u|^{p_i} \ (i \in \mathbb{N}),$$

we have

$$\begin{split} \rho\left(\frac{x_{s_1} + x_{s_2} + \ldots + x_{s_k}}{k}\right) &= \sum_{r=1}^{\infty} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_1}\left(i\right) + x_{s_2}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &= \sum_{r=1}^{m_1} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_1}\left(i\right) + x_{s_2}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &+ \sum_{r=m_1+1}^{\infty} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_1}\left(i\right) + x_{s_2}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &\leq \sum_{r=1}^{m_1} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_1}\left(i\right) + x_{s_2}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &+ \sum_{r=m_1+1}^{\infty} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_2}\left(i\right) + x_{s_3}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &+ \sum_{r=m_1+1}^{m_2} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_2}\left(i\right) + x_{s_3}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)^{p_r} \\ &+ \sum_{r=m_2+1}^{\infty} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_2}\left(i\right) + x_{s_3}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)\right)^{p_r} \\ &+ \sum_{r=m_2+1}^{\infty} \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left|\frac{x_{s_3}\left(i\right) + x_{s_4}\left(i\right) + \ldots + x_{s_k}\left(i\right)}{k}\right|\right)\right) + 2\varepsilon_1 \end{split}$$

$$\leq \sum_{r=1}^{m_1} \frac{1}{k} \sum_{j=1}^k \left(\frac{1}{h_r} \sum_{i \in I_r} \frac{1}{i^s} \left| x_{s_j}(i) \right| \right)^{p_r}$$

$$+\sum_{r=m_{1}+1}^{m_{2}}\frac{1}{k}\sum_{j=2}^{k}\left(\frac{1}{h_{r}}\sum_{i\in I_{r}}\frac{1}{i^{s}}\left|x_{s_{j}}\left(i\right)\right|\right)^{p_{r}}$$

$$+\sum_{r=m_{2}+1}^{m_{3}}\frac{1}{k}\sum_{j=3}^{k}\left(\frac{1}{h_{r}}\sum_{i\in I_{r}}\frac{1}{i^{s}}\left|x_{s_{j}}\left(i\right)\right|\right)^{p_{r}}+\dots$$

$$+...+\sum_{r=m_{k-1}+1}^{m_{k}}\frac{1}{k}\sum_{j=k-1}^{k}\left(\frac{1}{h_{r}}\sum_{i\in I_{r}}\frac{1}{i^{s}}\left|x_{s_{j}}\left(i\right)\right|\right)^{p_{r}}$$

$$+\sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left| \frac{x_{s_{k}}(i)}{k} \right| \right)^{p_{r}} + (k-1)\varepsilon_{1}$$

$$\leq \left(\frac{\rho(x_{s_{1}}) + \rho(x_{s_{2}}) + \dots + \rho(x_{s_{k}})}{k}\right) \\ + \frac{1}{k} \sum_{r=1}^{m_{k}} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}} \\ + \sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|\frac{x_{s_{k}}(i)}{k}\right|\right)^{p_{r}} + (k-1)\varepsilon_{1} \\ \leq \frac{k-1}{k} + \frac{1}{k} \sum_{r=1}^{m_{k}} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}} \\ + \frac{1}{k^{\alpha}} \sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}} + (k-1)\varepsilon_{1} \\ \leq 1 - \frac{1}{k} + \frac{1}{k} \left(1 - \sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}} + (k-1)\varepsilon_{1} \\ \leq 1 - \frac{1}{k} \sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}} + (k-1)\varepsilon_{1} \\ \leq 1 + (k-1)\varepsilon_{1} - \left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right) \left(\sum_{r=m_{k}+1}^{\infty} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} \frac{1}{i^{s}} \left|x_{s_{k}}(i)\right|\right)^{p_{r}}\right) \\ \leq 1 + (k-1)\varepsilon_{1} - \left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right)\eta \\ \leq 1 + (k-1)\frac{k^{\alpha-1}}{(k-1)k^{\alpha}} \left(\frac{\eta}{2}\right) - \left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right)\eta$$

By the Lemma 5 there exists $\gamma > 0$ such that $\left\|\frac{x_{s_1}+x_{s_2}+\ldots+x_{s_k}}{k}\right\| \leq 1-\gamma$. Therefore, $l(p, s, \theta)$ is k - NUC. Since k - NUC implies NUC and NUC implies property (H) and reflexivity holds, by the theorem 1.2, the following results are obtained.

Corollary 2.5 The space $l(p, s, \theta)$ is NUC and UC and then is reflexive for $s \ge 0$.

Corollary 2.6 The space $l(p, s, \theta)$ is UKK and (H) property. Then it has drop property for $s \ge 0$.

Proof. Since $l(p, s, \theta)$ is NUC space, by [2] it is reflexive and UKK.Also, since every UKK space has (H) property, $l(p, s, \theta)$ has drop property for $s \ge 0$ by [4].

Corollary 2.7 The space $l(p, s, \theta)$ has fixed point property for $s \ge 0$.

Proof. We have proved that the space $l(p, s, \theta)$ has uniform Opial property in [14] and since it is reflexive so it has property (L) by [15]. Therefore the space $l(p, s, \theta)$ has fixed point property for $s \ge 0$ [15]. \Box

References

- Clarkson J.A., Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40, (1936), 396-414
- [2] Huff R., Banach Spaces which are nearly uniformly convex, Rocky Mountain J.Math., 10, (1980), 743-749.
- [3] Kutzarova D., k-β and k- nearly uniformly convex Banach spaces, J.Math. Anal. Appl. ,162, (1991), 322-338.
- [4] Montesinos V., Drop property equals reflexivity, Studia Math., 87, (1987), 93-100.
- [5] Rolewicz S., On drop property, Studia Math., 85, (1986), 27-35.
- [6] Shiue J., On the Cesaro sequence spaces, Tamkang J. Math. 1, (1970), 19-25.
- [7] Bilgin T., The sequence space C(s,p) and related matrix transformations, Punjab Univ.J.Math, (1997), 67-77.
- [8] Sanhan W., Suantai S., On k-Nearly Uniform Convex Property In Generalized Cesaro Sequence Spaces, Hindawi Publishing Corp., (2003), 3599-3907.
- [9] Das G., Patel B. K., Lacunary distribution of sequences, Indian J. Pure Appl. Math., 26, (1989), 64-74.
- [10] Freedman A.R., Sember J. J., Raphael M., Some Cesaro -Type Summability Spaces, Proc. London Math. Soc., 37, (1978), 508-520.
- [11] Mursaleen , Chishti T.A. , Some Spaces of Lacunary sequences defined by the modulus, J. Analysis, 41, (1996), 153-159.
- [12] K.P.Lim, Matrix transformations in the Cesaro sequence spaces, Kyugpook Math.J.14 (1974), 221-227.
- [13] K.P.Lim, Matrix transformation on certain sequence spaces, Tamkang J.Math.2 (1197), 213-220.
- [14] Oztürk M., Başarır M., On Opial Property in Some Sequence Space Involving Lacunary Sequence, submitted.
- [15] Prus S., Banach Spaces with Uniform Opial Property, Nonlinear Anal. 8, (1992), 692-704.

- 136 Thai J. Math. 5(2007)/ MAHPEYKER ÖZTÜRK AND METİN BAŞARIR
- [16] Opial Z., Weak Convergence Of the Sequence Of Successive Approximations For Nonexpansive Mappings, Bull. Amer. Math. Soc. 73, (1967), 591-597.
- [17] Kuratowski K., Sur Les Espaces Completes, Fund. Math. 15, (1930), 301-309.
- [18] Goebel R., Kirk W.A., Topics In Metric Fixed Point Theory, Cambridge University Press, (1990).

(Received 11 April 2007)

MAHPEYKER ÖZTÜRK AND METİN BAŞARIR DEPARTMENT OF MATHEMATICS, SAKARYA UNIVERSITY, 54187, SAKARYA,TURKEY E-mail: mahpeykero@sakarya.edu.tr and basarir@sakarya.edu.tr