Approximate Bi-Additive Mappings in Intuitionistic Fuzzy Normed Spaces

Javad Shokri
Department of Mathematics, Urmia University, P.O.Box 165, Urmia, Iran
e-mail: j.shokri@urmia.ac.ir

Abstract

In this paper, we determine some stability results concerning a 2dimensional vector variable bi-additive functional equation in intuitionistic fuzzy normed spaces (IFNS). We generalize the intuitionistic fuzzy continuity to the bi-additive mappings and we prove that the existence of a solution for any approximately bi-additive mapping implies the completeness of IFNS.

Keywords : intuitionistic fuzzy normed spaces; generalized Ulam-Rassias stability; functional equations.
2010 Mathematics Subject Classification : 94D05; 39B82.

1 Introduction

In recent years, the fuzzy theory has emerged as the most active area of research in many branches of mathematics and engineering. This new theory was introduced by Zadeh [1], in 1965 and since then a large number of research papers have appeared by using the concept of fuzzy set/numbers and fuzzification of many classical theories has also been made. It has also very useful application in various fields, e.g. population dynamics [2], chaos control [3], computer programming [4], nonlinear dynamical systems [5], fuzzy physics [6], fuzzy topology [7], fuzzy stability [8-12], nonlinear operators [13, statistical convergence [14, 15], etc. The concept of intuitionistic fuzzy normed spaces, initially has been introduced by Saadati and Park [16. In [17], by modifying the separation condition and strengthening some conditions in the definition of Saadati and Park, Saadati et al. have obtained a modified case of intuitionistic fuzzy normed spaces. Many authors have

Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

considered the intuitionistic fuzzy normed linear spaces, and intuitionistic fuzzy 2-normed spaces (see [18 21).

Let X be a real linear space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
($N 1$) $\quad N(x, c)=0$ for $c \leqslant 0$;
(N2) $x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(N3) $N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(N4) $N(x+y, s+t) \geqslant \min \{N(x, s), N(y, t)\}$;
(N5) $N(x,$.$) is a non-decreasing function on \mathbb{R}$ and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(N6) For $x \neq 0, N(x,$.$) is continuous on \mathbb{R}$.
The pair (X, N) is called a fuzzy normed linear space. One may regard $N(x, t)$ as the truth value of the statement the norm of x is less than or equal to the real number t.

The concept of stability of a functional equation arises when one replaces a functional equation by an inequality which acts as a perturbation of the equation. The first stability problem concerning group homomorphisms was raised by Ulam [22] in 1940 and affirmatively solved by Hyers [23. The result of Hyers was generalized by Aoki [24] for approximate additive function and by Rassias [25] for approximate linear functions by allowing the difference Cauchy equation $\left\|f\left(x_{1}+x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)\right\|$ to be controlled by $\varepsilon\left(\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}\right)$. Taking into consideration a lot of influencke of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Rassias is called the generalized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [26-28). In 1994, a generalization of Rassias theorem was obtained by Gǎvruta [29, who replaced $\varepsilon\left(\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}\right)$ by a general control function $\varphi\left(x_{1}, x_{2}\right)$.

The stability problem for the 2-dimensional vector variable bi-additive functional equation was proved by the authors [30] for mappings $f: X \times X \rightarrow Y$, where X is a real normed space and Y is a Banach space. In this paper, we determine some stability results concerning the 2-dimensional vector variable biadditive functional equation

$$
\begin{equation*}
f(x+y, z-w)+f(x-y, z+w)=2 f(x, z)-2 f(y, w) \tag{1.1}
\end{equation*}
$$

in intuitionistic fuzzy normed spaces. We apply the intuitionistic fuzzy continuity of the 2 -dimensional vector variable bi-additive mappings and prove that the existence of a solution for any approximately 2-dimensional vector variable bi-additive mapping implies the completeness of intuitionistic fuzzy normed spaces (IFNS). It has shown that each mapping satisfies in (1.1) is \mathbb{C}-bilinear (see [31]).

In the following section, we recall some notations and basic definitions used in this paper.

2 Preliminaries

We use the definition of intuitionistic fuzzy normed spaces given in [16, 32, [33) to investigate some stability results for the functional equation (1.1) in the intuitionistic fuzzy normed vector space setting.

Definition 2.1 (34$]$). A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a continuous t-norm if it satisfies the following conditions:
(a) is commutative and associative;
(b) is continuous;
(c) $a * 1=a$ for all $a \in[0,1]$;
(d) $a * b \leqslant c * d$ whenever $a \leqslant c$ and $b \leqslant d$ for all $a, b, c, d \in[0,1]$.

Definition 2.2 (34). A binary operation $\circ:[0,1] \times[0,1] \rightarrow[0,1]$ is said to be a continuous t-conorm if it satisfies the following conditions:
(a) is commutative and associative;
(b) is continuous;
(c) $a \circ 0=a$ for all $a \in[0,1]$;
(d) $a \circ b \leqslant c \circ d$ whenever $a \leqslant c$ and $b \leqslant d$ for all $a, b, c, d \in[0,1]$.

Using the continuous t-norm and t-conorm, Saadati and Park [16], have introduced the concept of intuitionistic fuzzy normed space.

Definition 2.3 ([16|32). The five-tuple ($X, \mu, \nu, *, \circ$) is said to be an intuitionistic fuzzy normed space (for short, IFNS) if X is a vector space, $*$ is a continuous tnorm, \circ is a continuous t-conorm, and μ, ν fuzzy sets on $X \times(0, \infty)$ satisfying the following conditions: For every $x, y \in X$ and $s, t>0$,
$\left(I F_{1}\right) \quad \mu(x, t)+\nu(x, t) \leqslant 1 ;$
($\left.I F_{2}\right) \quad \mu(x, t)>0$;
$\left(I F_{3}\right) \quad \mu(x, t)=1$ if and only if $x=0$;
(IF $) ~ \mu(\alpha x, t)=\mu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
($\left.I F_{5}\right) ~ \mu(x, t) * \mu(y, s) \leqslant \mu(x+y, t+s)$;
$\left(I F_{6}\right) \quad \mu(x,):.(0, \infty) \longrightarrow[0,1]$ is continuous;
$\left(I F_{7}\right) \quad \lim _{t \rightarrow \infty} \mu(x, t)=1$ and $\lim _{t \rightarrow \infty} \mu(x, t)=0$;
($\left.I F_{8}\right) \quad \nu(x, t)<1$;
$\left(I F_{9}\right) \quad \nu(x, t)=0$ if and only if $x=0$;
(IF F_{10}) $\quad \nu(\alpha x, t)=\nu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
$\left(I F_{11}\right) \nu(x, t) \circ \nu(y, s) \geqslant \nu(x+y, t+s)$;
$\left(I F_{12}\right) \nu(x,):.(0,1) \longrightarrow[0,1]$ is continuous;
$\left(I F_{13}\right) \lim _{t \rightarrow \infty} \nu(x, t)=0$ and $\lim _{t \rightarrow 0} \nu(x, t)=1$.
Example 2.4. Let $(X,\|\cdot\|)$ be a normed space, $a * b=a b$ and $a \circ b=\min \{a+b, 1\}$ for all $a, b \in[0,1]$. For all $x \in X$ and every $t>0$, consider

$$
\mu(x, t)=\left\{\begin{array}{lll}
\frac{t}{t^{t}\|x\|} & \text { if } & t>0 \\
0 & \text { if } & t \leqslant 0
\end{array} \quad \text { and } \quad \nu(x, t)=\left\{\begin{array}{lll}
\frac{\|x\|}{t+\|x\|} & \text { if } & t>0 \\
0 & \text { if } & t \leqslant 0 .
\end{array}\right.\right.
$$

Then $(X, \mu, \nu, *, \circ)$ is an IFNS.
Remark 2.5. In intuitionistic fuzzy normed space ($X, \mu, \nu, *, \circ$), $\mu(x,$.$) is non-$ decreasing and $\nu(x,$.$) is non-increasing for all x \in X$ (see [16]).

Definition 2.6. Let ($X, \mu, \nu, *, \circ$) be an IFNS. A sequence $\left\{x_{n}\right\}$ is said to be intuitionistic fuzzy convergent to $L \in X$ if $\lim _{k \rightarrow \infty} \mu\left(x_{k}-L, t\right)=1$ and $\lim _{k \rightarrow \infty} \nu\left(x_{k}-\right.$ $L, t)=0$ for all $t>0$. In this case we write $x_{k} \rightarrow L$ as $k \rightarrow \infty$. A sequence $\left\{x_{n}\right\}$ is said to be intuitionistic fuzzy Cauchy sequence if $\lim _{k \rightarrow \infty} \mu\left(x_{k+p}-x_{k}, t\right)=1$ and $\lim _{k \rightarrow \infty} \nu\left(x_{k+p}-x_{k}, t\right)=0$ for all $p \in \mathbb{N}$ and all $t>0$. Then IFNS $(X, \mu, \nu, *, \circ)$ is said to be complete if every intuitionistic fuzzy Cauchy sequence in ($X, \mu, \nu, *, \circ$) intuitionistic fuzzy convergent in ($X, \mu, \nu, *, \circ$) and ($X, \mu, \nu, *, \circ$) is also called an intuitionistic fuzzy Banach space.

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed space are studied in [16].

3 Intuitionistic Fuzzy Stability

For notational convenience, given a function $f: X \times X \rightarrow Y$, we define the difference operator

$$
D_{b} f(x, y, z, w)=f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w) .
$$

We begin with a generalized Hyers-Ulam type theorem in IFNS for the functional equation (1.1).

Theorem 3.1. Let X be a linear space and let $\left(Z, \mu^{\prime}, \nu,\right)$ be an IFNS. Let φ : $X \times X \times X \times X \rightarrow Z$ be a mapping such that, for some $0<\alpha<4$.

$$
\left\{\begin{array}{l}
\mu^{\prime}(\varphi(2 x, 2 y, 2 z, 2 w), t) \geqslant \mu^{\prime}(\alpha \varphi(x, y, z, w), t), \tag{3.1}\\
\nu^{\prime}(\varphi(2 x, 2 y, 2 z, 2 w), t) \leqslant \nu^{\prime}(\alpha \varphi(x, y, z, w), t),
\end{array}\right.
$$

for all $x, y, z, w \in X$ and all $t>0$. Let (Y, μ, ν) be an intuitionistic fuzzy Banach space and let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\left\{\begin{array}{l}
\mu\left(D_{b} f(x, y, z, w), t\right) \geqslant \mu^{\prime}(\varphi(x, y, z, w), t), \tag{3.2}\\
\nu\left(D_{b} f(x, y, z, w), t\right) \leqslant \nu^{\prime}(\varphi(x, y, z, w), t)
\end{array}\right.
$$

for all $x, y, z, w \in X$ and all $t>0$. Then there exists a unique mapping F :
$X \times X \rightarrow Y$ satisfying (1.1) such that

$$
\left\{\begin{array}{l}
\mu\left(F(x, y)-f(x, y)+\frac{1}{3} f(0,0), t\right) \tag{3.3}\\
\quad \geqslant *^{\infty} \mu^{\prime}\left(\varphi(x, x, y,-y), \frac{(4-\alpha)}{8} t\right) *^{\infty} \mu^{\prime}\left(\varphi(x,-x, y, y), \frac{(4-\alpha)}{8} t\right) \\
\quad *^{\infty} \mu\left(\varphi(0, x, 0, y), \frac{(4-\alpha)}{8} t\right) \\
\nu\left(F(x, y)-f(x, y)+\frac{1}{3} f(0,0), t\right) \\
\quad \leqslant \circ^{\infty} \nu^{\prime}\left(\varphi(x, x, y,-y), \frac{(4-\alpha)}{8} t\right) \circ^{\infty} \nu^{\prime}\left(\varphi(x,-x, y, y), \frac{(4-\alpha)}{8} t\right) \\
\quad \circ^{\infty} \nu^{\prime}\left(\varphi(0, x, 0, y), \frac{(4-\alpha)}{8} t\right)
\end{array}\right.
$$

for all $x, y, z, w \in X$ and all $t>0$, where $*^{\infty} a:=a * a * \cdots$ and $\circ^{\infty} a:=a \circ a \circ \cdots$ for all $a \in[0,1]$.

Proof. Put $y=-x$ and $w=z$ in (3.2) to obtain

$$
\left\{\begin{array}{l}
\mu(f(2 x, 2 z)-2 f(x, z)-2 f(-x, z)+f(0,0), t) \geqslant \mu^{\prime}(\varphi(x,-x, z, z), t) \tag{3.4}\\
\nu(f(2 x, 2 z)-2 f(x, z)-2 f(-x, z)+f(0,0), t) \leqslant \nu^{\prime}(\varphi(x,-x, z, z), t)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. Let $x=z=0$ in (3.2), we get

$$
\left\{\begin{array}{l}
\mu(f(y,-w)+f(-y, w)+2 f(y, w)-2 f(0,0), t) \geqslant \mu^{\prime}(\varphi(0, y, 0, w), t), \tag{3.5}\\
\nu(f(y,-w)+f(-y, w)+2 f(y, w)-2 f(0,0), t) \leqslant \nu^{\prime}(\varphi(0, y, 0, w), t)
\end{array}\right.
$$

for all $y, w \in X$ and all $t>0$. Replacing y by x and w by z in (3.5), we get

$$
\left\{\begin{array}{l}
\mu(f(x,-z)+f(-x, z)+2 f(x, z)-2 f(0,0), t) \geqslant \mu^{\prime}(\varphi(0, x, 0, z), t) \tag{3.6}\\
\nu(f(x,-z)+f(-x, z)+2 f(x, z)-2 f(0,0), t) \leqslant \nu^{\prime}(\varphi(0, x, 0, z), t)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. Putting $x=y$ and $w=-z$ in (3.2), we obtain

$$
\left\{\begin{array}{l}
\mu(f(2 x, 2 z)-2 f(x, z)+2 f(x,-z)+f(0,0), t) \geqslant \mu^{\prime}(\varphi(x, x, z,-z), t) \tag{3.7}\\
\nu(f(2 x, 2 z)-2 f(x, z)+2 f(x,-z)+f(0,0), t) \leqslant \nu^{\prime}(\varphi(x, x, z,-z), t)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. By inequalities (3.4) and (3.7), we get

$$
\left\{\begin{array}{l}
\mu(2 f(-x, z)-2 f(x,-z)+2 f(0,0), t) \geqslant \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{2}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{2}\right), \tag{3.8}\\
\nu(2 f(-x, z)-2 f(x,-z)+2 f(0,0), t) \leqslant \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{2}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{2}\right)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. And from (3.8), we can write

$$
\left\{\begin{array}{l}
\mu(f(-x, z)-f(x,-z)+f(0,0), t) \geqslant \mu^{\prime}\left(2 \varphi(x, x, z,-z), \frac{t}{2}\right) * \mu^{\prime}\left(2 \varphi(x,-x, z, z), \frac{t}{2}\right) \tag{3.9}\\
\nu(f(-x, z)-f(x,-z)+f(0,0), t) \leqslant \nu^{\prime}\left(2 \varphi(x, x, z,-z), \frac{t}{2}\right) \circ \nu^{\prime}\left(2 \varphi(x,-x, z, z), \frac{t}{2}\right)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. By (3.6) and (3.7), we have

$$
\left\{\begin{array}{c}
\mu(f(2 x, 2 z)-4 f(x, z)+f(x,-z)-f(-x, z)+3 f(0,0), t) \tag{3.10}\\
\geqslant \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{2}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{2}\right), \\
\nu(f(2 x, 2 z)-4 f(x, z)+f(x,-z)-f(-x, z)+3 f(0,0), t) \\
\leqslant \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{2}\right) \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{2}\right)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. From (3.9) and (3.10), we get

$$
\begin{aligned}
& \mu(f(2 x, 2 z)-4 f(x, z)+4 f(0,0), t) \\
& \quad \geqslant \mu^{\prime}\left(2 \varphi(x, x, z,-z), \frac{t}{4}\right) * \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{4}\right) \\
& \quad * \mu^{\prime}\left(\varphi 2(x,-x, z, z), \frac{t}{4}\right) * \mu^{\prime}(\varphi(0, x, 0, z), t) \\
& \quad \geqslant * \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \\
& \quad * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right) \\
& \quad=*^{3} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right),
\end{aligned}
$$

and also

$$
\begin{aligned}
& \nu(f(2 x, 2 z)-4 f(x, z)+4 f(0,0), t) \\
& \quad \leqslant \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{2}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{2}\right) \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{2}\right)
\end{aligned}
$$

for all $x, z \in X$ and all $t>0$. We can write above inequalities as following

$$
\left\{\begin{array}{l}
\mu\left(\frac{f(2 x, 2 z)+f(0,0)}{4}-f(x, z), \frac{t}{4}\right) \tag{3.11}\\
\quad \geqslant *^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right), \\
\nu\left(\frac{f(2 x, 2 z)+f(0,0)}{4}-f(x, z), \frac{t}{4}\right) \\
\quad \leqslant \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right)
\end{array}\right.
$$

for all $x, z \in X$ and all $t>0$. Replacing x by $2^{n} x$ and z by $2^{n} z$ in (3.11) and
using (3.1), we get

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n+1} x, 2^{n+1} z\right)+f(0,0)}{4^{n+1}}-\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}, \frac{t}{4^{n+1}}\right) \\
\quad \geqslant *^{2} \mu^{\prime}\left(\varphi\left(2^{n} x, 2^{n} x, 2^{n} z,-2^{n} z\right), \frac{t}{8}\right) *^{2} \mu^{\prime}\left(\varphi\left(2^{n} x,-2^{n} x, 2^{n} z, 2^{n} z\right), \frac{t}{8}\right) \\
\quad * \mu^{\prime}\left(\varphi\left(0,2^{n} x, 0,2^{n} z\right), \frac{t}{8}\right) \\
\quad \geqslant *^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \alpha^{n}}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \alpha^{n}}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \alpha^{n}}\right) \\
\nu\left(\frac{f\left(2^{n+1} x, 2^{n+1} z\right)+f(0,0)}{4^{n+1}}-\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}, \frac{t}{4^{n+1}}\right) \\
\quad \leqslant \circ^{2} \nu^{\prime}\left(\varphi\left(2^{n} x, 2^{n} x, 2^{n} z,-2^{n} z\right), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi\left(2^{n} x,-2^{n} x, 2^{n} z, 2^{n} z\right), \frac{t}{8}\right) \\
\quad \circ \nu^{\prime}\left(\varphi\left(0,2^{n} x, 0,2^{n} z\right), \frac{t}{8}\right) \\
\leqslant
\end{array}\right.
$$

for all $x, z \in X$, all $n \in \mathbb{N}$ and all $t>0$. By replacing t by $\alpha^{n} t$ in above inequalities, we have

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n+1} x, 2^{n+1} z\right)+f(0,0)}{4^{n+1}}-\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}, \frac{\alpha^{n} t}{4^{n+1}}\right) \tag{3.12}\\
\quad \geqslant *^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right) \\
\nu\left(\frac{f\left(2^{n+1} x, 2^{n+1} z\right)+f(0,0)}{4^{n+1}}-\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}, \frac{\alpha^{n} t}{4^{n+1}}\right) \\
\quad \leqslant \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right)
\end{array}\right.
$$

for all $x, z \in X$, all $n \in \mathbb{N}$ and all $t>0$. It follows from

$$
\begin{aligned}
\sum_{k=0}^{n-1}\left[\frac{f\left(2^{k+1} x, 2^{k+1} z\right)+f(0,0)}{4^{k+1}}-\frac{f\left(2^{k} x, 2^{k} z\right)}{4^{k}}\right] & =\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}-f(x, z) \\
& +\frac{1}{3}\left(1-\frac{1}{4^{n}}\right) f(0,0)
\end{aligned}
$$

and (3.12),

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}-f(x, z)+\frac{1}{3}\left(1-\frac{1}{4^{n}}\right) f(0,0), \sum_{k=0}^{n-1} \frac{\alpha^{k} t}{4^{k+1}}\right) \tag{3.13}\\
\quad \geqslant \prod_{k=0}^{n-1} \mu\left(\frac{f\left(2^{k+1} x, 2^{k+1} z\right)+f(0,0)}{4^{k+1}}-\frac{f\left(2^{k} x, 2^{k} z\right)}{4^{k}}, \frac{\alpha^{k} t}{4^{k+1}}\right) \\
\quad \geqslant *^{2 n} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) *^{n} \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) *^{n} \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right) \\
\nu\left(\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}-f(x, z)+\frac{1}{3}\left(1-\frac{1}{4^{n}}\right) f(0,0), \sum_{k=0}^{n-1} \frac{\alpha^{k} t}{4^{k+1}}\right) \\
\quad \leqslant \coprod_{k=0}^{n-1} \nu\left(\frac{f\left(2^{k+1} x, 2^{k+1} z\right)+f(0,0)}{4^{k+1}}-\frac{f\left(2^{k} x, 2^{k} z\right)}{4^{k}}, \frac{\alpha^{k} t}{4^{k+1}}\right) \\
\quad \leqslant \circ^{2 n} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \circ^{n} \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \circ^{n} \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right)
\end{array}\right.
$$

for all $x, z \in X$, all $n \in \mathbb{N}$ and all $t>0$, where $\prod_{j=1}^{n} a_{j}:=a_{1} * a_{2} * \cdots *$ $a_{n}, \coprod_{j=1}^{n} a_{j}:=a_{1} \circ a_{2} \circ \cdots \circ a_{n}, *^{n} a:=\prod_{j=1}^{n} a=\underbrace{a * \cdots * a}_{n \text { times }}$ and $\circ^{n} a:=\coprod_{j=1}^{n} a=$
$\underbrace{a \circ \cdots \circ a}$ for all $a, a_{1}, a_{2}, \cdots, a_{n} \in[0,1]$. By replacing x with $2^{m} x$ and z with $2^{m} z$ in (3.13), we have
for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. So we have gotten that

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n+m} x, 2^{n+m} z\right)}{4^{n+m}}-\frac{f\left(2^{m} x, 2^{2} z\right)}{4^{m}}+\frac{1}{3.4^{m}}\left(1-\frac{1}{4^{n}}\right) f(0,0), \sum_{k=m}^{n+m-1} \frac{\alpha^{k} t}{4^{k+1}}\right) \\
\quad \geqslant *^{2 n} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) *^{n} \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) *^{n} \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right), \\
\nu\left(\frac{f\left(2^{n+m} x, 2^{n+m} z\right)}{4^{n+m}}-\frac{f\left(2^{m} x, 2^{m} z\right)}{4^{m}}+\frac{1}{3.4^{m}}\left(1-\frac{1}{4^{n}}\right) f(0,0), \sum_{k=m}^{n+m-1} \frac{\alpha^{k} t}{4^{k+1}}\right) \\
\quad \leqslant \circ^{2 n} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \circ^{n} \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \circ^{n} \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right)
\end{array}\right.
$$

for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. Replacing t by $\frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{4 k}}$, we obtain

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n+m} x, 2^{n+m} z\right)}{4^{n+m}}-\frac{f\left(2^{m} x, 2^{m} z\right)}{4^{m}}+\frac{1}{3 \cdot 4^{m}}\left(1-\frac{1}{4^{n}}\right) f(0,0), t\right) \tag{3.14}\\
\quad \geqslant *^{2 n} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{k+1}}\right) *^{n} \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m} \frac{\alpha^{k}}{4^{k+1}}}\right) \\
\quad \quad^{n} \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{\left.8 \sum_{k=m}^{n+m-1} \frac{k^{k+1}}{4^{k+1}}\right)},\right. \\
\nu\left(\frac{f\left(2^{n+m} x, 2^{n+m} z\right)}{4^{k+m}}-\frac{f\left(2^{m} x, 2^{m} z\right)}{4^{m}}+\frac{1}{3 \cdot 4^{m}}\left(1-\frac{1}{4^{n}}\right) f(0,0), t\right) \\
\left.\quad \leqslant \circ^{2 n} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k}^{n+m-m-1} \frac{\alpha^{k}}{4^{k+1}}}\right)\right)^{n} \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{4^{k+1}}}\right) \\
\quad \circ^{n} \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t=m}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{4^{k+1}}}\right)
\end{array}\right.
$$

for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. Since $0<\alpha<4, \sum_{k=0}^{\infty}\left(\frac{\alpha}{4}\right)^{k}<\infty$ and $\sum_{k=m}^{n+m-1}\left(\frac{\alpha^{k}}{4^{k}}\right) \rightarrow 0$ as $m \rightarrow \infty$ for all $n \in \mathbb{N}$. Thus $\frac{t}{\sum_{k=m}^{n+m-1} \frac{\Lambda^{k}}{4^{k}}} \rightarrow \infty$ and

$$
\begin{aligned}
*^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{4^{k+1}}}\right) & * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1}\left(\frac{\alpha^{k}}{4^{k}}\right)}\right) \\
& * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \sum_{k=m}^{n+m-1}\left(\frac{\alpha^{k}}{4^{k+1}}\right)}\right) \longrightarrow 1
\end{aligned}
$$

as $m \rightarrow \infty$ for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. Hence the Cauchy criterion for convergence in IFNS shows that $\left(\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}\right)$ is a Cauchy sequence in (Y, μ, ν) for all $x, z \in X$. Since (Y, μ, ν) is complete, then this sequence converges to some point $F(x, z) \in Y$ defined by $F(x, y)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}$ for all $x, z \in X$. Now by putting $m=0$ in (3.14), we obtain
for all $x, z \in X$, all $n \in \mathbb{N}$ and all $t>0$. By taking limit from above inequalities as $n \rightarrow \infty$ and using the definition of IFNS, we get

$$
\left\{\begin{aligned}
\mu(F(x, y)-f(x, y)+ & \left.\frac{1}{3} f(0,0), t\right) \geqslant *^{\infty} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{(4-\alpha)}{8} t\right) \\
& *^{\infty} \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{(4-\alpha)}{8} t\right) *^{\infty} \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{(4-\alpha)}{8} t\right), \\
\nu(F(x, y)-f(x, y)+ & \left.\frac{1}{3} f(0,0), t\right) \leqslant \circ^{\infty} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{(4-\alpha)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{(4-\alpha)}{} t\right) \circ^{\infty} \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{(4-\alpha)}{8} t\right)
\end{aligned}\right.
$$

for all $x, z \in X$ and all $t>0$, which are the desired inequalities (3.3).
Now we show that F satisfies in (1.1). Replacing x, y, z, w and t in (3.2) respectively by $2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w$ and $4^{n} t$, we get

$$
\left\{\begin{array}{l}
\mu\left(\frac{f\left(2^{n} x+2^{n} y, 2^{n} z-2^{n} w\right)}{4^{n}}+\frac{f\left(2^{n} x-2^{n} y, 2^{n} z+2^{n} w\right)}{4^{n}}-2 \frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}+2 \frac{f\left(2^{n} y, 2^{n} w\right)}{4^{n}}, t\right) \\
\geqslant \mu^{\prime}\left(\varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right), 4^{n} t\right) \geqslant \mu^{\prime}\left(\varphi(x, y, z, w), \frac{4^{n} t}{\alpha^{n}}\right) \\
\nu\left(\frac{f\left(2^{n} x+2^{n} y, 2^{n} z-2^{n} w\right)}{4^{n}}+\frac{f\left(2^{n} x-2^{n} y, 2^{n} z+2^{n} w\right)}{4^{n}}-2 \frac{f\left(2^{n} x, 2^{n} z\right)}{n^{n}}+2 \frac{f\left(2^{n} y, 2^{n} w\right)}{4^{n}}, t\right) \\
\leqslant \nu^{\prime}\left(\varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right), 4^{n} t\right) \leqslant \nu^{\prime}\left(\varphi(x, y, z, w), \frac{4^{n} t}{\alpha^{n}}\right)
\end{array}\right.
$$

for all $x, y, z, w \in X$ all $n \in \mathbb{N}$ and all $t>0$. Since $\frac{4^{n} t}{\alpha^{n}} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} \mu^{\prime}\left(\varphi(x, n y, z, n w), \frac{4^{n} t}{\alpha^{n}}\right)=1
$$

and

$$
\lim _{n \rightarrow \infty} \nu^{\prime}\left(\varphi(x, n y, z, n w), \frac{4^{n} t}{\alpha^{n}}\right)=0
$$

for all $x, y, z, w \in X$ and all $t>0$.
To prove the uniqueness of the mapping F, assume that there exists a mapping $G: X \times X \rightarrow Y$ which satisfies (1.1) and (3.3). For fix $x, y \in X$, we know that $F\left(2^{n} x, 2^{n} y\right)=4^{n} F(x, y)$ and $G\left(2^{n} x, 2^{n} y\right)=4^{n} G(x, y)$ for all $n \in \mathbb{N}$. It follows from (3.3) that

$$
\begin{aligned}
\mu(F(x, y)- & G(x, y), t)=\mu\left(\frac{F\left(2^{n} x, 2^{n} y\right)}{4^{n}}-\frac{G\left(2^{n} x, 2^{n} y\right)}{4^{n}}, t\right) \\
\geqslant & \mu\left(\frac{F\left(2^{n} x, 2^{n} y\right)}{4^{n}}-\frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}+\frac{1}{3.4^{n}} f(0,0), \frac{t}{2}\right) \\
& * \mu\left(-\frac{G\left(2^{n} x, 2^{n} y\right)}{4^{n}}+\frac{f\left(2^{n} x, 2^{2} y\right)}{4^{n}}-\frac{1}{3.4^{n}} f(0,0), \frac{t}{2}\right) \\
\geqslant & *^{2} *^{\infty} \mu^{\prime}\left(\varphi\left(2^{n} x, 2^{n} x, 2^{n} y,-2^{n} y\right), \frac{4^{n}(4-\alpha) t}{16}\right) \\
& *^{2} *^{\infty} \mu^{\prime}\left(\varphi\left(2^{n} x,-2^{n} x, 2^{n} y, 2^{n} y\right), \frac{4^{n}(4-\alpha) t}{16}\right) \\
& *^{2} *^{\infty} \mu^{\prime}\left(\varphi\left(0,2^{n} x, 0,2^{n} y\right), \frac{4^{n}(4-\alpha) t}{16}\right) \\
\geqslant & *^{2} *^{\infty} \mu^{\prime}\left(\varphi(x, x, y,-y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& *^{2} *^{\infty} \mu^{\prime}\left(\varphi(x,-x, y, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& *^{2} *^{\infty} \mu^{\prime}\left(\varphi(0, x, 0, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right)
\end{aligned}
$$

for all $x, y \in X$, all $n \in \mathbb{N}$ and all $t>0$, and similarly

$$
\begin{aligned}
\nu(F(x, y)-G(x, y), t) \leqslant & \circ^{2} \circ^{\infty} \nu^{\prime}\left(\varphi(x, x, y,-y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& \circ^{2} \circ^{\infty} \nu^{\prime}\left(\varphi(x,-x, y, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& \circ^{2} \circ^{\infty} \nu^{\prime}\left(\varphi(0, x, 0, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right)
\end{aligned}
$$

for all $x, y \in X$, all $n \in \mathbb{N}$ and all $t>0$. Since $\lim _{n \rightarrow \infty} \frac{4^{n}(4-\alpha) t}{4 \alpha^{n}}=\infty$ for all $t>0$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mu^{\prime}\left(\varphi(x, x, y,-y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) & * \mu^{\prime}\left(\varphi(x,-x, y, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& * \mu^{\prime}\left(\varphi(0, x, 0, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right)=1
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \nu^{\prime}\left(\varphi(x, x, y,-y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) & \circ \nu^{\prime}\left(\varphi(x,-x, y, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right) \\
& \circ \nu^{\prime}\left(\varphi(0, x, 0, y), \frac{4^{n}(4-\alpha) t}{16 \alpha^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in X$ and all $t>0$. Therefore $\mu(F(x, y)-G(x, y), t)=1$ and $\nu(F(x, y)-$ $G(x, y), t)=0$ for all $t>0$. Thus it is concluded that $F(x, y)=G(x, y)$.

Example 3.2. Let X be a Hilbert space with inner product $\langle.,$.$\rangle and Z$ be a normed spaced. Denote by (μ, ν) and ($\mu^{\prime}, \nu^{\prime}$) the intuitionistic fuzzy norms given as in Example 2.4 on X and Z, respectively. Let $\|$.$\| be induced norm on X$ by the inner product $\langle.,$.$\rangle on X$. Let $\varphi: X \times X \times X \times X \rightarrow Z$ be a mapping defined by $\varphi(x, y, z, w)=2(\|x\|+\|y\|+\|z\|+\|w\|) z_{0}$ for all $x, y, z, w \in X$, where z_{0} is a fixed unit vector in Z. Define a mapping $f: X \times X \rightarrow X$ by $f(x, y):=\left\langle x, y+x_{0}\right\rangle x_{0}$ for all $x, y \in X$, where x_{0} is a fixed unit vector in X. Then

$$
\begin{aligned}
& \mu(f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w), t)=\mu\left(2\left\langle y, x_{0}\right\rangle x_{0}, t\right) \\
& =\frac{t}{t+2\left|\left\langle y, x_{0}\right\rangle\right|} \geqslant \frac{t}{t+2\|y\|} \geqslant \frac{t}{t+2(\|x\|+\|y\|+\|z\|+\|w\|)}=\mu^{\prime}(\varphi(x, y, z, w), t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \nu(f(x+y, z-w)+f(x-y, z+w)-2 f(x, z)+2 f(y, w), t)=\nu\left(2\left\langle y, x_{0}\right\rangle x_{0}, t\right) \\
& \quad=\frac{2\left|\left\langle y, x_{0}\right\rangle\right|}{t+2\left|\left\langle y, x_{0}\right\rangle\right|} \leqslant \frac{2\|y\|}{t+\|y\|} \leqslant \frac{2(\|x\|+\|y\|+\|z\|+\|w\|)}{t+2(\|x\|+\|y\|+\|z\|+\|w\|)}=\nu^{\prime}(\varphi(x, y, z, w), t)
\end{aligned}
$$

for all $x, y, z, w \in X$ and all $t>0$. Also we can get

$$
\mu^{\prime}(\varphi(2 x, 2 y, 2 z, 2 w), t)=\frac{t}{t+4(\|x\|+\|y\|+\|z\|+\|w\|)}=\mu^{\prime}(2 \varphi(x, y, z, w), t)
$$

and

$$
\nu^{\prime}(\varphi(2 x, 2 y, 2 z, 2 w), t)=\frac{4(\|x\|+\|y\|+\|z\|+\|w\|)}{t+4(\|x\|+\|y\|+\|z\|+\|w\|)}=\nu^{\prime}(2 \varphi(x, y, z, w), t)
$$

for all $x, y, z, w \in X$ and all $t>0$. Therefore

$$
\lim _{n \rightarrow \infty} \mu^{\prime}\left(\varphi(2 x, 2 y, 2 z, 2 w), 4^{n} t\right)=\lim _{n \rightarrow \infty} \frac{4^{n} t}{4^{n} t+2^{n+1}(\|x\|+\|y\|+\|z\|+\|w\|)}=1
$$

and

$$
\lim _{n \rightarrow \infty} \nu^{\prime}\left(\varphi(2 x, 2 y, 2 z, 2 w), 4^{n} t\right)=\lim _{n \rightarrow \infty} \frac{2^{n+1}(\|x\|+\|y\|+\|z\|+\|w\|)}{4^{n} t+2^{n+1}(\|x\|+\|y\|+\|z\|+\|w\|)}=0
$$

for all $x, y, z, w \in X$ and all $t>0$. Hence the assumptions of Theorem 3.1 for $\alpha=2$ are fulfilled. Therefore, there exist a unique bi-additive mapping $F: X \times X \rightarrow X$ such that

$$
\mu(F(x, y)-f(x, y), t) \geqslant *^{2} \mu^{\prime}\left(4(\|x\|+\|y\|) z_{0}, t\right) * \mu^{\prime}\left(2(\|x\|+\|y\|) z_{0}, t\right)
$$

and

$$
\nu(F(x, y)-f(x, y), t) \leqslant \circ^{2} \nu^{\prime}\left(4(\|x\|+\|y\|) z_{0}, t\right) \circ \nu^{\prime}\left(2(\|x\|+\|y\|) z_{0}, t\right)
$$

for all $x, y \in X$ and all $t>0$.

The following theorem will be proved the case $\alpha>4$.
Theorem 3.3. Let X be a linear space and let $\left(Z, \mu^{\prime}, \nu^{\prime}\right)$ be an IFNS. Let φ : $X \times X \times X \times \rightarrow Z$ be a maping such that, for some $\alpha>4$,

$$
\begin{aligned}
& \mu^{\prime}\left(\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{w}{2}\right), t\right) \geqslant \mu^{\prime}(\varphi(x, y, z, w), \alpha t) \\
& \nu^{\prime}\left(\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{w}{2}\right), t\right) \leqslant \nu^{\prime}(\varphi(x, y, z, w), \alpha t)
\end{aligned}
$$

for all $x, y, z, w \in X$ and all $t>0$. Let (Y, μ, ν) be an intuitionistic fuzzy Banach space and let $f: X \times X \rightarrow Y$ be a φ-approximately bi-additive mapping in the sense of (3.2) with $f(0,0)=0$. Then there exists a unique mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{aligned}
\mu(F(x, y) & -f(x, y), t) \geqslant *^{\infty} \mu^{\prime}\left(\varphi(x, x, y,-y), \frac{(\alpha-4)}{8} t\right) \\
& *^{\infty} \mu^{\prime}\left(\varphi(x,-x, y, y), \frac{(\alpha-4)}{8} t\right) *^{\infty} \mu\left(\varphi(0, x, 0, y), \frac{(\alpha-4)}{8} t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu(F(x, y)-f(x, y), t) \leqslant \circ^{\infty} \nu^{\prime}\left(\varphi(x, x, y,-y), \frac{(\alpha-4)}{8} t\right) \\
\circ^{\infty} \nu^{\prime}\left(\varphi(x,-x, y, y), \frac{(\alpha-4)}{8} t\right) \circ^{\infty} \nu^{\prime}\left(\varphi(0, x, 0, y), \frac{(\alpha-4)}{8} t\right)
\end{aligned}
$$

for all $x, y \in X$ and all $t>0$.
Proof. The proof is similar to the proof of Theorem 3.1. Then we present a summary proof. From (3.11), we have

$$
\left\{\begin{aligned}
\mu(f(2 x, 2 z)-4 f(x, z), t) \geqslant & *^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \\
& * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right) \\
\nu(f(2 x, 2 z)-4 f(x, z), t) \leqslant & \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8}\right) \\
& \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8}\right)
\end{aligned}\right.
$$

for all $x, z \in X$ and all $t>0$. Thus we get

$$
\left\{\begin{aligned}
\mu\left(f(x, z)-4 f\left(\frac{x}{2}, \frac{z}{2}\right), t\right) \geqslant & *^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{\alpha t}{8}\right) \\
& * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{\alpha t}{8}\right) * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{\alpha t}{8}\right), \\
\nu\left(f(x, z)-4 f\left(\frac{x}{2}, \frac{z}{2}\right), t\right) \leqslant & \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{\alpha t}{8}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{\alpha t}{8}\right) \\
& \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{\alpha t}{8}\right)
\end{aligned}\right.
$$

for all $x, z \in X$ and all $t>0$. Similar in (3.13), for all $x, z \in X$, all $m, n \in \mathbb{N}$ and $t>0$, we can conclude

$$
\left\{\begin{array}{l}
\mu\left(4^{m} f\left(\frac{x}{2^{m}}, \frac{z}{2^{m}}\right)-4^{n+m} f\left(\frac{x}{2^{n+m}}, \frac{z}{2^{n+m}}\right), t\right) \tag{3.15}\\
\quad \geqslant *^{2 n} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) *^{n} \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \\
\quad *^{n} \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right), \\
\nu\left(4^{m} f\left(\frac{x}{2^{m}}, \frac{z}{2^{m}}\right)-4^{n+m} f\left(\frac{x}{2^{n+m}}, \frac{z}{2^{n+m}}\right), t\right) \\
\quad \leqslant \circ^{2 n} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \circ^{n} \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \\
\quad \circ^{n} \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right)
\end{array}\right.
$$

for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. Since $\alpha>4, \sum_{k=0}^{\infty}\left(\frac{4}{\alpha}\right)^{k}<\infty$ and $\sum_{k=m}^{n+m-1}\left(\frac{4}{\alpha}\right)^{k} \rightarrow 0$ as $m \rightarrow \infty$ for all $n \in \mathbb{N}$. Thus $\frac{t}{\sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k}}} \rightarrow \infty$, then we have

$$
\begin{aligned}
*^{2} \mu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) & * \mu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \\
& * \mu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \longrightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \circ^{2} \nu^{\prime}\left(\varphi(x, x, z,-z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \circ \nu^{\prime}\left(\varphi(x,-x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \\
& \circ \nu^{\prime}\left(\varphi(0, x, 0, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{4^{k}}{\alpha^{k+1}}}\right) \longrightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$ for all $x, z \in X$, all $m, n \in \mathbb{N}$ and all $t>0$. Hence the Cauchy criterion for convergence in IFNS shows that $4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)$ is a Cauchy sequence in (Y, μ, ν) for all $x, z \in X$. Since (Y, μ, ν) is complete, then this sequence converges to some point $F(x, z) \in Y$ defined by $F(x, y)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)$ for all $x, z \in X$. By putting $m=0$ in (3.15), we can deduce

$$
\begin{aligned}
& \mu(F(x, y)-f(x, y), t) \geqslant *^{\infty} \mu^{\prime}\left(\varphi(x, x, y,-y), \frac{(\alpha-4)}{8} t\right) \\
& *^{\infty} \mu^{\prime}\left(\varphi(x,-x, y, y), \frac{(\alpha-4)}{8} t\right) *^{\infty} \mu\left(\varphi(0, x, 0, y), \frac{(\alpha-4)}{8} t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \nu(F(x, y)-f(x, y), t) \leqslant \circ^{\infty} \nu^{\prime}\left(\varphi(x, x, y,-y), \frac{(\alpha-4)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(\varphi(x,-x, y, y), \frac{(\alpha-4)}{8} t\right) \circ^{\infty} \nu^{\prime}\left(\varphi(0, x, 0, y), \frac{(\alpha-4)}{8} t\right)
\end{aligned}
$$

for all $x, y \in X$ and all $t>0$. The remainder of the proof is similar to the proof of Theorem 3.1

4 Intuitionistic Fuzzy Continuity

In this section we apply the instuitionistic fuzzy continuity, which is discussed in [13], to study continuous mapping satisfying (1.1) approximately.

Definition 4.1. Let $g: \mathbb{R} \rightarrow X$ be a mapping, where \mathbb{R} is endowed with the Euclidean topology and X is an intuitionistic fuzzy normed space equipped with intuitionistic fuzzy norm (μ, ν). Then $L \in X$ is said to be intuitionistic fuzzy limit of g at some $r_{0} \in \mathbb{R}$ if and only if for every $\varepsilon>0$ and $\alpha, \beta \in(0,1)$ there exists some $\delta=\delta(\varepsilon, \alpha, \beta)>0$ such that $\mu(g(r)-L, \varepsilon) \geqslant \alpha$ and $\mu(g(r)-L, \varepsilon) \leqslant 1-\beta$ whenever $0<\left|r-r_{0}\right|<\delta$. In this case, we write $\lim _{n \rightarrow \infty} g(r)=L$, which also means that $\lim _{r \rightarrow r_{0}} \mu(g(r)-L, t)=1$ and $\lim _{r \rightarrow r_{0}} \nu(g(r)-L, t)=0$ or $\mu(g(r)-L, t)=1$ and $\nu(g(r)-L, t)=0$ as $r \rightarrow r_{0}$ for all $t>0$.

Theorem 4.2. Let X be a normed space and (Y, μ, ν) be an intuitionistic fuzzy Banach space. Let $\left(Z, \mu^{\prime}, \nu^{\prime}\right)$ be an IFNS and let $0<p<2$ and $z_{0} \in Z$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\left\{\begin{array}{l}
\mu\left(D_{b} f(x, y, z, w), t\right) \geqslant \mu^{\prime}\left((\|x\|+\|y\|+\|z\|+\|w\|) z_{0}, t\right), \tag{4.1}\\
\nu\left(D_{b} f(x, y, z, w), t\right) \leqslant \nu^{\prime}\left((\|x\|+\|y\|+\|z\|+\|w\|) z_{0}, t\right)
\end{array}\right.
$$

for all $x, y, z, w \in X$ and all $t>0$. Then there exists a unique mapping F : $X \times X \rightarrow Y$ satisfies (1.1) such that

$$
\left\{\begin{align*}
\mu(F(x, y)-f(x, y), t) \geqslant & *^{\infty} \mu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \tag{4.2}\\
& *^{\infty} \mu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
& *^{\infty} \mu\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
\nu(F(x, y)-f(x, y), t) \leqslant & \circ^{\infty} \nu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right)
\end{align*}\right.
$$

for all $x, y, z, w \in X$ and all $t>0$. Furthermore, if the mapping $g: \mathbb{R} \rightarrow Y$ defined by $g(r):=\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}$ is intuitionistic fuzzy continuous for some $x, y \in X$ and all $n \in \mathbb{N}$, then the mapping $r \rightarrow F(r x, r y)$ from \mathbb{R} to Y is intuitionistic fuzzy continuous; in this case, $F(r x, r y)=r^{2} F(x, y)$ for all $r \in \mathbb{R}$.

Proof. Define $\varphi: X \times X \times X \times X \rightarrow Z$ by $\varphi(x, y, z, w)=\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\right.$ $\left.\|w\|^{p}\right) z_{0}$ for all $x, y, z, w \in X$. Existence and uniqueness of the mapping F satisfying (1.1) and (4.1) are deduced from Theorem 3.1 Note that, for all $x, y \in X$,
all $n \in \mathbb{N}$ and all $t>0$, we get

$$
\left\{\begin{align*}
\mu\left(F(x, y)-\frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}, t\right)= & \mu\left(\frac{F\left(2^{n} x, 2^{n} y\right)}{4^{n}}-\frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}, t\right) \tag{4.3}\\
= & \mu\left(F\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x, 2^{y}\right), 4^{n} t\right) \\
\geqslant & *^{\infty} \mu^{\prime}\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right) \\
& *^{\infty} \mu^{\prime}\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right) \\
& *^{\infty} \mu\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right), \\
\nu\left(F(x, y)-\frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}, t\right)= & \nu\left(\frac{F\left(2^{n} x, 2^{n} y\right)}{4^{n}}-\frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}, t\right) \\
= & \nu\left(F\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x, 2^{y}\right), 4^{n} t\right) \\
\leqslant & \circ^{\infty} \nu^{\prime}\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right) \\
& \circ^{\infty}\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{8} t\right) .
\end{align*}\right.
$$

By putting $x=y=0$ in (4.3), we have

$$
\left\{\begin{array}{l}
\mu\left(F(0,0)-\frac{1}{4^{n}} f(0,0), t\right) \geqslant 1 \\
\nu\left(F(0,0)-\frac{1}{4^{n}} f(0,0), t\right) \leqslant 0
\end{array}\right.
$$

for all $n \in \mathbb{N}$ and $t>0$.
Consider fix $x, y \in X$. From (4.3), we obtain

$$
\left\{\begin{array}{l}
\mu\left(F(r x, r y)-\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}, t\right) \geqslant *^{\infty} \mu^{\prime}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4} \mid r^{p}} t\right) \\
\quad *^{\infty} \mu^{\prime}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4}|r|^{p}} t\right) *^{\infty} \mu\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4}|r|^{p}} t\right) \\
\nu\left(F(r x, r y)-\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}, t\right) \leqslant \circ^{\infty}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4}|r|^{p}} t\right) \\
\quad \circ^{\infty} \nu^{\prime}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4} \mid r r^{p}} t\right) \circ^{\infty} \nu\left(2^{n p+1}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{4^{n}\left(4-2^{p}\right)}{2^{n p+4}|r|^{p}} t\right)
\end{array}\right.
$$

for all $r \in \mathbb{R} \backslash\{0\}$. Since $\lim _{n \rightarrow \infty} \frac{4^{n}\left(4-2^{p}\right) t}{2^{n p}|r|^{p}}=\infty$ for all $t>0$, then we get

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} \mu\left(F(r x, r y)-\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}, \frac{t}{3}\right)=1 \\
\lim _{n \rightarrow \infty} \nu\left(F(r x, r y)-\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}, \frac{t}{3}\right)=0
\end{array}\right.
$$

for all $r \in \mathbb{R} \backslash\{0\}$. Consider fix $r_{0} \in \mathbb{R}$, from the intuitionistic fuzzy continuity of the mapping $t \rightarrow \frac{f\left(2^{n} x, 2^{n} y\right)}{4^{n}}$, we have

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} \mu\left(\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}-\frac{f\left(2^{n} r_{0} x, 2^{n} r_{0} y\right)}{4^{n}}, \frac{t}{3}\right)=1 \\
\lim _{n \rightarrow \infty} \nu\left(\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}-\frac{f\left(2^{n} r_{0} x, 2^{n} r_{0} y\right)}{4^{n_{0}}}, \frac{t}{3}\right)=0
\end{array}\right.
$$

It is concluded that

$$
\begin{aligned}
& \mu\left(F(r x, r y)-F\left(r_{0} x, r_{0} y\right), t\right) \\
& \quad \geqslant \mu\left(F(r x, r y)-\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}, \frac{t}{3}\right) * \mu\left(\frac{f\left(2^{n} r x, 2^{n} r y\right)}{4^{n}}-\frac{f\left(2^{n} r_{0} x, 2^{n} r_{0} y\right)}{4^{n}}, \frac{t}{3}\right) \\
& \quad * \mu\left(\frac{f\left(2^{n} r_{0} x, 2^{n} r_{0} y\right)}{4^{n}}-F\left(r_{0} x, r_{0} y\right), \frac{t}{3}\right) \geqslant 1
\end{aligned}
$$

and

$$
\nu\left(F(r x, r y)-F\left(r_{0} x, r_{0} y\right), t\right) \leqslant 0
$$

as $r \rightarrow r_{0}$ for all $t>0$. Therefore it is concluded that mapping $r \rightarrow F(r x, r y)$ is intuitionistic fuzzy continuous.

By using the intuitionistic fuzzy continuity of the mapping $r \rightarrow F(r x, r y)$ we show that $f(s x, s y)=s^{2} F(x, y)$ for all $s \in \mathbb{R}$. By considering fix $s \in \mathbb{R}$ and $t>0$, then for each $0<\alpha<1$, there exists $\delta>0$ such that

$$
\mu\left(F(r x, r y)-F(s x, s y), \frac{t}{3}\right) \geqslant \alpha
$$

and

$$
\nu\left(F(r x, r y)-F(s x, s y), \frac{t}{3}\right) \leqslant 1-\alpha
$$

Consider rational number r such that $0<|r-s|<\delta$ and $\left|r^{2}-s^{2}\right|<1-\alpha$, then we will have

$$
\begin{aligned}
& \mu\left(F(s x, s y)-s^{2}(x, y), t\right) \geqslant \\
& \quad \mu\left(F(s x, s y)-F(r x, r y), \frac{t}{3}\right) * \mu\left(F(r x, r y)-r^{2} F(x, y), \frac{t}{3}\right) \\
& \quad * \mu\left(r^{2} F(x, y)-s^{2} F(x, y), \frac{t}{3}\right) \geqslant \alpha * 1 * \mu\left(F(x, y), \frac{t}{3(1-\alpha)}\right)
\end{aligned}
$$

and

$$
\nu\left(F(s x, s y)-s^{2}(x, y), t\right) \leqslant(1-\alpha) \circ 0 \circ \nu\left(F(x, y), \frac{t}{3(1-\alpha)}\right)
$$

When $\alpha \rightarrow 1$ and using the definition of IFNS, we get

$$
\mu\left(F(s x, s y)-s^{2} F(x, y), t\right)=1 \quad \text { and } \quad \nu\left(F(s x, s y)-s^{2} F(x, y), t\right)=0
$$

So we conclude that

$$
F(s x, s y)=s^{2} F(x, y)
$$

In the following we prove a result similar to Theorem 4.2 for case $p>2$.
Theorem 4.3. Let X be a normed space and (Y, μ, ν) be an intuitionistic fuzzy Banach space. Let $\left(Z, \mu^{\prime}, \nu^{\prime}\right)$ be an IFNS and let $p>2$ and $z_{0} \in Z$. Let f :
$X \times X \rightarrow Y$ be a mapping such that satisfies in (4.1). Then there exists a unique mapping $F: X \times X \rightarrow Y$ satisfies (1.1) such that

$$
\left\{\begin{align*}
\mu(F(x, y)-f(x, y), t) \geqslant & *^{\infty} \mu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(2^{p}-4\right)}{8} t\right) \tag{4.4}\\
& *^{\infty} \mu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
& *^{\infty} \mu\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
\nu(F(x, y)-f(x, y), t) \leqslant & \circ^{\infty} \nu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(2^{p}-4\right)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(2\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right) \\
& \circ^{\infty} \nu^{\prime}\left(\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, \frac{\left(4-2^{p}\right)}{8} t\right)
\end{align*}\right.
$$

for all $x, y \in X$ and all $t>0$. Furthermore, if for some $x, y \in X$ and all $n \in \mathbb{N}$, the mapping $g: \mathbb{R} \rightarrow Y$ defined by $g(r):=4^{n} f\left(\frac{r x}{2^{n}}, \frac{r y}{2^{n}}\right)$ is intuitionistic fuzzy continuous for some $x, y \in X$ and all $n \in \mathbb{N}$, then the mapping $r \rightarrow F(r x, r y)$ from \mathbb{R} to Y is intuitionistic fuzzy continuous, in this case, $F(r x, r y)=r^{2} F(x, y)$ for all $r \in \mathbb{R}$.

Proof. Define a mapping $\varphi: X \times X \times X \times X \rightarrow Z$ by $\varphi(x, y, z, w)=\left(\|x\|^{p}+\right.$ $\left.\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) z_{0}$ for all $x, y, z, w \in X$. Then

$$
\mu^{\prime}\left(\varphi\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right), t\right)=\mu^{\prime}\left(\frac{1}{2^{p-1}}\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}, t\right)
$$

for all $x, y \in X$ and all $t>0$. From $p>2$, then $2^{p}>4$. By Theorem 3.3, there exists a unique mapping F which satisfies (1.1) and (4.4). The rest of the proof is similar as in Theorem4.2.

References

[1] L.A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965) 338-353.
[2] L.C. Barros, R.C. Bassanezi, P.A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model. 128 (2000) 27-33.
[3] A.L. Fradkol, R.J. Evans, Control of chaos: Methods and applications in engineering, Choas, Solitons and Fractals 29 (2005) 33-56.
[4] R. Giles, A computer program for fuzzy reasoning, Fuzzy Set Syst. 4 (1980) 221-234.
[5] L. Hong, J.Q. Sun, Bifurcations of fuzzy nonlinear dynomical systems, Commun. Nonlinear Sci. Numer. Simul. 1 (2006) 1-12.
[6] J. Madore, Fuzzy physics, Ann. Phys. 219 (1992) 187-198.
[7] R. Saadati, S.M. Vaezpour, Y.J. Cho, Quicksort algorithem: Application of a fixed point theorem in intuitionistic fuzzy quasi-metric space at a domain of words, J. Comput. Appl. Math. 228 (1) (2009) 219-225.
[8] A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159 (2008) 730-738.
[9] A.K. Mirmostafaee, M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008) 3791-3798.
[10] A.K. Mirmostafaee, A fixed point approach to almost quartic mappings in quasi fuzzy normed spaces, Fuzzy Sets Syst. 160 (2009) 1653-1662.
[11] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 160 (2009) 1663-1667.
[12] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets Syst. 160 (2009) 1632-1642.
[13] M. Mursaleen, S.A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Frchet derivative, Chaos, Solitons and Fractals 42 (2) (2009) 1010-1015.
[14] M. Mursaleen, S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 41 (2009) 2414-2421.
[15] M. Mursaleen, S.A. Mohiuddine, O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comp. Math. Appl. 59 (2010) 603-611.
[16] R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006) 331-344.
[17] R. Saadati, S. Sedghi, N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons and Fractals 38 (2008) 36-47.
[18] T. Bag, S.K. Samanta, Some fixed point theorems on fuzzy normed linear spaces, Info. Sci. 177 (2007) 3271-3289.
[19] T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151 (2005) 513-547.
[20] J.X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets Syst. 157 (2006) 2739-2750.
[21] M. Mursaleen, Q.M.D. Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, Solitons and Fractals 42 (2009) 224-234.
[22] S.M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[23] D.H. Hyers, On the Stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
[24] T. Aoki, On the stability of linear trasformation in Banach spaces, J. Math. Soc. Japan. 2 (1950) 64-66.
[25] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[26] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[27] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[28] H. Khodaei, Th.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010) 22-41.
[29] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[30] J.-H. Bae, W.-G. Park, A functional equation originating from quadratic forms, J. Math. Anal. Appl., 326 (2) (2007) 1142-1148.
[31] J.-H. Bae, W.-G. Park, Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras, Bull. Korean Math. Soc. 47 (1) (2010) 195-209.
[32] M. Mursaleen, S.A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 42 (2009) 2997-3005.
[33] S.A. Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed space, Chaos, Solitons and Fractals 42 (2009) 2989-2996.
[34] B. Schweize, A. Sklar, Satistical metric spaces, Pacific J. Math. 10 (1960) 314-334.
(Received 19 November 2013)
(Accepted 9 March 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

