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1 Introduction

Fixed point theory concerning contractions and generalized contractions has
been an active area of research recently for at least for two decades, and it dates
back to the dissertation of Banach in 1922 [1]. Several improvements and exten-
sions were investigated since then in several directions. Let us recall that for a
given mapping T defined on a (nonempty) set X into itself, a point x̄ ∈ X is said
to be a fixed point of T if x̄ = T x̄.

The 2-dimensional extension of a fixed point, so-called the coupled fixed point,
was first introduced by Guo and Lakshmikantham in 1987 [2] and was re-introduced
and brought into popularity again in 2006 [3] by Bhaskar and Lakshmikantham.
It was given for a mapping F : X × X → X (where X is a nonempty set), in
the following: a pair (x̄, ȳ) ∈ X × X is said to be a coupled fixed point of F if
x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄).

The n-dimensional extension (n ∈ N) of a fixed point was the problem for
several mathematicians. Let us recall the setting of n-dimensional fixed point as
follows: let X 6= ∅ and F : Xn → X, then (x̄1, . . . , x̄n) ∈ Xn is called an n-
dimensional fixed point of F if x̄i = F (x̄i, x̄i−1, . . . , x̄1, x̄2, . . . , x̄n−i+1) for every
i ∈ {1, . . . , n}.

In this case, let X := Xn and define F : X→ X for each (x1, . . . , xn) ∈ X by

F(x1, . . . , xn)

:= (F (x1, . . . , xn), . . . , F (xi, xi−1, . . . , x1, x2, . . . , xn−i+1), . . . , F (xn, . . . , x1)).

(1.1)

It is easy to see the equivalence between the n-dimensional fixed point of F and
the classical fixed point of F. When n is even, we usually have the equivalence
between the contractivity condition of F and the corresponding n-dimensional
version of the contractivity condition for F . This equivalence is unlikely for odd
dimension n ≥ 3, since F skips some variables in its even coordinate at the solution.
For example, if n = 3, then x̄2 = F (x̄2, x̄1, x̄2) is skipping x̄3. Note that this
effect grows stronger as the dimension grows larger. In particular, if n = 7, then
x̄4 = F (x̄4, x̄3, x̄2, x̄1, x̄2, x̄3, x̄4) is skipping x̄5, x̄6, x̄7.

On the other hand, the best proximity point was introduced in 1969 [4] as a
replacement of fixed point for nonself mappings in metric spaces. For two given
(nonempty) subsets A,B of a metric space (X, d) and a mapping T : A → B, a
point x̄ ∈ A is called a best proximity point of T if d(x̄, T x̄) = d(A,B), where
d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

Combining both the idea of n-dimensional and nonself generalizations of a
fixed point, we consider the n-dimensional best proximity point. In particular, a
point (x̄1, . . . , x̄n) ∈ An is an n-dimensional best proximity point of F : An → B
if

d(xi, F (x̄i, x̄i−1, . . . , x̄1, x̄2, . . . , x̄n−i+1)) = d(A,B), ∀i ∈ {1, . . . , n}. (1.2)

Likewise, if we write A := An and B := Bn, we can define F : A → B using
the formula (1.1). We can adopt the same equivalence between the n-dimensional
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best proximity point (1.2) and the best proximity point of F. Similar relation-
ship between the classical proximal contractiity condition and its corresponding
n-dimensional version is also effective.

In this paper, we consider the n-dimensional best proximity points (will be call
the tripled best proximity point in the sequel), for two mappings satisfying the gen-
eralized contractivity condition called the generalized contraction pair. However,
we shall state and prove our main results only for the case n = 3, since the proof
line is already quite lengthy. The n-dimensional extensions can also be carried
out by similar proof lines and ideas. We would also like to underline that the two
mappings involved in the generalized contraction pair exchange their solutions in
the sense that we can always manipulate a solution for one mapping to evaluate a
solution for another mapping.

2 Preliminaries

In this section, some elementary definitions related to the major results are
recognized. Moreover, we denote the set of all positive integers and real numbers
by N and R, respectively, throughout this article. For any nonempty sets A and
B in a metric space (X, d), given

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}

stands for the length between A and B,

A0 = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B},

B0 = {b ∈ B : d(a, b) = d(A,B) for some a ∈ A}.

Moreover, for n ∈ N, An means Cartesian product of the set A for n times, i.e.,

An = A×A× · · · ×A︸ ︷︷ ︸
n times

.

Definition 2.1. Let T : A→ B be a mapping. A point x ∈ A is said to be a best
proximity point of T if it satisfies that d(x, Tx) = d(A,B).

It can be observed that a best proximity point absolutely reduces to a fixed
point if the mapping becomes a self-mapping.

Definition 2.2. [5] Let T : A3 → B be a mapping. A point (x, y, z) ∈ A3 is said
to be a tripled best proximity point of T if it satisfies that

d(T (x, y, z), x) = d(T (y, x, y), y) = d(T (z, y, x), z) = d(A,B).

Definition 2.3. [6] The ordered pair (A,B) satisfies the property UC if the fol-
lowing holds: if {xn} and {zn} are sequences in A and {yn} is a sequence in B
such that d(xn, yn)→ d(A,B) and d(zn, yn)→ d(A,B) then d(xn, zn)→ 0.
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Definition 2.4. [7] The ordered pair (A,B) satisfies the property strongly UC (or
property UC∗) if the pair (A,B) has property UC and the following conditions
hold:
if {xn} and {zn} are sequences in A and {yn} is a sequence in B such that

(1) limn→∞ d(zn, yn) = d(A,B)
(2) for any ε > 0, there exists N ∈ N such that

d(xm, yn) ≤ d(A,B) + ε for all m > n ≥ N

then limn→∞ d(xn, zn) = 0.

3 Main Results

This section is separated to be 3 subsections which consist of introduction
of generalized contraction pair, proofs of existence and uniqueness of a tripled
best proximity, and some examples supported the main theorems, as following
respectively.

3.1 Generalized Contraction Pairs

Now, we give the definition of the generalized contraction pair in a metric
space and show that a tripled best proximity point of one mapping can be used to
determine a tripled best proximity point of another mapping. We view this cyclic
exchanging behavior of their solutions is the fundamental property for this class
of generalized contraction pairs.

Definition 3.1. Suppose that (X, d) is a metric space, A,B are nonempty and
closed, and F : A3 → B and T : B3 → A are given. We say that (F,G) is a
generalized contraction pair over (A,B) if there exist constants α, β, γ > 0 with
α + β + γ < 1 satisfying, for each x, y, z ∈ A and u, v, w ∈ B, the following
inequality:

d(F (x, y, z), G(u, v, w))

≤ αd(x, u) + βd(y, v) + γd(z, w) + (1− (α+ β + γ)) d(A,B).

Example 3.2. In metric space (X, d) where d : X ×X → R defined by d(x, y) =
|x − y| for all x, y ∈ X. Let A = [1, 5] and B = [−5,−1] be closed subsets of X.
Define F : A3 → B and G : B3 → A by

F (x, y, z) =
−8x− 6y − 4z − 54

72
and G(u, v, w) =

−8u− 6v − 4w + 54

72

for all x, y, z ∈ A and u, v, w ∈ B. Since, we have d(A,B) = 2 and choose α = 1
9 ,
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β = 1
12 and γ = 1

18 which α+ β + γ = 1
9 + 1

12 + 1
18 = 1

4 < 1. Then, it follows that

d(F (x, y, z), G(u, v, w)) =

∣∣∣∣−8x− 6y − 4z − 54

72
− −8u− 6v − 4w + 54

72

∣∣∣∣
≤ 8|x− u|+ 6|y − v|+ 4|z − w|

72
+

3

2

=
|x− u|

9
+
|y − v|

12
+
|z − w|

18

+

(
1−

(
1

9
+

1

12
+

1

18

))
2

= αd(x, u) + βd(y, v) + γd(z, w)

+ (1− (α+ β + γ)) d(A,B),

which implies that (F,G) is a generalized cyclic contraction pair over (A,B).

In the next proposition, we express the fact that a generalized contraction pair
defined above has a cyclic relationship at their solutions.

Proposition 3.3. Suppose that (X, d) is a metric space A,B ⊂ X are nonempty,
F : A3 → B and G : B3 → A are mappings such that (F,G) is a generalized
contraction pair over (A,B). Then, we have:

1. If (x̄, ȳ, z̄) ∈ A3 is a tripled best proximity point of F , then the point
(F (x̄, ȳ, z̄), F (ȳ, x̄, ȳ), F (z̄, ȳ, x̄)) ∈ B3 is a tripled best proximity point of
G.

2. If (ū, v̄, w̄) ∈ B3 is a tripled best proximity point of G, then the point
(G(ū, v̄, w̄), G(v̄, ū, v̄), G(w̄, v̄, ū)) ∈ A3 is a tripled best proximity point of
F .

In particular, F has a tripled proximity point if an only if G does.

Proof. We will only show 1, since 2 can be done similarly. Suppose that (x̄, ȳ, z̄) ∈
A3 is a tripled best proximity point of F . Then, we get

d(F (x̄, ȳ, z̄), G(F (x̄, ȳ, z̄), F (ȳ, x̄, ȳ), F (z̄, ȳ, x̄)))

= αd(x̄, F (x̄, ȳ, z̄)) + βd(ȳ, F (ȳ, x̄, ȳ)) + γd(z̄, F (z̄, ȳ, x̄))

+(1− (α+ β + γ))d(A,B)

= d(A,B).

Hence, this proof is completed.

3.2 Existence and Uniqueness of a Tripled Best Proximity
Point

In this subsection, we prove the existence of tripled best proximity points of
generalized coupled cyclic contraction mappings, and also the uniqueness is shown
with defined sequences as below:
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Let A and B be nonempty subsets of a metric space (X, d), F : A3 → B and
G : B3 → A. A pair (x, y, z) ∈ A3 is defined as the sequences {xn}∞n=0 {yn}∞n=0

and {zn}∞n=0 by x0 = x, y0 = y, z0 = z and

x2n+1 = F (x2n, y2n, z2n), x2n+2 = G(x2n+1, y2n+1, z2n+1)

y2n+1 = F (y2n, x2n, y2n), y2n+2 = G(y2n+1, x2n+1, y2n+1)

z2n+1 = F (z2n, y2n, x2n), z2n+2 = G(z2n+1, y2n+1, x2n+1)

for all n ∈ N ∪ {0}.
Moreover, we set

Mn{x, y, z} := max{d(xn, xn+1), d(yn, yn+1), d(zn, zn+1)} (3.1)

during the whole of the main results.

Lemma 3.4. Let A, B be nonempty subsets of a metric space (X, d), F : A3 →
B, G : B3 → A and the ordered pair (F,G) be a generalized cyclic contraction
mapping. If (x0, y0, z0) ∈ A3 and {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 are the sequences
then

d(x2n, x2n+1)→ d(A,B), d(x2n+1, x2n+2)→ d(A,B),

d(y2n, y2n+1)→ d(A,B), d(y2n+1, y2n+2)→ d(A,B),

d(z2n, z2n+1)→ d(A,B), d(z2n+1, z2n+2)→ d(A,B)

as n→∞.

Proof. For each n ∈ N, we have

d(x2n, x2n+1) = d(G(x2n−1, y2n−1, z2n−1), F (x2n, y2n, z2n))

≤ αd(x2n−1, x2n) + βd(y2n−1, y2n) + γd(z2n−1, z2n−1)

+(1− (α+ β + γ))d(A,B)

= αd(F (x2n−2, y2n−2, z2n−2), G(x2n−1, y2n−1, z2n−1))

+βd(F (y2n−2, x2n−2, y2n−2), G(y2n−1, x2n−1, y2n−1))

+γd(F (z2n−2, y2n−2, x2n−2), G(z2n−1, y2n−1, x2n−1))

+(1− (α+ β + γ))d(A,B)

≤ α [αd(x2n−2, x2n−1) + βd(y2n−2, y2n−1) + γd(z2n−2, z2n−1)

+(1− (α+ β + γ))d(A,B)] + β [αd(y2n−2, y2n−1)

+βd(x2n−2, x2n−1) + γd(y2n−2, y2n−1)

+(1− (α+ β + γ))d(A,B)] + γ [αd(z2n−2, z2n−1)

+βd(y2n−2, y2n−1) + γd(x2n−2, x2n−1)

+(1− (α+ β + γ))d(A,B)] + (1− (α+ β + γ))d(A,B)

=
(
α2 + β2 + γ2

)
d(x2n−2, x2n−1) + (2αβ + 2βγ)d(y2n−2, y2n−1)

+(2αγ)d(z2n−2, z2n−1) +
(
1− (α+ β + γ)2

)
d(A,B)

(3.2)
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≤
(
α2 + β2 + γ2

)
max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}

+(2αβ + 2βγ) max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+(2αγ) max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+
(
1− (α+ β + γ)2

)
d(A,B)

= (α+ β + γ)2 max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+
(
1− (α+ β + γ)2

)
d(A,B).

Hence, we have

d(x2n, x2n+1)

≤ (α+ β + γ)2 max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+
(
1− (α+ β + γ)2

)
d(A,B).

Similarly, we obtain that

d(y2n, y2n+1)

≤ (α+ β + γ)2 max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+
(
1− (α+ β + γ)2

)
d(A,B)

and

d(z2n, z2n+1)

≤ (α+ β + γ)2 max{d(x2n−2, x2n−1), d(y2n−2, y2n−1), d(z2n−2, z2n−1)}
+
(
1− (α+ β + γ)2

)
d(A,B).

By (3.1) and we continuously use (3.2), inequalities are following

d(x2n, x2n+1) ≤ (α+ β + γ)2M2n−2{x, y, z}+ (1− (α+ β + γ)2)d(A,B)

≤ (α+ β + γ)2 max
{

(α+ β + γ)2M2n−4{x, y, z}
+(1− (α+ β + γ)2)d(A,B), (α+ β + γ)2M2n−4{x, y, z}
+(1− (α+ β + γ)2)d(A,B), (α+ β + γ)2M2n−4{x, y, z}
+(1− (α+ β + γ)2)d(A,B)

}
+ (1− (α+ β + γ)2)d(A,B)

= (α+ β + γ)4 max {M2n−4{x, y, z},M2n−4{x, y, z},
M2n−4{x, y, z}}+

(
1 + (α+ β + γ)2

)
(1− (α+ β

+γ)2
)
d(A,B)

= (α+ β + γ)4M2n−4{x, y, z}+
(
1− (α+ β + γ)4

)
d(A,B)

≤ (α+ β + γ)2nM0{x, y, z}+
(
1− (α+ β + γ)2n

)
d(A,B).

Thus, we get that

d(x2n, x2n+1) ≤ (α+ β + γ)2nM0{x, y, z}+
(
1− (α+ β + γ)2n

)
d(A,B).
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In the same way, it can be shown that

d(x2n+1, x2n+2) ≤ (α+ β + γ)2nM1{x, y, z}+
(
1− (α+ β + γ)2n

)
d(A,B).

By using the squeeze theorem, we obtain that

lim
n→∞

d(x2n, x2n+1) = d(A,B) and lim
n→∞

d(x2n+1, x2n+2) = d(A,B).

Similarly, we get d(y2n, y2n+1)→ d(A,B), d(y2n+1, y2n+2)→ d(A,B),
d(z2n, z2n+1)→ d(A,B) and d(z2n+1, z2n+2)→ d(A,B) as n→∞.

Lemma 3.5. Let A, B be nonempty subsets of a metric space (X, d). Let F : A3 →
B, G : B3 → A be mappings and the ordered pair (F,G) be a generalized cyclic
contraction mapping. If (x0, y0, z0) ∈ A3 and {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 are
the sequences then

d(x2m, x2n+1)

≤ d(x2m, x2m+2) + d(x2n+3, x2n+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2m, x2n+1), d(y2m, y2n+1), d(z2m, z2n+1)}, (3.3)

d(y2m, y2n+1)

≤ d(y2m, y2m+2) + d(y2n+3, y2n+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2m, x2n+1), d(y2m, y2n+1), d(z2m, z2n+1)}, (3.4)

and

d(z2m, z2n+1)

≤ d(z2m, z2m+2) + d(z2n+3, z2n+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2m, x2n+1), d(y2m, y2n+1), d(z2m, z2n+1)} (3.5)

for all m,n ∈ N.

Proof. Let m,n ∈ N, it follows that

d(x2m, x2n+1) ≤ d(x2m, x2m+2) + d(x2m+2, x2n+3) + d(x2n+3, x2n+1)

= d(x2m, x2m+2) + d(x2n+3, x2n+1)

+d(G(x2m+1, y2m+1, z2m+1), F (x2n+2, y2n+2, z2n+2))

≤ d(x2m, x2m+2) + d(x2n+3, x2n+1) + αd(x2m+1, x2n+2)

+βd(y2m+1, y2n+2) + γd(z2m+1, z2n+2)

+(1− (α+ β + γ))d(A,B)

= d(x2m, x2m+2) + d(x2n+3, x2n+1)

+αd(F (x2m, y2m, z2m), G(x2n+1, y2n+1, z2n+1))

+βd(F (y2m, x2m, y2m), G(y2n+1, x2n+1, y2n+1))

+γd(F (z2m, y2m, x2m), G(z2n+1, y2n+1, x2n+1))

+(1− (α+ β + γ))d(A,B)
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≤ d(x2m, x2m+2) + d(x2n+3, x2n+1)

+α(αd(x2m, x2n+1) + βd(y2m, y2n+1) + γd(z2m, z2n+1)

+(1− (α+ β + γ))d(A,B))

+β(αd(y2m, y2n+1) + βd(x2m, x2n+1) + γd(y2m, y2n+1)

+(1− (α+ β + γ))d(A,B))

+γ(αd(z2m, z2n+1) + βd(y2m, y2n+1) + γd(x2m, x2n+1)

+(1− (α+ β + γ))d(A,B))

+(1− (α+ β + γ))d(A,B)

= d(x2m, x2m+2) + d(x2n+3, x2n+1)

+(α2 + β2 + γ2)d(x2m, x2n+1)

+(2αβ + 2βγ)d(y2m, y2n+1) + (2αγ)d(z2m, z2n+1)

+(1− (α+ β + γ)2)d(A,B)

≤ d(x2m, x2m+2) + d(x2n+3, x2n+1) + (1− (α+ β + γ)2)d(A,B)

+(α+β+γ)2 max{d(x2m, x2n+1), d(y2m, y2n+1), d(z2m, z2n+1)},

which imply that (3.3) holds. For the other inequalities, (3.4) and (3.5), can be
shown in the same way.

Lemma 3.6. Let A, B be nonempty subsets of a metric space (X, d) such that
the pair (A,B) and (B,A) satisfy the property strongly UC. Let F : A3 → B,
G : B3 → A be mappings and the ordered pair (F,G) be a generalized cyclic
contraction mapping. If (x0, y0, z0) ∈ A3 and {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0

are the sequences then the sequences {x2n}∞n=0, {y2n}∞n=0, {z2n}∞n=0, {x2n+1}∞n=0,
{y2n+1}∞n=0 and {z2n+1}∞n=0 are Cauchy sequences.

Proof. By Lemma 3.4, we have d(x2n, x2n+1) → d(A,B) and d(x2n+1, x2n+2) →
d(A,B) as n → ∞. By using the property strongly UC of the pairs (A,B) and
(B,A) then d(x2n, x2n+2)→ 0 and d(x2n+1, x2n+3)→ 0 as n→∞. Next, we will
prove that for all ε > 0, there exists N ∈ N such that d(x2m, x2n+1) ≤ d(A,B) + ε
for all m > n ≥ N . Suppose on the contrary that there exists ε0 > 0 and
mk > nk ≥ k for all k ∈ N such that

d(x2mk
, x2nk+1) > d(A,B) + ε0. (3.6)

We choose the smallest mk with mk > nk ≥ k, for all k ∈ N, and (3.6) holds which
imply that d(x2mk−2, x2nk+1) ≤ d(A,B) + ε0. Then, it follows that

d(A,B) + ε0 < d(x2mk
, x2nk+1)

≤ d(x2mk
, x2mk−2) + d(x2mk−2, x2nk+1)

≤ d(x2mk
, x2mk−2) + d(A,B) + ε0.
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Letting k →∞, we then get d(x2mk
, x2nk+1)→ d(A,B) + ε0. By using (3.3), (3.4)

and (3.5), we then get

max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)}

≤ max{d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)},

d(y2mk
, y2mk+2) + d(y2nk+3, y2nk+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)},

d(z2mk
, z2mk+2) + d(z2nk+3, z2nk+1) + (1− (α+ β + γ)2)d(A,B)

+(α+ β + γ)2 max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)}}

= max{d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1), d(y2mk

, y2mk+2)

+d(y2nk+3, y2nk+1), d(z2mk
, z2mk+2) + d(z2nk+3, z2nk+1)}

+(α+ β + γ)2 max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)}

+(1− (α+ β + γ)2)d(A,B),

that is,

max{d(x2mk
, x2nk+1), d(y2mk

, y2nk+1), d(z2mk
, z2nk+1)}

≤
1

1− (α+ β + γ)2
max{d(x2mk

, x2mk+2) + d(x2nk+3, x2nk+1), d(y2mk
, y2mk+2)

+ d(y2nk+3, y2nk+1), d(z2mk
, z2mk+2) + d(z2nk+3, z2nk+1)}+ d(A,B).

Since d(x2mk
, x2nk+1) ≤ max{d(x2mk

, x2nk+1), d(y2mk
, y2nk+1), d(z2mk

, z2nk+1)}
then we obtain that

d(x2mk
, x2nk+1) ≤

1

1− (α+ β + γ)2
max{d(x2mk

, x2mk+2) + d(x2nk+3, x2nk+1),

d(y2mk
, y2mk+2) + d(y2nk+3, y2nk+1), d(z2mk

, z2mk+2)

+d(z2nk+3, z2nk+1)}+ d(A,B).

Letting k → ∞, we now have d(A,B) + ε0 ≤ d(A,B), a contradiction. Thus,
for all ε > 0, there exists N ∈ N such that d(x2m, x2n+1) ≤ d(A,B) + ε for all
m > n ≥ N as desired. Since we have d(x2n, x2n+1) → d(A,B) from Lemma
3.4. So, using Definition 2.4 then we get that limn→∞ d(x2m, x2n) = 0, i.e., the
sequences {x2n}∞n=0 is a Cauchy sequence. Similarly, it is easily able to prove that
{y2n}∞n=0, {z2n}∞n=0, {x2n+1}∞n=0, {y2n+1}∞n=0 and {z2n+1}∞n=0 are also Cauchy
sequences.

Lemma 3.7. Let A, B be nonempty subsets of a metric space (X, d) such that
the pair (A,B) and (B,A) satisfy the property strongly UC. Let F : A3 → B,
G : B3 → A be mappings. If (u, v, w) and (u∗, v∗, w∗) are tripled best proximity
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points of F and G, respectively, then

u = G(F (u, v, w), F (v, u, v), F (w, v, u)),

v = G(F (v, u, v), F (u, v, w), F (v, u, v)),

w = G(F (w, v, u), F (v, u, v), F (u, v, w)),

u∗ = F (G(u∗, v∗, w∗), G(v∗, u∗, v∗), G(w∗, v∗, u∗)),

v∗ = F (G(v∗, u∗, v∗), G(u∗, v∗, w∗), G(v∗, u∗, v∗)),

w∗ = F (G(w∗, v∗, u∗), G(v∗, u∗, v∗), G(u∗, v∗, w∗))

for all n ∈ N ∪ {0}.

Proof. Since d(u, F (u, v, w)) = d(v, F (v, u, v)) = d(w,F (w, v, u)) = d(A,B) and
d(u∗, G(u∗, v∗, w∗)) = d(v∗, G(v∗, u∗, v∗)) = d(w∗, G(w∗, v∗, u∗)) = d(A,B), then

d(F (u, v, w), G(F (u, v, w), F (v, u, v), F (w, v, u)))

≤ αd(u, F (u, v, w)) + βd(v, F (v, u, v)) + γd(w,F (w, v, u))

+(1− (α+ β + γ))d(A,B) = d(A,B),

d(F (v, u, v), G(F (v, u, v), F (u, v, w), F (v, u, v)))

≤ αd(v, F (v, u, v)) + βd(u, F (u, v, w)) + γd(v, F (v, u, v))

+(1− (α+ β + γ))d(A,B) = d(A,B),

and d(F (w, v, u), G(F (w, v, u), F (v, u, v), F (u, v, w)))

≤ αd(w,F (w, v, u)) + βd(v, F (v, u, v)) + γd(u, F (u, v, w))

+(1− (α+ β + γ))d(A,B) = d(A,B).

After that, we use the property strongly UC then this proof is complete for some
above equations. However, the others can be done in the same way.

Theorem 3.8. Let A, B be nonempty closed subsets of a complete metric space
(X, d) such that the pair (A,B) and (B,A) satisfy the property strongly UC. Let
F : A3 → B, G : B3 → A be mappings and the ordered pair (F,G) be a gen-
eralized cyclic contraction mapping. If (x0, y0, z0) ∈ A3 and {xn}∞n=0, {yn}∞n=0

and {zn}∞n=0 are the sequences then F has a unique tripled best proximity point
(u, v, w) ∈ A3 and G also has a unique tripled best proximity point (u∗, v∗, w∗) ∈
B3. Moreover, we have x2n → u, y2n → v, z2n → w, x2n+1 → u∗, y2n+1 → v∗

and z2n+1 → w∗. Furthermore, we obtain that

d(u, u∗) + d(v, v∗) + d(w,w∗) = 3d(A,B).

Proof. To show that there exists (u, v, w) ∈ A3 such that d(u, F (u, v, w)) =
d(v, F (v, u, v)) = d(w,F (w, v, u)) = d(A,B). By Lemma 3.4, we have d(x2n, x2n+1)
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→ d(A,B) as n → ∞. Since {x2n}∞n=0, {y2n}∞n=0 and {z2n}∞n=0 are Cauchy se-
quences by Lemma 3.6 and we also have A is closed. Then, there exist u, v, w ∈ A
such that x2n → u, y2n → v and z2n → w. Then d(A,B) ≤ d(u, x2n−1) ≤
d(u, x2n) + d(x2n, x2n−1). It follows that d(u, x2n−1)→ d(A,B) as n→∞. Simi-
larly, d(v, y2n−1)→ d(A,B) and d(w, z2n−1)→ d(A,B) as n→∞. First, we will
show that d(u, F (u, v, w)) + d(v, F (v, u, v)) + d(w,F (w, v, u)) ≤ 3d(A,B). Thus,

d(x2n, F (u, v, w)) + d(y2n, F (v, u, v)) + d(z2n, F (w, v, u))

= d(G(x2n−1, y2n−1, z2n−1), F (u, v, w)) + d(G(y2n−1, x2n−1, y2n−1), F (v, u, v))

+d(G(z2n−1, y2n−1, x2n−1), F (w, v, u))

≤ αd(x2n−1, u) + βd(y2n−1, v) + γd(z2n−1, w) + (1− (α+ β + γ))d(A,B)

+αd(y2n−1, v) + βd(x2n−1, u) + γd(y2n−1, v) + (1− (α+ β + γ))d(A,B)

+αd(z2n−1, w) + βd(y2n−1, v) + γd(x2n−1, u) + (1− (α+ β + γ))d(A,B).

Letting n→∞ then we obtain that

d(u, F (u, v, w)) + d(v, F (v, u, v)) + d(w,F (w, v, u))

≤ 3(α+ β + γ)d(A,B) + 3(1− (α+ β + γ))d(A,B) = 3d(A,B),

that is, d(u, F (u, v, w)) = d(v, F (v, u, v)) = d(w,F (w, v, u)) = d(A,B) which im-
ply that (u, v, w) ∈ A3 is a tripled best proximity point of F . By Proposition 3.3,
we can also show that (u∗, v∗, w∗) ∈ B3 is a tripled best proximity point of G.
Next, we consider the uniqueness of best proximity points of both mappings F and
G. Suppose that there is another best proximity point of F , called (p, q, r), i.e.,
d(p, F (p, q, r)) = d(q, F (q, p, q)) = d(r, F (r, q, p)) = d(A,B). Then, we use Lemma
3.7 to get these

d(u, F (p, q, r)) = d(G(F (u, v, w), F (v, u, v), F (w, v, u)), F (p, q, r))

≤ αd(F (u, v, w), p) + βd(F (v, u, v), q) + γd(F (w, v, u), r)

+(1− (α+ β + γ))d(A,B)

= αd(F (u, v, w), G(F (p, q, r), F (q, p, q), F (r, q, p)))

+βd(F (v, u, v), G(F (q, p, q), F (p, q, r), F (q, p, q)))

+γd(F (w, v, u), G(F (r, q, p), F (q, p, q), F (p, q, r)))

+(1− (α+ β + γ))d(A,B)

≤ α(αd(u, F (p, q, r)) + βd(v, F (q, p, q)) + γd(w,F (r, q, p))

+(1− (α+ β + γ))d(A,B))

+β(αd(v, F (q, p, q)) + βd(u, F (p, q, r)) + γd(v, F (q, p, q))

+(1− (α+ β + γ))d(A,B))

+γ(αd(w,F (r, q, p)) + βd(v, F (q, p, q)) + γd(u, F (p, q, r))

+(1− (α+ β + γ))d(A,B)) + (1− (α+ β + γ))d(A,B)

≤ (α+ β + γ)2 max{d(u, F (p, q, r)), d(v, F (q, p, q)),

d(w,F (r, q, p))}+ (1− (α+ β + γ)2)d(A,B),
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similarly, we can also show that

d(v, F (q, p, q)) ≤ (α+ β + γ)2 max{d(u, F (p, q, r)), d(v, F (q, p, q)),

d(w,F (r, q, p))}+ (1− (α+ β + γ)2)d(A,B)

and d(w,F (r, q, p)) ≤ (α+ β + γ)2 max{d(u, F (p, q, r)), d(v, F (q, p, q)),

d(w,F (r, q, p))}+ (1− (α+ β + γ)2)d(A,B).

Thus, it follows that

max{d(u, F (p, q, r)), d(v, F (q, p, q)), d(w,F (r, q, p))} ≤ d(A,B).

Since d(u, F (p, q, r)) ≤ max{d(u, F (p, q, r)), d(v, F (q, p, q)), d(w,F (r, q, p))}, so,
d(u, F (p, q, r)) ≤ d(A,B). By the property strongly UC, we can conclude that
p and u is the same. Similarly, q = v, r = w can be easily presented, i.e., the map-
ping F has the only one best proximity point. For the mapping G, it also has a
unique best proximity point as F by exhibiting in the same way. Last, we will prove
that d(u, u∗)+d(v, v∗)+d(w,w∗) = 3d(A,B). Since, d(u, u∗)+d(v, v∗)+d(w,w∗) ≥
3d(A,B) then it is enough to show that d(u, u∗) + d(v, v∗) + d(w,w∗) ≤ 3d(A,B).
Since, {x2n+2}∞n=0 is a subsequence of {x2n}∞n=0 and we have

d(x2n+1, x2n+2) = d(F (x2n, y2n, z2n), G(x2n+1, y2n+1, z2n+1))

≤ αd(x2n, x2n+1) + βd(y2n, y2n+1) + γd(z2n, z2n+1)

+(1− (α+ β + γ))d(A,B), (3.7)

d(y2n+1, y2n+2) = d(F (y2n, x2n, y2n), G(y2n+1, x2n+1, y2n+1))

≤ αd(y2n, y2n+1) + βd(x2n, x2n+1) + γd(y2n, y2n+1)

+(1− (α+ β + γ))d(A,B) (3.8)

and d(z2n+1, z2n+2) = d(G(z2n, y2n, x2n), F (z2n+1, y2n+1, x2n+1))

≤ αd(z2n, z2n+1) + βd(y2n, y2n+1) + γd(x2n, x2n+1)

+(1− (α+ β + γ))d(A,B). (3.9)

Combining (3.7), (3.8), (3.9) and then letting n → ∞ with Lemma 3.4, we have
d(u, u∗)+d(v, v∗)+d(w,w∗) ≤ 3d(A,B). Therefore, d(u, u∗)+d(v, v∗)+d(w,w∗) =
3d(A,B) which completes the proof.

Next, we consider compact subsets of a metric spaces which contain a tripled
best proximity point.

Corollary 3.9. Let A, B be nonempty compact subsets of a metric space (X, d)
such that the pair (A,B) and (B,A) satisfy the property strongly UC. Let F :
A3 → B, G : B3 → A be mappings and the ordered pair (F,G) be a general-
ized cyclic contraction mapping. If (x0, y0, z0) ∈ A3 and {xn}∞n=0, {yn}∞n=0 and
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{zn}∞n=0 are the sequences then F has a tripled best proximity point (u, v, w) ∈ A3

and G also has a tripled best proximity point (u∗, v∗, w∗) ∈ B3. Moreover, we have
x2n → u, y2n → v, z2n → w, x2n+1 → u∗, y2n+1 → v∗ and z2n+1 → w∗.

Proof. Since x2n, y2n, and z2n are in A and x2n+1, y2n+1, and z2n+1 are in B
for all n ∈ N ∪ {0}. Since A is compact, x2n, y2n, and z2n have the convergent
subsequences x2nk

, y2nk
, and z2nk

, respectively. Then there exists (u, v, w) ∈ A3

such that x2nk
→ u, y2nk

→ v, and z2nk
→ w. Since d(A,B) ≤ d(u, x2nk−1) ≤

d(u, x2nk
) + d(x2nk

, x2nk−1). Then d(u, x2nk−1) → d(A,B) whenever k → ∞ by
using Lemma 3.4. Similarly, we get d(v, y2nk−1) → d(A,B) and d(w, z2nk−1) →
d(A,B) whenever k →∞. Since

d(x2nk
, F (u, v, w)) = d(G(x2nk−1, y2nk−1, z2nk−1), F (u, v, w))

≤ αd(u, x2nk−1) + βd(v, y2nk−1) + γd(w, z2nk−1)

+(1− (α+ β + γ))d(A,B),

then letting k → ∞, we get d(u, f(u, v, w)) ≤ d(A,B). Hence, d(u, f(u, v, w)) =
d(A,B). For the other, d(v, f(v, u, v)) = d(A,B) and d(w, f(w, v, u)) = d(A,B).
That is (u, v, w) is a tripled best proximity point of F . A tripled best proxim-
ity point (u∗, v∗, w∗) of G can be shown in the same way, by Proposition 3.3.
Therefore, these complete the proof.

Note that if d(A,B) = 0 then the generalized contraction pair (F,G) over
(A,B) will become as the following: for some constants α, β, γ > 0 with α+β+γ <
1,

d(F (x, y, z), G(u, v, w)) ≤ αd(x, u) + βd(y, v) + γd(z, w) (3.10)

for all x, y, z, u, v, w ∈ A ∩B.

This inequality will be used in the next theorem which guarantees both ex-
istence and uniqueness of a common tripled fixed point of mappings F and G in
(A ∩B)3.

Theorem 3.10. Let A, B be nonempty closed subsets of a complete metric space
(X, d) with A ∩ B 6= ∅ such that the pair (A,B) and (B,A) satisfy the property
strongly UC. Let F : (A∪B)3 → A∪B, G : (A∪B)3 → A∪B be mappings and the
ordered pair (F,G) be a generalized cyclic contraction mapping. If (x0, y0, z0) ∈
(A∪B)3 and {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 are the sequences then F and G have
a unique common tripled fixed point in (A ∩B)3.

Proof. By Theorem 3.8, F has a tripled best proximity point (u, v, w) ∈ A3 and
G also has a tripled best proximity point (u∗, v∗, w∗) ∈ B3. Then,

d(u, F (u, v, w)) = d(v, F (v, u, v)) = d(w,F (w, v, u)) = d(A,B)

and also

d(u∗, G(u∗, v∗, w∗)) = d(v∗, G(v∗, u∗, v∗)) = d(w∗, G(w∗, v∗, u∗)) = d(A,B).
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Since A ∩ B 6= ∅ then d(A,B) = 0, i.e., u = F (u, v, w), v = F (v, u, v), w =
F (w, v, u), u∗ = G(u∗, v∗, w∗), v∗ = G(v∗, u∗, v∗) and w∗ = G(w∗, v∗, u∗) which
imply that (u, v, w) is a tripled fixed point of F and (u∗, v∗, w∗) is a tripled fixed
point of G. By Theorem 3.8, we also have d(u, u∗)+d(v, v∗)+d(w,w∗) = 3d(A,B).
So, if d(A,B) = 0, we get d(u, u∗) + d(v, v∗) + d(w,w∗) = 0 which means u = u∗,
v = v∗ and w = w∗. Hence, (u, v, w) ∈ (A ∩ B)3 is a common tripled fixed point
of F and G. For the uniqueness, suppose there exists (p, q, r) which is another
common tripled fixed point of F and G, i.e.,

p = F (p, q, r) = G(p, q, r)

q = F (q, p, q) = G(q, p, q)

r = F (r, q, p) = G(r, q, p).

Since, we also have

u = F (u, v, w) = G(u, v, w)

v = F (v, u, v) = G(v, u, v)

w = F (w, v, u) = G(w, v, u).

Thus, we get these

d(u, p) = d(F (u, v, w), F (p, q, r))

≤ αd(u, p) + βd(v, q) + γd(w, r) + (1− (α+ β + γ))d(A,B)

≤ (α+ β + γ) max{d(u, p), d(v, q), d(w, r)}.

Similarly, it can be shown that

d(v, q) ≤ (α+ β + γ) max{d(u, p), d(v, q), d(w, r)}

and

d(w, r) ≤ (α+ β + γ) max{d(u, p), d(v, q), d(w, r)},

which imply that
max{d(u, p), d(v, q), d(w, r)} ≤ 0.

Hence, d(u, p) = 0, i.e., u = p. Moreover, v = q, w = r are also proved in the same
way. That is, (u, v, w) and (p, q, r) is same.

3.3 Some Examples

Next, we illustrate examples satisfying Theorem 3.8 and Theorem 3.10, re-
spectively.

Example 3.11. In metric space (X, d) where d : X×X → R defined by d(x, y) =
|x − y| for all x, y ∈ X. Let X be a set of real numbers. Consider closed subsets
A = [0.5, 2] and B = [−2,−0.5] of X. It is easy to see that d(A,B) = 1. Define
F : A3 → B and G : B3 → A by



302 Thai J. Math. 16 (2018)/ P. Dechboon et al.

F (x, y, z) =
−x− 4y − 3z − 8

24
and G(u, v, w) =

−u− 4v − 3w + 8

24

for all x, y, z ∈ A and u, v, w ∈ B. We now choose α = 1
24 , β = 1

6 and γ = 1
8 which

α+ β + γ = 1
24 + 1

6 + 1
8 = 1

3 < 1. Then, we get

d(F (x, y, z), G(u, v, w)) =
∣∣∣−x− 4y − 3z − 8

24
− −u− 4v − 3w + 8

24

∣∣∣
≤ |x− u|+ 4|y − v|+ 3|z − w|

24
+

2

3

=
|x−u|

24
+
|y−v|

6
+
|z−w|

8
+

(
1−

(
1

24
+

1

6
+

1

8

))
,

which implies that (F,G) is a generalized cyclic contraction mapping. Since the
pairs (A,B) and (B,A) satisfy the property strongly UC. By Theorem 3.8, all its
assumptions hold then F has a unique tripled best proximity point (u, v, w) ∈ A3

and G also has a unique tripled best proximity point (u∗, v∗, w∗) ∈ B3. More-
over, it can be seen that F (0.5, 0.5, 0.5) = −0.5, G(−0.5,−0.5,−0.5) = 0.5 and
d(F (0.5, 0.5, 0.5), G(−0.5,−0.5,−0.5)) = 1. That is, (0.5, 0.5, 0.5) is a tripled best
proximity point of F and (−0.5,−0.5,−0.5) is a tripled best proximity point of G.

Example 3.12. Let X = R. Define the discrete metric d : X × X → [0, 1] on

X by d(x, y) = |x| + |y| for all x, y ∈ X. Let A =
⋂

n∈N B

(
−1, 1 +

1

n

)
and

B =
⋂

n∈N B

(
1, 1 +

1

n

)
be subsets of X. Define F : (A ∪ B)3 → A ∪ B and

G : (A ∪B)3 → A ∪B by

F (x, y, z) = −0.4x− 0.1y − 0.3z and G(u, v, w) = 0

for all x, y, z, u, v, w ∈ A ∪B. Then, we again consider

d(F (x, y, z), G(u, v, w)) = | − 0.4x− 0.1y − 0.3z + 0|
= | − 0.4x− 0.1y − 0.3z|
≤ 0.4(|x|+ |u|) + 0.1(|y|+ |v|) + 0.3(|z|+ |w|)
= αd(x, u) + βd(y, v) + γd(z, w),

which implies that (F,G) is a generalized cyclic contraction mapping where α =
0.4, β = 0.1 and γ = 0.3. Since d(A,B) = 0, by Theorem 3.10, all its assumptions
hold then F and G has a common tripled fixed points in (A∪B)3 which is (0,0,0).

4 Conclusion

Finally, we get the existence and uniqueness theorem of a tripled best proximity
point under the property strongly UC of distinct closed subsets in a complete
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metric spaces. Furthermore, we can reduce the theorem to be the existence and
uniqueness of a common tripled fixed point by adding the condition that the
considered sets have nonempty intersection.
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