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1 Introduction

The fundamental concept of a fuzzy set, introduced by Zadeh [1], plays a major
role in mathematics with wide applications in many other branches e.g. theoret-
ical physics, computer science, control engineering, information science, measure
theory. Rosenfeld [2] gave definitions of a fuzzy subgroupoid and a fuzzy subgroup,
and obtained some properties of them. Since then, many fuzzy algebraic struc-
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tures have been rapidly introduced and discussed by many authors (for example,
see [3–12]).

On anti-fuzzy algebraic structures, Biswas [13] introduced the concept of anti-
fuzzy subgroups of groups and lower level sets of fuzzy subsets, and also showed
that a fuzzy subset f of a group G is an anti-fuzzy subgroup of G if and only if
for every α ∈ [0, 1], a lower level set L(f : α) = {x ∈ G | f(x) ≤ α} is either
empty or a subgroup of G. The concept of lower level sets of fuzzy subsets is
one of mathematical methods for studying anti-fuzzy algebraic structures, some
papers used the concept of lower level sets seen in [14–23]. Modifying and applying
Biswas’ idea, concepts of many types of anti-fuzzy algebraic structures have been
introduced and studied extensively by many authors. For example, Shabir and
Nawas [22] in 2009 introduced the concept of an anti-fuzzy (generalized) bi-ideal
of any semigroup S and characterized anti-fuzzy (generalized) bi-ideals by using
lower level sets. Moreover, they characterized semigroups in terms of anti-fuzzy
(generalized) bi-ideals. Khan and Asif [18], the continuation of the work carried out
by Shabir and Nawas, introduced anti-fuzzy interior ideals of S and characterized
semigroups by the properties of anti-fuzzy (generalized) bi-ideals and anti-fuzzy
interior ideals. Khan et al. [24] gave relationships between anti-fuzzy (generalized)
bi-ideals and anti-fuzzy right ideals on semilattice of left groups. Characterizations
of semilattices of left (right) groups are investigated by using anti-fuzzy (gener-
alized) bi-ideals and anti-fuzzy one-sided ideals [24]. Due to these possibilities of
applications, semigroups and related structures are studied via anti-fuzzy general-
ized bi-ideals and anti-fuzzy bi-ideals.

Our propose of this work is to promote and develop anti-fuzzy algebraic struc-
tures by studying anti-fuzzy semigroup theory. We define the certain subsets of
S, [0, 1] and S × [0, 1] and investigate their properties. In particular, we define
a certain subset L(R : α) of S where R is a subset of S × [0, 1] and this set is
a general concept of the lower level set of a fuzzy set. We also describe relation-
ship between sets of anti-fuzzy points and the certain subsets of S × [0, 1]. Some
interesting characterizations of anti-fuzzy subsemigroups, anti-fuzzy generalized
bi-ideals and anti-fuzzy bi-ideals of semigroups are investigated by using the cer-
tain subsets of S, [0, 1] and S× [0, 1]. Moreover, we show that any fuzzy subset of
S is an anti-fuzzy (generalized) bi-ideal if and only if there exists the unique chain
of (generalized) bi-ideals of S together with two special conditions.

2 Preliminaries

In this section, we give basic definitions and results, which will be used in the
next sections. A semigroup is an algebraic system (S, ·) consisting of a nonempty
set S together with an associative binary operation “ · ”. Throughout this paper,
S stands for a semigroup. For nonempty subsets A and B of S, we denote AB =
{ab | a ∈ A, b ∈ B}. A nonempty subset A of S is called a subsemigroup of S
if AA ⊆ A. A nonempty subset A of S is called a generalized bi-ideal of S if
ASA ⊆ A. A subsemigroup A of S is called a bi-ideal of S if ASA ⊆ A. By the
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above definitions, it is obvious that every bi-ideal of S is a generalized bi-ideal,
but the converse is not true in general.

A function f from S to the real closed interval [0, 1] is called a fuzzy subset
(or fuzzy set) [1] of S. For x ∈ S, define Fx = {(y, z) ∈ S × S | x = yz}. Let f
and g be fuzzy subsets of S, then their anti-product f • g [18] is defined by for all
x ∈ S

(f • g)(x) =

{
inf{max{f(y), g(z)} | (y, z) ∈ Fx}, if Fx 6= ∅;
1, otherwise.

For x ∈ S, a fuzzy subset f of S of the form

f(y) =

{
α ∈ [0, 1), if x = y;
1, otherwise

for all y ∈ S is called an anti-fuzzy point [17] with support x and value α and is
denoted by xα. We denote by AFP (S) the set of all anti-fuzzy points of S, that
is,

AFP (S) = {xα | x ∈ S, α ∈ [0, 1)}.

Then (AFP (S), •) is a semigroup and we conveniently denote it by AFP (S).
Indeed, we see that for all xα, yβ , zγ ∈ AFP (S) xα • yβ = (xy)max{α,β} and
(xα • yβ) • zγ = (xyz)max{α,β,γ} = xα • (yβ • zγ). For all A,B ⊆ AFP (S), we
define the product of two sets A and B as A • B = {xα • yβ | xα ∈ A, yβ ∈ B}.
For every fuzzy subset f of S, let f̄ = {xα ∈ AFP (S) | f(x) ≤ α}. Note that f̄ is
empty if and only if f(x) = 1 for all x ∈ S.

Definition 2.1. [18] A fuzzy subset f of a semigroup S is called an anti-fuzzy
subsemigroup of S if f(ab) ≤ max{f(a), f(b)} for all a, b ∈ S.

Definition 2.2. [18] A fuzzy subset f of a semigroup S is called an anti-fuzzy
generalized bi-ideal of S if f(axb) ≤ max{f(a), f(b)} for all a, b, x ∈ S.

Definition 2.3. [18] An anti-fuzzy subsemigroup f of a semigroup S is called an
anti-fuzzy bi-ideal of S if f(axb) ≤ max{f(a), f(b)} for all a, b, x ∈ S.

Define a binary operation “ � ” on S × [0, 1] as follows: for all (x, α), (y, β) ∈
S × [0, 1]

(x, α) � (y, β) = (xy,max{α, β}). (2.1)

Then (S × [0, 1], �) is a semigroup. Let R1 and R2 be subsets of S × [0, 1]. Define
the multiplication R1 � R1 of R1 and R2 as follows:

R1 � R2 = {(a, α) � (b, β) | (a, α) ∈ R1 and (b, β) ∈ R2}. (2.2)

For every subsemigroup A of S and nonempty subset ∆ of [0, 1], we have (A×∆, �)
is a subsemigroup of (S× [0, 1], �). In what follows, let S×∆ denote the semigroup
(S × ∆, �). Let f be a fuzzy subset of S, A ⊆ S, α ∈ [0, 1], ∆ ⊆ [0, 1] and
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R ⊆ S × [0, 1]. We give the certain subsets of S, [0, 1] and S × [0, 1] as the
following.

[A×∆]f = {(x, α) ∈ A×∆ | f(x) ≤ α}. (2.3)

L(R : α) = {x ∈ S | (x, β) ∈ R and β ≤ α for some β ∈ [0, 1]}. (2.4)

(Imf)α = {β ∈ Imf | β ≤ α}. (2.5)

In particular, if R is a fuzzy subset of S, then

L(R : α) = {x ∈ S | R(x) ≤ α}.

If α, β ∈ [0, 1] and α ≤ β, then L(R : α) ⊆ L(R : β) and hence the set {L(R : α) |
α ∈ [0, 1]} is a chain of subsets of S under the inclusion relation “⊆ ”.

Proposition 2.4. Let f be a fuzzy subset of a semigroup S. Then the following
statements are true.

(i) (Imf)α ⊆ Imf for all α ∈ [0, 1].

(ii) L(f : α) =
⋃

γ∈(Imf)α

f−1(γ) = f−1((Imf)α) for all α ∈ [0, 1].

(iii) [S ×∆]f =
⋃
γ∈∆

(L(f : γ)× {γ}) for all ∆ ⊆ [0, 1].

(iv) If ∆ ⊆ [0, 1] and R = [S ×∆]f , then L(R : α) = L(f : α) for all α ∈ ∆.

Proposition 2.5. Let S be a semigroup, ∆ be a nonempty subset of [0, 1] and R
be a subsemigroup of S ×∆. Then L(R : α) is either empty or a subsemigroup of
S for all α ∈ ∆.

Proposition 2.6. Let S be a semigroup, ∆ be a nonempty subset of [0, 1] and R
be a generalized bi-ideal of S ×∆. Then L(R : α) is either empty or a generalized
bi-ideal of S for all α ∈ ∆.

Proposition 2.7. Let S be a semigroup, ∆ be a nonempty subset of [0, 1] and R
be a bi-ideal of S × ∆. Then L(R : α) is either empty or a bi-ideal of S for all
α ∈ ∆.

3 Anti-Fuzzy Subsemigroups of Semigroups

In this section, we characterize anti-fuzzy subsemigroups of a semigroup S by
using the certain subsets of S, [0, 1], AFP (S) and S × [0, 1].

For the following theorem, we discuss characterizations of anti-fuzzy subsemi-
groups of S via the certain subsets of [0, 1] and S × [0, 1].

Theorem 3.1. Let f be a fuzzy subset of a semigroup S. Then the following
statements are equivalent.
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(i) f is an anti-fuzzy subsemigroup of S.

(ii) For every subsemigroup A of S and ∆ ⊆ [0, 1], we have [A × ∆]f is either
empty or a subsemigroup of S ×∆.

(iii) [S ×∆]f is a subsemigroup of S ×∆ where Imf ⊆ ∆ ⊆ [0, 1].

(iv) For all a, b ∈ S, (Imf)f(ab) ⊆ (Imf)f(a) ∪ (Imf)f(b).

Proof. (i ⇒ ii) Let A be a subsemigroup of S, ∆ ⊆ [0, 1] and (a, α), (b, β) ∈
[A×∆]f . Then f(a) ≤ α, f(b) ≤ β and max{α, β} ∈ ∆. Since f is an anti-fuzzy
subsemigroup of S and A is a subsemigroup of S, we have ab ∈ A and

f(ab) ≤ max{f(a), f(b)} ≤ max{α, β}.

Thus (a, α) � (b, β) ∈ [A×∆]f . Hence [A×∆]f is a subsemigroup of S ×∆.
(ii⇒ iii) It is obvious.
(iii ⇒ iv) Suppose that α ∈ (Imf)f(ab) and α /∈ (Imf)f(a) ∪ (Imf)f(b) for some
a, b ∈ S, α ∈ [0, 1]. Then max{f(a), f(b)} < α ≤ f(ab). By the statement (iii)
and (a, f(a)), (b, f(b)) ∈ [S × Imf ]f , we have (a, f(a)) � (b, f(b)) ∈ [S × Imf ]f .
Hence f(ab) ≤ max{f(a), f(b)}. It is a contradiction. Therefore (Imf)f(ab) ⊆
(Imf)f(a) ∪ (Imf)f(b) for all a, b ∈ S.
(iv ⇒ i) It is straightforward.

By using and applying Theorem 3.1, we have Corollary 3.2.

Corollary 3.2. Let f be a fuzzy subset of a semigroup S. Then the following
statements are equivalent.

(i) f is an anti-fuzzy subsemigroup of S.

(ii) [S × [0, 1)]f is either empty or a subsemigroup of S × [0, 1).

(iii) [S × Imf ]f is a subsemigroup of S × Imf .

(iv) [S × [0, 1]]f is a subsemigroup of S × [0, 1].

Example 3.3. Let S = {a, b, c, d} and define a binary operation “ · ” on S as
follows :

· a b c d
a a a a a
b a a a a
c a a b a
d a a b b

Then (S, ·) is a semigroup. Let f be a fuzzy subset of S such that

f(a) = f(b) = 0.1, f(c) = 0.5, f(d) = 0.7.

Thus, by routine calculations, we can check that [S × Imf ]f={(a, 0.1), (a, 0.5),
(a, 0.7), (b, 0.1), (b, 0.5), (b, 0.7), (c, 0.5), (c, 0.7), (d, 0.7)} is a subsemigroup of S ×
Imf . By Corollary 3.2(iii⇒ i), we have f is an anti-fuzzy subsemigroup of S.
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Proposition 3.4. Let f be a fuzzy subset of a semigroup S. Then [S × [0, 1)]f is
a subsemigroup of S × [0, 1) if and only if f̄ is a subsemigroup of AFP (S).

Proof. It is straightforward.

Theorem 3.5. Let f be a fuzzy subset of a semigroup S. Then f is an anti-fuzzy
subsemigroup of S if and only if f̄ is either empty or a subsemigroup of AFP (S).

Proof. It follows from Corollary 3.2(i⇔ ii) and Proposition 3.4.

In the following theorem, we characterize anti-fuzzy subsemigroups of a semi-
group S by chain of subsemigroups of S.

Theorem 3.6. Let f be a fuzzy subset of a semigroup S. Then f is an anti-fuzzy
subsemigroup of S if and only if there exists the unique chain {Aα | α ∈ Imf} of
subsemigroups of S such that

i) f−1(α) ⊆ Aα for all α ∈ Imf and

ii) for all α, β ∈ Imf, if α < β then Aα ⊂ Aβ and Aα ∩ f−1(β) = ∅.

Proof. (⇒) For each α ∈ Imf , we choose Aα = L(f : α). By Proposition 2.4(iv),
Proposition 2.5 and Theorem 3.1(i ⇒ iii), we get {Aα | α ∈ Imf} is a chain
of subsemigroups of S. By Proposition 2.4(ii), we have the conditions i) and ii).
Suppose that {Bα | α ∈ Imf} is a chain of subsemigroups of S with the conditions
i) and ii). Let α ∈ Imf and a ∈ Bα. If α < f(a) then by the condition ii), we
have Bα ∩ f−1(f(a)) = ∅. Since a ∈ f−1(f(a)), we get a ∈ Bα ∩ f−1(f(a)). It
is a contradiction. Thus f(a) ≤ α, so a ∈ L(f : α) = Aα. Hence Bα ⊆ Aα. Let
a ∈ Aα. Then f(a) ≤ α. By the conditions i) and ii), we get

a ∈ f−1(f(a)) ⊆ Bf(a) ⊆ Bα.

Hence Aα ⊆ Bα. Therefore Aα = Bα.
(⇐) Let (a, α), (b, β) ∈ [S × Imf ]f . Then f(a) ≤ α, f(b) ≤ β and max{α, β} ∈
Imf . Suppose that max{α, β} < f(ab). By the condition ii), we have Amax{α,β}∩
f−1(f(ab)) = ∅. Since f(a) ≤ max{α, β} and by the conditions i) and ii), we have

a ∈ f−1(f(a)) ⊆ Af(a) ⊆ Amax{α,β}.

In the same way, we have b ∈ Amax{α,β}. Since {Aα | α ∈ Imf} is a chain of
subsemigroups of S, we get ab ∈ Amax{α,β}. Then ab ∈ Amax{α,β}∩f−1(f(ab)) = ∅.
It is a contradiction. Thus f(ab) ≤ max{α, β}. Hence (a, α) � (b, β) ∈ [S× Imf ]f .
Therefore [S × Imf ]f is a subsemigroup of S × Imf . By Corollary 3.2(iii ⇒ i),
we have f is an anti-fuzzy subsemigroup of S.

In the proof of Theorem 3.6, the unique chain of subsemigroups of S, satisfying
conditions i) and ii), is the set {L(f : α) | α ∈ Imf}. Next, we consider one
formula of an anti-fuzzy subsemigroup f of a semigroup where Imf is finite.
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Corollary 3.7. Let f be a fuzzy subset of a semigroup S and Imf = {α1, α2,
..., αn} such that α1 < α2 < ... < αn. Then f is an anti-fuzzy subsemigroup of S
if and only if {L(f : αi) | i ∈ {1, 2, ..., n}} is the chain of subsemigroups of S such
that

f(x) =


αn if x ∈ L(f : αn)\L(f : αn−1)
αn−1 if x ∈ L(f : αn−1)\L(f : αn−2)
...
α2 if x ∈ L(f : α2)\L(f : α1)
α1 if x ∈ L(f : α1)

for all x ∈ S.

Proof. Apply Theorem 3.6.

Corollary 3.8. Let f be a fuzzy subset of a semigroup S and Imf ⊆ ∆ ⊆ [0, 1].
The following statements are equivalent.

(i) f is an anti-fuzzy subsemigroup of S.

(ii) There exists a subsemigroup R of S ×∆ such that L(R : α) = L(f : α) for
all α ∈ ∆.

(iii) L(f : α) is either empty or a subsemigroup of S for all α ∈ ∆.

Proof. (i⇒ ii) ChooseR = [S×∆]f and use Theorem 3.1(i⇒ iii) and Proposition
2.4(iv).
(ii⇒ iii) It follows from Proposition 2.5.
(iii⇒ i) Apply Theorem 3.6.

4 Anti-Fuzzy(Generalized)Bi-Ideals of Semigroups

In this section, characterizations of anti-fuzzy generalized bi-ideals and anti-
fuzzy bi-ideals of a semigroup S are investigated by using the certain subsets of
S, [0, 1], AFP (S) and S × [0, 1].

In the following theorem, we characterize anti-fuzzy generalized bi-ideals of a
semigroup S by the certain subsets of [0, 1] and S × [0, 1].

Theorem 4.1. Let f be a fuzzy subset of a semigroup S. Then the following
statements are equivalent.

(i) f is an anti-fuzzy generalized bi-ideal of S.

(ii) For every generalized bi-ideal A of S and ∆ ⊆ [0, 1], we have [A × ∆]f is
either empty or a generalized bi-ideal of S ×∆.

(iii) [S ×∆]f is a generalized bi-ideal of S ×∆ where Imf ⊆ ∆ ⊆ [0, 1].

(iv) For all a, b, x ∈ S, (Imf)f(axb) ⊆ (Imf)f(a) ∪ (Imf)f(b).
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Proof. (i⇒ ii) Let A be a generalized bi-ideal of S, ∆ ⊆ [0, 1], (x, γ) ∈ S×∆ and
(a, α), (b, β) ∈ [A × ∆]f . Then f(a) ≤ α, f(b) ≤ β and max{α, β, γ} ∈ ∆. Since
f is a fuzzy generalized bi-ideal of S and A is a generalized bi-ideal of S, we get
axb ∈ A and

f(axb) ≤ max{f(a), f(b)} ≤ max{α, β} ≤ max{α, β, γ}.

Thus (a, α) � (x, γ) � (b, β) ∈ [A×∆]f . Hence [A×∆]f is a generalized bi-ideal of
S ×∆.
(ii⇒ iii) It is obvious.
(iii ⇒ iv) Suppose that α ∈ (Imf)f(axb) and α /∈ (Imf)f(a) ∪ (Imf)f(b) for
some a, b, x ∈ S and α ∈ [0, 1]. Then max{f(a), f(b)} < α ≤ f(axb). Since
(a, f(a)), (b, f(b)) ∈ [S × Imf ]f , (x, f(a)) ∈ S × Imf and the statement (iii), we
have (a, f(a)) � (x, f(a)) � (b, f(b)) ∈ [S× Imf ]f . Thus f(axb) ≤ max{f(a), f(b)}.
It is a contradiction. Hence (Imf)f(axb) ⊆ (Imf)f(a)∪(Imf)f(b) for all a, b, x ∈ S.
(iv ⇒ i) It is straightforward.

By using and applying Theorem 4.1, we get Corollary 4.2.

Corollary 4.2. Let f be a fuzzy subset of a semigroup S. Then the following
statements are equivalent.

(i) f is an anti-fuzzy generalized bi-ideal of S.

(ii) [S × [0, 1)]f is either empty or a generalized bi-ideal of S × [0, 1).

(iii) [S × Imf ]f is a generalized bi-ideal of S × Imf .

(iv) [S × [0, 1]]f is a generalized bi-ideal of S × [0, 1].

Example 4.3. Let S = {a, b, c, d} be the semigroup under the same binary op-
eration in Example 3.3. Let f be a fuzzy subset of S such that f(a) = 0.3,
f(b) = 0.5, f(c) = 0.4, f(d) = 0.6. Then [S × Imf ]f = {(a, 0.3), (a, 0.4), (a, 0.5),
(a, 0.6), (b, 0.5), (b, 0.6), (c, 0.4), (c, 0.5), (c, 0.6), (d, 0.6)} is a generalized bi-ideal
of S×Imf . By Corollary 4.2(i⇒ iii), we get f is an anti-fuzzy generalized bi-ideal
of S.

Proposition 4.4. Let f be a fuzzy subset of a semigroup S. Then [S × [0, 1)]f
is a generalized bi-ideal of S × [0, 1) if and only if f̄ is a generalized bi-ideal of
AFP (S).

Proof. It is straightforward.

Theorem 4.5. Let f be a fuzzy subset of a semigroup S. Then f is an anti-fuzzy
generalized bi-ideal of S if and only if f̄ is either empty or a generalized bi-ideal
of AFP (S).

Proof. It follows from Corollary 4.2(i⇔ ii) and Proposition 4.4.
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In the following theorem, we characterize anti-fuzzy generalized bi-ideal of a
semigroup S by chain of generalized bi-ideals of S.

Theorem 4.6. Let f be a fuzzy subset of a semigroup S. Then f is an anti-fuzzy
generalized bi-ideal of S if and only if there exists the unique chain {Aα | α ∈ Imf}
of generalized bi-ideals of S such that

i) f−1(α) ⊆ Aα for all α ∈ Imf and

ii) for all α, β ∈ Imf , if α < β then Aα ⊂ Aβ and Aα ∩ f−1(β) = ∅.

Proof. (⇒) Choose Aα = L(f : α) for all α ∈ Imf . By Proposition 2.4(iv),
Proposition 2.6 and Theorem 4.1(i ⇒ iii), we get {Aα | α ∈ Imf} is a chain of
generalized bi-ideals of S satisfying the conditions i) and ii). For the proof of
uniqueness, it is similar to the proof of Theorem 3.6.
(⇐) Let (a, α), (b, β) ∈ [S × Imf ]f and (x, γ) ∈ S × Imf . Then max{α, β, γ} ∈
Imf and

max{f(a), f(b)} ≤ max{α, β} ≤ max{α, β, γ}.

Suppose that max{α, β, γ} < f(axb). By the condition ii), we get Amax{α,β,γ} ∩
f−1(f(axb)) = ∅. Since f(a) ≤ max{α, β, γ} and by the conditions i) and ii), we
have

a ∈ f−1(f(a)) ⊆ Af(a) ⊆ Amax{α,β,γ}.

Similarly, we have b ∈ Amax{α,β,γ}. Since Amax{α,β,γ} is a generalized bi-ideal of
S, we have axb ∈ Amax{α,β,γ}. Then axb ∈ Amax{α,β,γ} ∩ f−1(f(axb)) = ∅. It
is a contradiction. Thus f(axb) ≤ max{α, β, γ}. Hence (a, α) � (x, γ) � (b, β) ∈
[S×Imf ]f . Therefore [S×Imf ]f is a generalized bi-ideal of S×Imf . By Corollary
4.2(iii⇒ i), we get f is an anti-fuzzy generalized bi-ideal of S.

In the proof of Theorem 4.6, the unique chain of generalized bi-ideals of S,
satisfying conditions i) and ii), is the set {L(f : α) | α ∈ Imf}. Next, we consider
one formula of an anti-fuzzy generalized bi-ideal f of S where Imf is finite.

Corollary 4.7. Let f be a fuzzy subset of a semigroup S and Imf = {α1, α2,
..., αn} such that α1 < α2 < ... < αn. Then f is an anti-fuzzy generalized bi-ideal
of S if and only if {L(f : αi) | i ∈ {1, 2, ..., n}} is the chain of generalized bi-ideals
of S such that

f(x) =


αn if x ∈ L(f : αn)\L(f : αn−1)
αn−1 if x ∈ L(f : αn−1)\L(f : αn−2)
...
α2 if x ∈ L(f : α2)\L(f : α1)
α1 if x ∈ L(f : α1)

for all x ∈ S.

Proof. Apply Theorem 4.6.
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Corollary 4.8. Let f be a fuzzy subset of a semigroup S and Imf ⊆ ∆ ⊆ [0, 1].
The following statements are equivalent.

(i) f is an anti-fuzzy generalized bi-ideal of S.

(ii) There exists a generalized bi-ideal R of S ×∆ such that L(R : α) = L(f : α)
for all α ∈ ∆.

(iii) L(f : α) is either empty or a generalized bi-ideal of S for all α ∈ ∆.

Proof. (i⇒ ii) ChooseR = [S×∆]f and use Theorem 4.1(i⇒ iii) and Proposition
2.4(iv).
(ii⇒ iii) It follows from Proposition 2.6.
(iii⇒ i) Apply Theorem 4.6.

In the following two results, we characterize anti-fuzzy bi-ideal of a semigroup
S by using the certain subsets of S, [0, 1], AFP (S) and S × [0, 1].

Theorem 4.9. Let f be a fuzzy subset of a semigroup S. Then the following
statements are equivalent.

(i) f is an anti-fuzzy bi-ideal of S.

(ii) [A×∆]f is either empty or a bi-ideal of S ×∆ for every bi-ideal A of S and
every subset ∆ of [0, 1].

(iii) [S ×∆]f is a bi-ideal of S ×∆ where Imf ⊆ ∆ ⊆ [0, 1].

(iv) f̄ is either empty or a bi-ideal of AFP (S).

(v) There exists the unique chain {Aα | α ∈ Imf} of bi-ideals of S such that

a) f−1(α) ⊆ Aα for every α ∈ Imf and

b) for every α, β ∈ Imf , if α < β then Aα ⊂ Aβ and Aα ∩ f−1(β) = ∅.

(vi) Choosing Imf ⊆ ∆ ⊆ [0, 1], we have L(f : α) is either empty or a bi-ideal of
S for every α ∈ ∆.

(vii) Choosing Imf ⊆ ∆ ⊆ [0, 1], there exists a bi-ideal R of S × ∆ such that
L(R : α) = L(f : α) for every α ∈ ∆.

(viii) (Imf)f(axb) ∪ (Imf)f(ab) ⊆ (Imf)f(a) ∪ (Imf)f(b) for every a, b, x ∈ S.

Corollary 4.10. Let f be a fuzzy subset of a semigroup S and Imf = {α1, α2,
..., αn} such that α1 < α2 < ... < αn. Then f is an anti-fuzzy bi-ideal of S if and
only if {L(f : αi) | i ∈ {1, 2, ..., n}} is the chain of bi-ideals of S such that

f(x) =


αn if x ∈ L(f : αn)\L(f : αn−1)
αn−1 if x ∈ L(f : αn−1)\L(f : αn−2)
...
α2 if x ∈ L(f : α2)\L(f : α1)
α1 if x ∈ L(f : α1)

for all x ∈ S.
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