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Abstract: Tn this paper , we built Multiresolution Analysis (MRA for short) in
the reproducing kernel space H'[0, 1]. Moreover, we give a spline wavelet function
in the space H'[0,1].
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1 Introduction

Wavelet analysis is widely applied in many fields in engineering and technology.
It is necessary to deeper study the theory of wavelet. All the one-dimensional
wavelets constructions we have discussed so far lead to bases for Ly (R). Tn many
applications one is interested in only part of the real line:numerical analysis com-
putations generally work on an interval, images are concentrated on rectangles,
many systems to analyze sound divide it in chunks. All these involve decompo-
sitions of functions f supported on an interval. say [0,1]. One could, of course,
decide to use standard wavelet bases to analyze f, setting the function equal to
zero outside [0, 1], but this introduces an artificial” jump” at the edges. It is there-
fore useful to develop wavelets adapted to ”life on an interval”. The paper is first
one to discuss multiresolution analysis in the reproducing kernel spaces H'[0,1].
That will give a idea how to deal with MRA in the space H'[0,1] and find some
applications with MRA in the space H'[0,1] in the future.

On the reproducing kernel space H'[0, 1] comprising all complex valued satisfy
the conditions that f(z) is absolutely continuous functions, f(0) = 0 and f'(z) €
L]0, 1], where the inner product is defined

(Frg)m = / F(2)g (@) dz.

il
And finite norm || f|| ;1 = (f, f);;: that generate by the inner product.
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It is well known that the space H'[0,1] is a reproducing kernel Hilbert space,
and the reproducing kernel of H'[0,1] is

k(z,y) = min{z,y}.
i.e., for each f € H'[0,1] there holds the following

(f('r)’k('r’y))Hl = f(y)

2 MRA in H'[0,1]

Definition 2.1 A closed subspaces {V_;} -, of a Hilbert space X is called a
MRA if the set satisfies the following conditions:
MHVoCcV,CVaC---C Vg

2) UVv.y=X;
J>0
(3) f(z) € V_; if and only if f(27z) € Vp;
(4) f(x)eV_yifand only if f(x —n) € V_jforn=0,1,2,---,27 —1;
(5) {p—sr(®) 1 k=0,1,2,--,2/ — 1} is a normal orthogonal bases of V_j.

Next, we will built a MRA in the space H'[0, 1]. Put

0 z<0
hiry=< =z 0<z<1

1 > 1
and
0, z 0<z<27k
o_gp(x)=< 25(@-2""k), 27k<z<27(k+1)
2%, 27 (k+1)<z<1
Then we have the following
0 z <0
27t h(2z —k) =4 ¢ gx(z) 0<z<1.
2737 z>1

Let V_; = span {(p,J,k(m);k =0,1,2,- -2 — 1} for all J = 0,1,2,---. Then
VoCVoi C Voo C---C HY0,1) and {p_s4(x);k=0,1,2,---,27 — 1} is a normal
orthogonal bases in the space V_.
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Theorem 2.2 The equality |J V_; = H'[0,1] holds.
7>0

Proof. It is clear that |J V_; C H'0,1] holds. We only need to prove that
J>0
B i
U V_s D H'[0,1] holds. Let f(z) € ( U VJ) be given. For any £ > 0 there
J>0 J>0
exists a fo € C°°(0,1) such that

1f = follg = 1" = foll ;2 < &

Let P_; be a projection from H'[0,1] to V_;. Then

1P—g foll g = 1P-s (" = foll g S M1f = follpn < & (1)

Since {go_J7k(x) ' k=0,1,2,---,27 — 1} is a normal orthogonal bases of V_;, we
have
2

271
2
1P_sfollin = || D (fo, o—si)mo—sn(z)
k=0 H1
29 1 29 1

Z|f07§0 JkH1| Z|f0,§0 JkL2| .

Put

b (z) = 2% 27k <z <27k +1)
TR T 0,2 € (00,2 7K U277 (k + 1), +00)

and

g(x) = folz)x 01}+f0( T)X[1,2]-

We denote by fALfJ,k(w) and g(w) Fourier transform of h_j(z) and g(z), respec-
tively. Hence

291 27 -1
S Nforo—si)m P =D g hosi) el
k=0 k=0
2/ g |t 2
=Y /g(z)h_J,k(x)dx
k=0
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2/ g |t 2
= §w)2 T ho (27 w)e™ < du
k=0 00
J+1 2
2‘]71 2 7T(l+1)
= 277 (W)2" Zhoo(2-Tw)e™ "*dw
—0 €2 451,
29 1 27+ ’
= Z 27 / ei2 ke ij\(w+2‘]+17rl)ﬁo,o(2—‘]w + 27l))d
k=0 0 lez
27+ 2
=27 / qu\(w+2‘]+17rl)71070(2—‘]w+27rl)) dw
o ez
2

"g\(w)’g\(w + 2J+17rl)/f;0,0(2—‘]w)h/0,\0(2_‘]w +27n))| dw

+oc
=27 / |g ‘hoo 2 w)| dw+R (2)
I 2
where R =27 . ‘ w+2J+17rl)h0 o(2- Jw)ho 0277w + 27n))| dw.
neZ n#0—oo
Since hoo(z) = Xjo,17(%), we have hoo(w) = g e-it, hoo(0) = 1 and
‘/ﬁo,o(w)‘ < 1. Therefore
|R| < 27 Z /‘g ng—f—?’“lehOOQ Jth002 T+ 2mn)) | dw
neZ,n#0_",
<on /|g )| (G + 27+ 7n) | doo

neEZnA0_"

Using g(z) € C°°(—o00, +00), there exists a constant C' > 0 such that [g(w)| <
C(1+ |w|*)~2. Noting that

sup (1+y9)[1+ (# —9)*]™" < 0,
x,yeR
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+oc
R <2m ) /02(1+\w|2)—%(1+|w—2*J7m|2)f%dw
neZ,n#0_"

+o0

ne€Z,n#0 ",
+oo %
<y Z (1422 72p2) 1 / (1+ |w+ 2J7rn|2)*1dw
neZ,n#0 oo
+oo 2
X (/ (1+‘w—2*‘]7m|2)’% dw
(o]
o0
- Z (1+2* 72! / (14 |w|*) dw < C527%.
neZ,n#0 oo
By (1), (2) and (3), we get the follows.
+oo R 5 27 1
20 [ 1§ oo 70| do = 3 (oo sl — R
oo k=0
27 _1
= > [(fop-au)ml +IR e+ 027,
k=0

By dominated convergence theorem, we have
~ _ > 22
27 |91l 12 (— o0, 4-00) = 27 |0,0(0)| 191172 _co, 400y <€ aS T — 00,

that is
~ £
1912~ 00,00y < 5

Therefore
N fllg = Hfl||L2[o,1} <|If' - f(1)||L2[o’1} + ||f(l)||L2[o,1]

g \2
< e+ llglli oo S+ ()7

By the arbitrainess of ¢, we have that || f|| ;1 holds, i.e., f = 0. Hence ( U ve

{0}, e, U Voy = H'[0,1].

J>0

Summing up, we have {V_s} ;5, is a MRA in the space HY0,1].

63

(4)
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Let W_; orthogonal complemented subspace of V_; in the space Vj_q, i.e.,
W eV ,;,=V_j qforall J=0,1,2,---. We can easily to get

WfJ = W{¢—J,k($)vk = Oa172a' . '72J - 1}

where
2%( - 23&1) 2J+1 <z < ;I?Ijr_ll
b (@) { Cob(e - B2, B <o < 22
0, x €0, I\, 2542)

for all .7 = 0,1,2,--. Then {¥_ji(z);k=0,1,2,---,2 — 1} is also normal or-
thogonal bases in the space W_; and the following properties hold.
HW_,oW_; fori,J=0,1,2, - with i #£ J;
2) N W_; ={0};
J>0
3) Hl[(),l} = Vo @( b W_J).
J>0

We will often call 30(; o the "scaling function’ of the multirsolution analysis.
The function g 0(x) is called to be a wavelet basis function generated by scaling
function g o. Hence for any f(z) € H[0,1], we have

+o0 27 -1

=fMz+ > > d_yptp_su(z)

J=0 k=0

where

Ay = (f—s)m = 25227712k + 1)) — F277k) — f(27 (k + D).

3 MRA in Two Dimension Space H'!(Q)

Put
HYQ) = {u(z,y) = wi()ua(y), ui (z), uz(y) € H'[0,1]},

where () = [0,1] x [0,1]. Then H(Q) is two dimension tensor product space. we
denote (u,v) g1 (g) by inner product in the space H' (Q), i..e,

82—
(w, V) (q) = // 8m3y 88 v(e, y)dady

d ' d d
— /Oam(x)%m(x)dx/() %W( )d_UUQ(y)dy

= (@), 01(2)) 1 o 4, (W2(9), 02(9)) 1

where u = u(z,y) = ui(x)ux(y) and ui(z), ua(y) € H0,1], v = v(z,y) =
v1(z)v2(y) and v1(z), va(y) € H'0,1].
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Theorem 3.1 The function K(z.&§y,m) = K(z,)K(y,n) for (,€), (y,m) €
Q is a reproducing kernel function in the space H' (Q). Moreover, H' (Q) is a
reproducing space.

Proof. for any u(x,y) € H(Q), we have

(w &y, U))Hl(Q)

o2
// 3m8y u(z,y 920y K(z,&y,n)dzdy

52
_/ 3m8y i (@)uy ()88 K(z,8) K (y,n)dzdy

/ D retw.eyn / 9 o) L Ky, m)dy

= u1(§uz(n )—U(f, )

O

Theorem 3.2 Let V_j(z,y) = V_yQV_;, where {V_;} >0 is a MRA in H'[0,1].
Then {V_j(z,y)} ;5q of H' (Q) have the following properties:
1) V()(.T,y) C V—l('r7y) C V_Q(Jf,y) C-ey

2) A Voi(a,y) = Vola,y);
%) U Voie,y) = H'(Q).

Proof. Since Vo CV_i1 CV.o C--- and V_y(x,y) =V_;®V_y, forany J >0
we have

Voslz,y) =V o,V VoV =Voa(z,y),

i.e., the 1) holds.
By JOF_?OV,J =1y and JgOV,J = H'[0,1], we easy to get the 2) and 3) hold.O

Corollary 3.3 Let W_;(z,y) is orthogonal complementary subspace V_;(z,y)
in V_j_1(x,y). Then W_;(x,y) have the following properties :
1) W_J(Jf,y) @W—K(Jjay)? fOT J ;é K7J7 K = 0,1,2,--;

2) A Wos(z,y) = 10,0}
8) HY(Q) = Vole.y) © (& W-s(2.4).

Proof. By Theorem 2.2 and the definition of W_;(z,y), we can obtain it. O
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Let ¢(z) be a scaling function in H'[0,1] and ¢ (z) be a wavelet function in

H'Y0,1]. Define
¥ (2y) = B (y)
> (z,y) = p(z)o(y)
(2, y) = (@)Y (y)

Theorem 3.4 The set of subspaces {V_j(x,y)}y>o in HY(Q) is MRA of H(Q)
and for any J > 0 the set
le,k,m('r7y) = ¢k (2)-1m(y)
w%J,k.m(x7y> = ¢—J,k(x)¢—J,m(y)
zﬂ?iJ,lc,m(‘r’ y) = ¢7J’k($)¢7‘]’m(y)
for k,m =0,1,---277 — 1 is normal orthogonal bases of W_j(z,y).
Moreover the set

{07 (@) |6 =1,2,3, kom =0,1,2,-++, 27 = 1.7 > 0} U {@o,1m ()}
is a normal orthogonal bases of H'(Q), where wo k.m(x,y) = vo.r(x)po.my)
Proof. By the definition, we have

Vogilz,y) =V, 0@V
=(Vo,eW_)e(Vo,eWoy)
=(VyVo e (VoW oW,y Vo)e (W 2 W_y)
=Voszye[(VoyoWo)e(Woy Vo) e (Woy o Woy).

Hence

W_y(z,y) =V, W& (Woy Vo) e (WoyoWoy).

Since {gf),J’k(x)} for k = 0,1,2,---,27 — 1 is a normal orthogonal bases of
V_; and {J,Jk(x)} for k = 0,1,2,---,27 — 1 is a normal orthogonal bases of
W_ J. we have that

{0 pm(@y), k,m=0,1,2,-- 27 — 1}
{¢3J,k,m($,y); km=0,1,2,---,2/ — 1} ,
and
(¢3J,k,m($,y); kom=0,1,2,---,27 —1}.
e, {¥° jpm@yle = 1,2,3 kym =0,1,2,--- ,27 — 1} is a normal orthogonal

bases of W_;(z,y). Using again ¢ k. m(x,y) = qzo,k(z)qzo,m(y), kE,m=0,1,2,---,2/—
1} is a normal orthogonal bases of Vy(x,y), we have

(% jem(@y) e =1,2,3, k,m=0,1,2,--,27 = 1;J > 0} U {0 p,m (2, 9)}
is a normal orthogonal bases of H'(Q) thanks to the corollary 1. O
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