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1 Introduction and Statement of Results

Let P(z) be a polynomial of degree n and P’ (z) be its derivative, then accord-
ing to a famous result known as Berstein’s inequality (see [I1 2])

maxt [P (2)] < nmax [ P(2)] (1)

In (1) equality holds only for P(z) = az™ |a| # 0, that is, if and only if P(2) has
all zeros at the origin. Inequality (1) was extended to L,-norm, p > 1 by Zygmund
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[3], who proved that, if P(z) is a polynomial of degree n, then

{;ZTP’(J’)IW}; <n {;T]rlP(e”)lw};- (2)

In (2) equality holds only for P(z) = az", |a| # 0. If we let p — oo in (2), we get
inequality (1).

Let Do P(z) = nP(z) + (o — z)P'(2) denote the polar derivative of P(z) with
respect to a point a.

The polynomial D, P(z) is of degree at most n—1 and generalizes the ordinary
derivative P'(z) in the sense that

DQP(Z) ’

lim =P (). (3)

a—o00 o

As an extension of (1) to the polar derivative, Aziz and Shah ([4], Theorem 4
with & = 1 ) have shown that, if P(z) is a polynomial of degree n, then for every
real or complex number o with |o| > 1 and for |z] =1,

IDaP(2)| < nla] max | P()]. ()
z|l=

Inequality (4) becomes equality for P(z) = az™ a # 0. If we divide the two sides
of (4) by || and let |a] — 0o, we get inequality (1).

As a generalization of (2) to the polar derivative. Aziz et all [5] proved the
following result:

Theorem 1.1. If P(z) is a polynomial of degree n, then for every complex number
a with o] > 1 and p > 1

{/027T |DaP(6i9)’pd9}1/p < ] +1) {/02” |P(e“’)|pd9}1/p. 5

For the class of polynomials having no zeros in |z| < 1, Inequality (2) can be
improved. In fact, it was shown by De-Bruijn [0] that, if P(z) # 0 in |z| < 1, then

forp>1
27
U

1/p

P’(eie)‘pde}l/pg nCp{/O%’P(ewﬂde} , (©6)

1 2r " -1/p
= 1+e )
C, {%/0 |1+ €| d¢} (7)

Inequality (6) is best possible with equality for P(z) = az" + b, |a| = |b|. By
letting p — oo, in (6), it follows that if P(z) # 0 in |z| < 1, then

where

max |P'(2)| < 5 max |P(2)]. ®)

|2l |2l
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Inequality (8) was conjuctured by Erdo-s and later verified by Lax [7]. Aziz
[8] extended (8) to the polar derivative of a polynomial and proved that, if P(z) is
a polynomial of degree n which does not vanish in |z| < 1, then for every complex
number « with |a] > 1,

max | Do P(2)] < g(lal+ 1) max [P(2)]. (9)

[z]=1

The estimate (9) is best possible with equality for P(z) = 2" + 1. If we divide
both sides of (9) by |«| and let || — oo, we get inequality (8). As an extension to
the polar derivative, the following generalizations of (6) and (9) has been proved:

Theorem 1.2. If P(z) is a polynomial of degree n which does not vanish in |z| < 1,
then for every complex number o with |a] > 1 and p > 1

{/027r | Do P(e)[ de}l/p < n(la|+1)C, {/0% 1P| d&}l/p7 (10)

where C), is defined by (7).

In this paper, we prove a result which generalize the above theorem and there
by obtain compact generalizations of many polynomial inequalities as well. In fact,
we prove:

Theorem 1.3. If P(z) is a polynomial of degree m which does not vanish in
|z| <k <1, then for every o, 8 € C with |a| >k, || <1 andp>1

27 p 1/p
U )
0
1/p

<n(1+\a|+2(| of - )|5|) {/Oﬂ]P(ew)VDd&} , (11)

k+1
where C), is defined by (7).
Or equivalently,

eiGDaP(eiG) + n(|2|+—1}€) ﬁp(eze)

i0 0 (ol = k) 55yt (lal = k), o [P

Remark 1.4. In Theorem |1.3} if we choose B =0 and k =1, we get zmmedzately
Theorem [L2]

If we choose k = 1 in Theorem [I.3] then we obtain the following corollary:

Corollary 1.5. If P(z) is a polynomial of degree n which does not vanish in
|z| < 1, then for complex numbers c, 5 with || > 1, |B| <1 andp >0

o P 1/p
i 7re) o)
0
1/p

€Dy P(e?) + n(|a| — 1)=
n(1+la+(|al—1)lﬁ>0p{ / ”!P<e”>|”d9} L (12)

5 P(eiﬁ)
where C), is defined by (7).
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2 Lemmas

For the proof of our main theorem, we need the following lemmas. The first
is due to Zireh [9.

Lemma 2.1. Let Q(2) be a polynomial of degree n having all its zeros in |z| <
k,k <1 and P(z) a polynomial of degree atmost n. If |P(z)| < |Q(z)| for |z| =
k <1, then for every o, B € C with |a| > k, |B| <1

(laf = k)
E+1

(laf = k)

D,P
z (z)+n Pl

ZDaQ(Z) +n ﬁQ(Z) .

6P(z)’ <

The next lemma is due to Aziz and Rather [5] (see also [10]).
Lemma 2.2. If P(z) is a polynomial of degree n such that P(0) # 0 and Q(z) =
z"P(i) , then for every p > 0 and ¢ real

27 2m
/O /O

3 Proof of the Theorem

Proof of Theorem Let P(z) be a polynomial of degree n which does
not vanish in |z| < £ < 1. By Lemma for complex numbers «, 8 with |a| > k,
|8] < 1, we have

2m

P(e)| db.

Q/(€i9)+ei¢P,(6w)‘pd9d¢ < n”/
0

(laf = k)
k+1

(lof — k)

D,P
z (z2)+n E 1

BP(2)| < |2DaQ(2) +n BQ(2)]. (13)

On the other hand, for every real ¢ and ¢ > 1, we have
C+e?] > [1+ e
This implies for any p > 0,

o _ 1/p 2 _ /p
([Cieverpael "= {[Meera™
O 0
If eiODaP(eiG) + n%ﬂp(ew) 75 0, we can take

_ eieDaQ(eiG) +n(|z\+—1’f)ﬂQ(ei9)
€ Do P(eif) + n(li\_;lk) ﬂP(ew)’

where according to (13), |¢| > 1. Now

2
/0

6i9DaQ(6i9)+n<‘2tlk) BQ()+¢[e Do P(e) 41

(lo| —k) ioy|”
Tﬂﬁp(e 0)] do
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P 2w )
/ ¢+ e do.
0

P 27 )
/ |1+ e|" do.
0

If ¢ D, P(e*) +n%ﬂp(ew) = 0, then the later inequality is trivally true.
Integrating both sides of the above inequality with respect to 6 in [0, 27), we obtain

v

‘O‘| _ k) Bp(ew)

> eieDaP(ew) +pat k)ﬁp(eie)

ZGD Q 10) <|2|+ : )BQ(G'LH)

p

(jal = ) s

+ei¢[ei9DaP(ei0)_'_n |

BP(e")]

eieDaP(ew) + n(|a| — k) ﬁP(e“’)

p 2
ip|P
] da/o |L4+€?|"dp.  (15)

27
2/
0

Now for 0 < 6 < 27,

eiGDaQ(eiG) + n(|a| — k) ﬂQ(ew) + €i¢ [eiODaP(eiG) + n(|a| — k)ﬂp(ew):| ‘

k+1 k+1
[ { (a— eiQ)Q/(eiG)} + n('j:'—gf)m(e”)
[ { +(a— ei")P’(ew)} + n(]O{j'_;lk)b’P(eie)} ‘ ..................... (16)
[ o{nae) - 0@/} + actq (@) + w8 =D s

+ ¢ [eie{nP(ew) —etfp (eie)} + aet? P’ (e') + ni( —

Since Q(z) = z"P(i), we have P(z) = Z"Q<Z> and it can be easily verified
that for 0 < 0 < 27
nP(e) — ¢ P (%) = e =DIY (0
and
nQ(ew) . eiGQ (ew) _ ei(nfl)ep/(em).
From (17), we have

eiQDaQ(eiO) (|2|+1 )BQ( ) 4¢ eiaDaP(eiQ)_’_n('z“Jrl )ﬁp( )H
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¢ e TVIP () 1|+ aet? | Q' (') + e P (")
ey | |

(laf = k)
E+1

+n

B {Q(ew) + ewP(eie)} + e'feif im0y (eie)‘ ............... (18)

Therefore (15) in conjuction with (18) gives,

(L

|:ei9€i(n—1)9{P1(ei.9) + ei¢Q'(ei9)}:| +aei0 [Q’(eie) + ei¢P'(ei9):|

D 1/p
B [Q(ei9)+ei¢P(ei0)] d9d¢>}

P 2m ‘ 1/p
d9/ |1+e“‘5|pd¢>} :
0

(la = F)

T

eiGDaP(eiG) + n(|a‘ — k)ﬂp(ew)

27
=4,
U i

By Minkowski inequality, we have

{(
([ [l

0D W Pe i9) n(|2‘+_1k)ﬁP(ew)

P 2m 4 1/p
de/ |1+e’¢|pd¢}
0

» 1/p
10 +61¢P( 19)‘ d9d¢}

2r 2w P 1/p
10 i
+ {/0 /0 { )+e P (e’ )} d0d¢}
27 2w P 1/p
|04| —k) i0 i i0
+{/0 /0 F 1 {Q(e )+ e ?P(e )H dfd¢

(laf = k)
k+1

27 27 P 1/p

{/ / ) + e?P (e 19)‘ ded¢>} {1+|a|}+ n
27 2 ) ) ) 1/17

{ / / ‘Q(ew)—&-ewP(e“g)‘pdé‘dgb} .
0 0

By Lemma 2, we have

27 V4 2m ) 1/p
{/ ) de/ |1+ef¢}”d¢>}

0 0
1/p
e’ dG} {1+|a|} +2n/(k+1)

{
{ o) de}l/p
[n1+la k|+1)5'H /f!P(e”)l”de}l/p.

]

eiGDaP(eie) + n(\?—;lk)ﬁp(ew

(1o —k)ﬁ‘
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This implies,

{

eiODaP(eié) 4 n(|(]z|+_1k') ﬂp(eie)

p 1/p
—k
ap <n(i+lal+ 22 =ane,

([ inera)”

1Pl
T+ el

where C), is defined by (7). Or equivalently,

||ei9DaP(ei0)+n(|z|_|__lk) (|a‘ _k)

)

BP ()], < n(l +lal +2
This completes the proof.
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