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1 Introduction

The concept of fuzzy sets introduced by Zadeh [1] laid the foundation of fuzzy
mathematics. The motivation of introducing fuzzy metric space is the fact that
in many situations the distance between two points is inexact due to fuzziness
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rather than randomness. Kramosil and Michalek [2] introduced the concept of
fuzzy metric space by generalizing the concept of probabilistic metric space to
fuzzy situation. Further George and Veeramani [3] modified this concept of fuzzy
metric space introduced in [2]. Adding to same Grabiec [4] extended the well
known fixed point theorems of Banach [5] and Edelstein [6] to fuzzy metric spaces
in the sense of [2]. Many authors in [3, 4, 7, 8] proved fixed and common fixed
point theorems in fuzzy metric spaces. Later on in [9–13] we can find the results
by the applications of compatible mapping conditions in fuzzy metric spaces. In
this paper using the definition of the pair (A,B) being weakly A-compatible or
weakly B-compatible, given by [14] we obtained a common fixed point theorem
for such pairs of maps under an [2] it relation with rational contractive condition
which generalizes [13, Theorem 3.1], [11, Corollary 1], [9, Theorems 3.1 and 3.5],
and [8, Corollary 2]. We also proved a common fixed point theorem for pairs of
weakly compatible maps in a sequentially compact fuzzy metric space using an
compact fuzzy metric space using an implicit relation. First of all we give some
known definitions and lemmas.

2 Preliminaries

Definition 2.1 ([15]). A binary operation ∗ : [0, 1]2×[0, 1]→ [0, 1] is a continuous
t-norm, if [0, 1], ∗ is an abelian topological monoid with a unit 1 such that a ∗ b ≤
c ∗ d, whenever a ≤ c, b ≤ d, ∀a, b, c, d ∈ [0, 1].
Two examples of t-norms are a ∗ b = ab and a ∗ b = min{a, b}.

Definition 2.2 ([2]). The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary set, * a continuous t-norm and M a fuzzy set on X2×(0,∞) satisfying
the following conditions:

(a) M(x, y, t) > 0;

(b) M(x, y, t) = 1 if and only of x = y;

(c) M(x, y, t) = M(y, x, t);

(d) M(x, y, t) ∗M(y, z, t) ≤M(x, z, t+ s);

(e) M(x, y, .) : (0,∞)→ [0, 1] is continuous,for all x, y, z ∈ X and t, s > 0.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center
x ∈ X and radius 0 < r < 1 is defined by B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Now let (X,M, ∗) be a fuzzy metric space and τ the set of all A ⊂ X with x ∈ A
if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is
a topology on X induced by the fuzzy metric M .

Definition 2.3 ([4]). A sequence {xn} in a fuzzy metric (X,M, ∗) is said to be
convergent to a point x ∈ X if lim

n→∞
M(xn, x, t) = 1. The sequence {xn} is said to

be Cauchy if lim
n→∞

M(xn, xm, t) = 1. The space (X,M, ∗) is said to be complete if

every Cauchy sequence in X is convergent in X.
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Definition 2.4. (X,M, ∗) is said to be a sequentially compact fuzzy metric space
if every sequence in X has a convergent sub-sequence.

Lemma 2.5 ([4]). Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-
decreasing for all x, y ∈ X.

Lemma 2.6 ([16]). Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X2 × (0,∞).

Throughout this paper, we now assume that lim
t→∞

M(x, y, t) = 1 and that N is the

set of all natural numbers.

Lemma 2.7 ([8]). Let {yn} be a sequence in (X,M, ∗). If there exists a positive
number k < 1 such that

M(yn+2, yn+1, kt) ≥M(yn+1, yn, t), t > 0, n ∈ N,

then {yn} is a Cauchy sequence in X.

Lemma 2.8 ([8]). If there exists k ∈ (0, 1) such that M(x, y, kt) ≥ M(x, y, t) for
all x, y ∈ X and t > 0, then x = y.

Definition 2.9 ([8]). Let A and B be self maps on a fuzzy metric space (X,M, ∗).
The pair (A,B) is said to be compatible if lim

n→∞
M(ABxn, BAxn, kt) = 1 , when-

ever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Bxn = z, for some

z ∈ X.

Definition 2.10 ([17]). Let A and B be self mappings on a fuzzy metric space
(X,M, ∗). Then the mappings are said to be weakly compatible if they commute
at their coincidence point, that is, Ax = Bx implies that ABx = BAx.

Definition 2.11 ([14]). The pair (A,B) is said to be weakly A-compatible if either
lim
n→∞

BAxn = Az or lim
n→∞

BBxn = Az, whenever {xn} is a sequence in X such

that lim
n→∞

Axn = lim
n→∞

Bxn = z and lim
n→∞

ABxn = lim
n→∞

AAxn = Az, for some

z ∈ X.

Similarly, can define weak B-compatibility of the pair (A,B). Clearly, both Def-
inition 2.9 and 2.11 imply that the pair (A,B) is coincidentally commuting or a
weakly compatible pair.

We observe that Definition 2.9 implies Definition 2.11. Note that a weakly A-
compatible pair (A,B) need not be compatible.

Definition 2.12 ([14]). The pair (A,B) is said to be A-continuous if

lim
n→∞

AAxn = lim
n→∞

ABxn = Az
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whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Bxn = z

for some z ∈ X.

In our next section, we use some implicit relations and obtained results by
employing rational contractive condition.

3 Implicit Relations

Let Φ6 denote the set of all continuous functions φ : [0, 1]6 → R satisfying the
conditions
(φ1) : φ1 is decreasing in t2, t3, t4, t5, and t6,
(φ2) : φ2(u, v, v, v, w, v) ≥ 0 implies u ≥ v and u ≥ w for all u, v, w ∈ [0, 1].

Example 3.1. φ(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4, t5, t6}.

Example 3.2. φ(t1, t2, t3, t4, t5, t6) = t21 −min{ti.tj : i, j ∈ {2, 3, 4, 5, 6}}.

Example 3.3. φ(t1, t2, t3, t4, t5, t6) = t31 −min{ti.tj .tk : i, j, k ∈ {2, 3, 4, 5, 6}}.

Example 3.4. φ(t1, t2, t3, t4, t5, t6) = t1 − a t2.t4
t2+t4

− b t3.t6
t5+t4+1 , t2 + t4 6= 0 and

a, b > 0.

3.1 Main Result

Theorem 3.5. Let A,B, S and T be self maps on a complete fuzzy metric space
(X,M, ∗) with t ∗ t ≥ t, ∀t ∈ [0, 1] such that

(3.1.1) A(X) ⊆ T (X), B(X) ⊆ S(X);

(3.1.2)

φ

(
M(Ax,By, kt),M(Sx, Ty, t),M(Ax, Sx, t),M(By, Sx, (2− α)t),

2M(Sx,Ty,t)
M(Sx,Tyt)+M(Ax,Ty,t) ,

M(Ax,Sx,t)+M(By,Ty,t)
2

)
≥ 0

for all x, y ∈ X, ∀t > 0 and α ∈ (0, 2), where k ∈ (0, 1) and φ ∈ Φ6;
Further assume that

(3.1.3) (A,S) is weakly S-compatible, (B, T ) is weakly T -compatible and either
(A,S) is S-continuous or (B, T ) is T -continuous;

(3.1.4) (A,S) is weakly A-compatible, (B, T ) is weakly B-compatible and either
(A,S) is f -continuous or (B, T ) is B-continuous.
Then A,B, S and T have a unique common fixed point z ∈ X, and z is the unique
common fixed point of A and S and of B and T .
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Proof. Let x0 ∈ X be an arbitrary point. By (3.1.1), we can choose a sequence
{xn} in X such that y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2 for
n = 0, 1, 2, ...,. Let

dm(t) = M(ym, ym+1, t), ∀t > 0.

Step 1. Putting x = x2n, y = x2n+1, α = 1− q1 in (3.1.2), where q1 ∈ (k, 1), we
have

0 ≤ φ

(
M(y2n, y2n+1, kt),M(y2n, y2n−1, t),M(y2n, y2n−1, t),M(y2n+1, y2n−1,

(1 + q1)t), 2M(y2n,y2n−1,t)
M(y2n,y2n−1,t)+M(y2n,y2n−1,t)

, M(y2n,y2n−1,t)+M(y2n,y2n+1,t)
2

)

0 ≤ φ
(
M(y2n, y2n+1, kt),M(y2n, y2n−1, t),M(y2n, y2n−1, t),M(y2n−1, y2n, t)

∗M(y2n+1, y2n, q1t), 1,
M(y2n,y2n−1,t)+M(y2n,y2n+1,t)

2

)
.

And so
(i) φ(d2n(kt), d2n−1(t), d2n−1(t), d2n−1(t) ∗ d2n(q1t), 1,

d2n−1(t)+d2n+1(t)
2 ≥ 0

If d2n(t) < d2n−1(t), then
d2n(q1t) ∗ d2n−1(t) ≥ d2n(q1t) ∗ d2n(q1t) ≥ d2n(q1t),
and from (φ1), we have
φ(d2n(kt), d2n(q1t), d2n(q1t).d2n(q1t)d2n(q1t)d2n(q1t)) ≥ 0.
Then again from (φ2), we have
d2n(kt) > d2n(q1t)
a contradiction. Hence d2n(t) ≥ d2n−1(t), for every n ∈ N and ∀t > 0.
Now from (i) and (φ1) we have
φ(d2n(kt), d2n−1(q1t), d2n−1(q1t)d2n−1(q1t)d2n−1(q1t)d2n−1(q1t)) ≥ 0
and from (φ2), we have
(ii) d2n(kt) > d2n−1(q1t).
Step 2. Similarly, putting x = x2n, y = x2n−1, α = 1 − q2 in (3.1.2), where
q2 ∈ (k, 1), we can show that (iii) d2n−1(kt) > d2n−2(q2t),
Now let q = min{q1, q2} so that q ∈ (k, 1). Then from (ii) and (iii) we have
dn(kt) ≥ d2n−1(qt).
For every n ∈ N , and so

M(yn, yn+1, t) ≥M(yn−1, yn, (q/k)t)

≥M(yn−2, yn−1, (q/k)2t)

..................................

≥M(y0, y1, (q/k)nt).

Hence, by Lemma 2.7, {yn} is a Cauchy sequence and from the completeness of
X, {yn} converges to some point z in X.
Now suppose that the conditions in (3.1.3) are true.
Step 3. Suppose that (A,S) is S-continuous. Then SAx2n → Sz and SSx2n →
Sz as n → ∞. Since (A,S) is weakly S-compatible, we have either ASx2n → Sz
or AAx2n → Sz as n→∞.
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Case 1. Suppose that ASx2n → Sz as n → ∞. Then putting x = Sx2n,
y = x2n+1, α = 1 in (3.1.2), we get

φ

 M(ASx2n, Bx2n+1, kt),M(SSx2n, Tx2n+1, t),M(ASx2n, SSx2n, t),

M(Bx2n+1, SSx2n, (2− α)t), 2M(SSx2n,Tx2n+1,t)
M(SSx2n,Tx2n+1t)+M(ASx2n,Tx2n+1,t)

,
M(ASx2n,SSx2n,t)+M(Bx2n+1,Tx2n+1,t)

2


≥ 0.

Letting n→∞, we have

0 ≤ φ(M(Sz, z, kt),M(Sz, z, t), 1,M(Sz, z, t), 1, 1),

0 ≤ φ(M(Sz, z, kt),M(Sz, z, t),M(Sz, z, t),M(Sz, z, t),M(Sz, z, t),M(z, Sz, t)).

From (φ2), we have M(Sz, z, kt) ≥M(Sz, z, t), which implies by Lemma 2.8 that
Sz = z.
Case 2. Suppose AAx2n → Sz as n → ∞. Putting x = Ax2n, y = x2n+1, α = 1
in (3.1.2), we get

φ

 M(AAx2n, Bx2n+1, kt),M(SAx2n, Tx2n+1, t),M(AAx2n, SAx2n, t),

M(Bx2n+1, SAx2n, (2− α)t), 2M(SAx2n,Tx2n+1,t)
M(SAx2n,Tx2n+1t)+M(AAx2n,Tx2n+1,t)

,
M(AAx2n,SAx2n,t)+M(Bx2n+1,Tx2n+1,t)

2


≥ 0.

Letting n→∞, we have

0 ≤ φ(M(Sz, z, kt),M(Sz, z, t), 1,M(Sz, z, t), 1, 1),

0 ≤ φ(M(Sz, z, kt),M(Sz, z, t),M(Sz, z, t),M(Sz, z, t),M(Sz, z, t),M(z, Sz, t)).

From (φ2), we have M(Sz, z, kt) ≥M(Sz, z, t), which implies that Sz = z.
Step 4. Putting x = z, y = x2n+1, α = 1 in (3.1.2), we have

φ

(
M(Az,Bx2n+1, kt),M(Sz, Tx2n+1, t),M(Az, Sz, t),M(Bx2n+1, Sz, t),

2M(Sz,Tx2n+1,t)
M(Sz,Tx2n+1t)+M(Az,Tx2n+1,t)

, M(Az,Sz,t)+M(Bx2n+1,Tx2n+1,t)
2

)
≥ 0.

Letting n→∞, we have

0 ≤ φ
(
M(Az, z, kt), 1,M(Az, z, t), 1,

2

1 +M(Az, z, t)
,
M(Az, z, t) + 1

2

)
.

From (φ1) and (φ2), we have M(Az, z, kt) ≥M(Az, z, t), which implies that Az =
z.
Step 5. Since A(X) ⊆ T (X), there exists w ∈ X such that z = Az = Tw.
Putting x = x2n, y = w, α = 1 in (3.1.2), we have

φ

(
M(Ax2n, Bw, kt),M(Sx2n, Tw, t),M(Ax2n, Sx2n, t),M(Bw,Sx2n, t),

2M(Sx2n,Tw,t)
M(Sx2n,Tw,t)+M(Ax2n,Tw,t)

, M(Ax2n,Sx2n,t)+M(Bw,Tw,t)
2

)
≥ 0.
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Letting n→∞, we have

φ

(
M(z,Bw, kt), 1, 1,M(Bw, z, t), 1,

1 +M(Bw, z, t)

2

)
≥ 0.

From (φ1) and (φ2), we have M(z,Bw, kt) ≥ M(z,Bw, t), which implies that
Bw = z.
Thus Tw = Bw.
Since (B, T ) is weakly T -compatible it follows that (B, T ) is a weakly compatible
pair. Hence TBw = BTw, so that Tz = Bz.
Step 6. Putting x = x2n, y = z, α = 1 in (3.1.2) we have

φ

(
M(Ax2n, Bz, kt),M(Sx2n, T z, t),M(Ax2n, Sx2n, t),M(Bz, Sx2n, t),

2M(Sx2n,Tz,t)
M(Sx2n,Tz,t)+M(Ax2n,Tz,t)

, M(Ax2n,Sx2n,t)+M(Bz,Tz,t)
2

)
≥ 0.

Letting n→∞, we have

φ(M(z, Tz, kt),M(z, Tz, t), 1,M(z, Tz, t), 1, 1) ≥ 0.

From (φ1) and (φ2), we have M(z, Tz, kt) ≥M(Tz, z, t), which implies that Tz =
z.
Hence Bz = Tz = z and so z is a common fixed point of A,B, S and T .
Step 7. Suppose that z0 is another common fixed point of A,B, S and T . Putting
x = z, y = z0, α = 1 in (3.1.2), we have

φ

(
M(Az,Bz0, kt),M(Sz, Tz0, t),M(Az, Sz, t),M(Bz0, Sz, t),

2M(Sz,Tz0,t)
M(Sz,Tz0t)+M(Az,Tz0,t)

, M(Az,Sz,t)+M(Bz0,Tz0,t)
2

)
≥ 0.

This implies that

φ(M(z, z0, kt),M(z, z0, t), 1,M(z0, z, t), 1, 1) ≥ 0.

From (φ1) and (φ2), we have M(z, z0, kt) ≥M(z, z0, t), which implies that z = z0.
Hence z is the unique common fixed point of A,B, S and T .
Step 8. Suppose that z1 is another common fixed point of A and S. Putting
x = z1, y = z, α = 1 in (3.1.2), we have

φ

(
M(Az1, Bz, kt),M(Sz1, T z, t),M(Az1, Sz1, t),M(Bz, Sz1, t),

2M(Sz1,Tz,t)
M(Sz1,Tz,t)+M(Az1,Tz,t)

, M(Az1,Sz1,t)+M(Bz,Tz,t)
2

)
≥ 0.

This implies that

φ(M(z1, z, kt),M(z1, z, t), 1,M(z, z1, t), 1, 1) ≥ 0.

From (φ1) and (φ2), we have M(z1, z, kt) ≥M(z1, z, t), which implies that z1 = z.
Hence z is the unique common fixed point of A and S.
Similarly we can show that z is the unique common fixed point of B and T .
Similarly we can prove the theorem if (B, T ) is T -continuous. Also we can prove
the theorem if the conditions in (3.1.4) are true.
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Example 3.6. Let X = [0, 1], a ∗ b = min{a, b} and M(x, y, t) = t
t+|x−y| , define

Ax = Bx = 1 and

Sx = Tx =

{
2+x
3 if 0 ≤ x < 1,

1 if x = 1.

Then all the conditions of Theorem 3.5 are satisfied with
φ(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4, t5, t6}. Clearly 1 is the unique common
fixed point of A,B, S and T .

In our next section, we give another [2] it relations and obtained results in
sequentially compact fuzzy metric space.

4 Implicit Relations

Let ψ6 be the set of all functions ψ : [0, 1]6 → R such that
(ψ1) : ψ(v, u, u, v, w, 1) > 0 or ψ(v, u, v, u, 1, w) > 0 implies u < v for all
u, v ∈ [0, 1) and w ≤ 1,
(ψ2) : ψ(v, 1, 1, v, v, 1) ≤ 0, ψ(v, v, 1, 1, v, v) ≤ 0 and ψ(v, 1, v, 1, 1, v) ≤ 0 for all
v ∈ [0, 1).

Example 4.1. φ(t1, t2, t3, t4, t5, t6) = t1 − {t2, t3, t4} − b(t5, t6), where b ≥ 0.

Example 4.2. φ(t1, t2, t3, t4, t5, t6) = t21 − {t22, t3, t4} − b(t5, t6), where b ≥ 0.

Example 4.3. φ(t1, t2, t3, t4, t5, t6) = t21−{t2, t3, t4}− b(t25t6 + t5t
2
6), where b ≥ 0.

Example 4.4. φ(t1, t2, t3, t4, t5, t6) = t1 − a t2.t4
t2+t4

− b t5.t6
t5+t4+1 , t2 + t4 6= 0 and

a, b > 0.

Theorem 4.5. Let A,B, S and T be self mappings of a sequentially compact fuzzy
metric space (X,M, ∗) such that

(1) A(X) ⊆ T (X), B(X) ⊆ S(X);

(2)

ψ

(
M(Ax,By, kt), M(Ax,Sx,t)+M(Sx,Ty,t)

2 ,M(Ty,By, t),M(Sx,By, t),

M(Ax, Ty, t), 2M(Sx,Ty,t)
M(Sx,Tyt)+M(Ax,Ty,t)

)
> 0

for every x, y ∈ X, with one of Ax 6= By, Ax 6= Sx and By 6= Ty and ∀t > 0
where ψ ∈ ψ6;

(3) (A,S) and (B, T ) are weakly compatible;

(4) Either A and S are continuous or B and T are continuous.
Then A,B, S and T have a unique common fixed point in X, Further p is the
unique common fixed point of A and S and of B and T .
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Proof. Suppose that A and S are continuous and for any t > 0, let

m = sup{M(Ax, Sx, t) : x ∈ X}.

Since A and S are continuous on a sequentially compact fuzzy metric space, there
exists u ∈ X such that m = M(Au, Su, t). Since S(X) ⊆ B(X), there exists
v ∈ X such that
(5) Su = Bv.
Since T (X) ⊆ A(X), there exists w ∈ X such that
(6) Tv = Aw.
Suppose neither A and S nor A and T have a coincidence point in X. Then
m = M(Au, Su, t) < 1,
M(Bv, Tv, t) < 1 and M(Aw,Sw, t) < 1. We have

ψ

(
M(Ax,By, kt), M(Ax,Sx,t)+M(Sx,Ty,t)

2 ,M(Ty,By, t),M(Sx,By, t),

M(Ax, Ty, t), 2M(Sx,Ty,t)
M(Sx,Ty,t)+M(Ax,Ty,t)

)
> 0,

0 <ψ

(
M(Au,Bv, kt), M(Au,Su,t)+M(Su,Tv,t)

2 ,M(Tv,Bv, t),M(Su,Bv, t),

M(Au, Tv, t), 2M(Su,Tv,t)
M(Su,Tv,t)+M(Au,Tv,t)

)

= ψ

(
M(Bv, Tv, kt),m,M(Tv,Bv, t),M(Tv,Bv, t),m,

2m

1 +m

)
and by (ψ1), we have
(7) m < M(Bv, Tv, t).
Now from (ψ2), we have

0 <ψ

(
M(Aw,Bv, kt), M(Aw,Sw,t)+M(Sw,Tv,t)

2 ,M(Tv,Bv, t),M(Sw,Bv, t),

M(Aw, Tv, t), 2M(Sw,Tv,t)
M(Sw,Tv,t)+M(Aw,Tv,t)

)

= ψ

(
M(Aw,Sw, kt), M(Aw,Sw,t)+M(Sw,Tv,t)

2 ,M(Tv, Sw, t), 1,

M(Aw, Tv, t), 2M(Sw,Tv,t)
M(Sw,Tv,t)+M(Aw,Tv,t)

)
.

By (ψ1), we have
(8) M(Bv, Tv, t) < M(Aw,Sw, t).
Now from the definition of m and the inequalities (7) and (8), we have

m ≥M(Aw,Sw, t) > M(Bv, Tv, t) > m,
a contradiction. Hence there exists α ∈ X such that Aα = Sα or Bα = Tα.
Case (a): Suppose that Sα = Aα. Since A(X) ⊆ T (X), there exists α ∈ X such
that Aα = Tα. Suppose that M(Tβ,Bβ, t) < 1. then from (2) we have

0 < ψ

(
M(Aα,Bβ, kt), M(Aα,Sα,t)+M(Sα,Tβ,t)

2 ,M(Tβ,Bβ, t),M(Sα,Bβ, t),

M(Aα, Tβ, t), 2M(Sα,Tβ,t)
M(Sα,Tβ,t)+M(Aα,Tβ,t)

)
,

0 < ψ

(
M(Tα,Bβ, kt), M(Aα,Aα,t)+M(Aα,Bβ,t)

2 ,M(Bβ,Bβ, t),M(Aα,Bβ, t),

M(Aα,Aβ, t), 2M(Aα,Aα,t)
M(Aα,Aα,t)+M(Aα,Aα,t)

)
,
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0 < ψ

(
M(Tβ,Bβ, kt),

M(Tα,Bα, t) + 1

2
, 1, 1,M(Tα,Bβ, t), 1

)
.

By (2), we have M(Tβ,Bβ, t) = 1, so that Tβ = Bβ. Thus
(9) Sα = Aα = Tβ = Bβ = p, say.
Since the pair (A,S) is weakly compatible, we have
(10) Sp = SAα = ASα = Ap.
Suppose that M(Ap, p, t) < 1. From (2), we have

0 <ψ

(
M(Ap,Bβ, kt), M(Ap,Sp,t)+M(Sp,Tβ,t)

2 ,M(Tβ,Bβ, t),M(Sp,Bβ, t),

M(Ap, Tβ, t), 2M(Sp,Tβ,t)
M(Sp,Tβ,t)+M(Ap,Tβ,t)

)

= ψ

(
M(Ap, p, kt), M(Ap,Sp,t)+M(Ap,p,t)

2 ,M(p, p, t),M(Ap, p, t),

M(Ap, p, t), 2M(Ap,p,t)
M(Ap,p,t)+M(Ap,p,t)

)

= ψ

(
M(Ap, p, kt),

M(Ap, p, t) + 1

2
, 1,M(Ap, p, t),M(Ap, p, t), 1

)
.

Hence from (ψ2), we have Ap = p. Thus (11) Tp = Bp = p.
Since the pair (B, T ) is weakly compatible, we have
Tp = TBβ = BTβ = Tp.

Using (2) with x = α and y = p and (ψ2) we can show that Bp = p. Thus,
(12) Tp = Bp = p.
Hence p is a common fixed point of A,B, S and T .
Case (b): Suppose that Tα = Bβ. Since B(X) ⊆ T (X), there exists α ∈ X such
that Bα = Sβ. Suppose that M(Sβ,Aβ, t) < 1. From (2), we have

0 < ψ

(
M(Aβ,Bα, kt), M(Sβ,Tα,t)+M(Aβ,Sβ,t)

2 ,M(Tα,Bα, t),M(Sβ,Bα, t),

M(Aβ, Tα, t), 2M(Sβ,Tα,t)
M(Sβ,Tα,t)+M(Aβ,Tα,t)

)
,

0 < ψ

(
M(Aβ, Tβ, kt), M(Sβ,Sβ,t)+M(Aβ,Sβ,t)

2 ,M(Bα,Bα, t),M(Bα,Bα, t),

M(Aβ,Bα, t), 2M(Bα,Bα,t)
M(Bα,Bα,t)+M(Aβ,Bα,t)

)
.

Hence from (ψ2),We have Aβ = Tβ. Thus Aβ = Tβ = Bα = Sα = p, say. Now as
in case (a), we can show that p is a common fixed point of A,B, S and T . Suppose
that p0 is another common fixed point of A,B, S and T . Using (2) with x = p,
y = p0 and (ψ2), we can show that p0 = p. Thus p is the unique common fixed
point of A,B, S and T .

Now suppose that p1 is another common fixed point of A and S. Using (2) with
x = p1, y = p and (ψ2), we can show that p1 = p. Thus p is the unique common
fixed point of A and S. Similarly we can show that p is the unique common fixed
point of B and T . Similarly the theorem holds when B and T are continuous.

Remark. Theorem 4.5 holds if the inequality (2) is replaced by one of the follow-
ing inequalities:
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(a) M(Ax,By, t) > min{M(Sx, Ty, t),M(Sx,Ax, t),M(Ty,By, t)},
(b) M2(Ax,By, t) > min{M2(Sx, Ty, t),M(Sx,Ax, t)M(Ty,By, t)},
(c) M3(Ax,By, t) > M(Sx, Ty, t)M(Sx,Ax, t)M(Ty,By, t),

(d)M(Ax,By, t) > min
{
M(Sx, Ty, t),M(Sx,Ax, t),M(Ax, Ty, t),M(Ty,By, t),

(M(Ax,By,t)+M(By,Ty,t)
2 )

}
.

Example 4.6. Let X = [0, 1], a ∗ b = min{a, b} and M(x, y, t) = t
t+|x−y| , define

Ax = Bx = 1, Sx = x+2
3 and Tx = 3+x

4 for all x ∈ X. Then all the conditions of
Theorem 4.5 are satisfied with ψ(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4}. Clearly
1 is the unique common fixed point of A,B, S and T .
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