http://thaijmath.in.cmu.ac.th

On the Inequalities Concerning to the Polar Derivative of a Polynomial with Restricted Zeros

Irshad Ahmad †,1 , Abdul Liman † and Wali Mohammad Shah ‡

[†]Department of Mathematics, National Institute of Technology Srinagar 190006, India

e-mail: irshadmaths84@rediffmail.com (I. Ahmad) abliman@rediffmail.com (A. Liman)

 $^{\ddagger} Jammu$ and Kashmir Institute of Mathematical Sciences Srinagar, 190008, India

e-mail: wmshah@rediffmail.com

Abstract: In this paper, we prove an L_p -inequality concerning the polar derivative of a polynomial with restricted zeros.

 $\mathbf{Keywords}$: polynomials; polar derivative; integral inequalities in the complex domain.

2010 Mathematics Subject Classification: 30A06; 30A64.

1 Introduction and Statement of Results

Let P(z) be a polynomial of degree n and P'(z) be its derivative, then according to a famous result known as Berstein's inequality (see [1, 2])

$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|. \tag{1}$$

In (1) equality holds only for $P(z) = \alpha z^n$, $|\alpha| \neq 0$, that is, if and only if P(z) has all zeros at the origin. Inequality (1) was extended to L_p -norm, $p \geq 1$ by Zygmund

Copyright $\odot\,$ 2018 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

[3], who proved that, if P(z) is a polynomial of degree n, then

$$\left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P'(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \le n \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}.$$
 (2)

In (2) equality holds only for $P(z) = \alpha z^n$, $|\alpha| \neq 0$. If we let $p \to \infty$ in (2), we get inequality (1).

Let $D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z)$ denote the polar derivative of P(z) with respect to a point α .

The polynomial $D_{\alpha}P(z)$ is of degree at most n-1 and generalizes the ordinary derivative P'(z) in the sense that

$$\lim_{\alpha \to \infty} \frac{D_{\alpha} P(z)}{\alpha} = P'(z). \tag{3}$$

As an extension of (1) to the polar derivative, Aziz and Shah ([4], Theorem 4 with k=1) have shown that, if P(z) is a polynomial of degree n, then for every real or complex number α with $|\alpha| > 1$ and for |z| = 1,

$$|D_{\alpha}P(z)| \le n|\alpha| \max_{|z|=1} |P(z)|. \tag{4}$$

Inequality (4) becomes equality for $P(z) = az^n, a \neq 0$. If we divide the two sides of (4) by $|\alpha|$ and let $|\alpha| \to \infty$, we get inequality (1).

As a generalization of (2) to the polar derivative. Aziz et all [5] proved the following result:

Theorem 1.1. If P(z) is a polynomial of degree n, then for every complex number α with $|\alpha| \geq 1$ and $p \geq 1$

$$\left\{ \int_{0}^{2\pi} \left| D_{\alpha} P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \leq n(|\alpha| + 1) \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}. \tag{5}$$

For the class of polynomials having no zeros in |z| < 1, Inequality (2) can be improved. In fact, it was shown by De-Bruijn [6] that, if $P(z) \neq 0$ in |z| < 1, then for $p \geq 1$

$$\left\{ \int_{0}^{2\pi} \left| P'(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \le n C_{p} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}, \tag{6}$$

where

$$C_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| 1 + e^{i\phi} \right|^p d\phi \right\}^{-1/p}.$$
 (7)

Inequality (6) is best possible with equality for $P(z) = az^n + b$, |a| = |b|. By letting $p \to \infty$, in (6), it follows that if $P(z) \neq 0$ in |z| < 1, then

$$\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)|. \tag{8}$$

Inequality (8) was conjuctured by $Erdo^{\cdot\cdot}s$ and later verified by Lax [7]. Aziz [8] extended (8) to the polar derivative of a polynomial and proved that, if P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for every complex number α with $|\alpha| \ge 1$,

$$\max_{|z|=1} |D_{\alpha}P(z)| \le \frac{n}{2} (|\alpha|+1) \max_{|z|=1} |P(z)|. \tag{9}$$

The estimate (9) is best possible with equality for $P(z) = z^n + 1$. If we divide both sides of (9) by $|\alpha|$ and let $|\alpha| \to \infty$, we get inequality (8). As an extension to the polar derivative, the following generalizations of (6) and (9) has been proved:

Theorem 1.2. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for every complex number α with $|\alpha| \ge 1$ and $p \ge 1$

$$\left\{ \int_{0}^{2\pi} \left| D_{\alpha} P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \le n(|\alpha| + 1) C_{p} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}, \tag{10}$$

where C_p is defined by (7).

In this paper, we prove a result which generalize the above theorem and there by obtain compact generalizations of many polynomial inequalities as well. In fact, we prove:

Theorem 1.3. If P(z) is a polynomial of degree n which does not vanish in $|z| < k \le 1$, then for every $\alpha, \beta \in C$ with $|\alpha| \ge k$, $|\beta| \le 1$ and $p \ge 1$

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \\
\leq n (1 + |\alpha| + 2 \frac{(|\alpha| - k)}{k + 1} |\beta|) C_{p} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}, (11)$$

where C_p is defined by (7).

Or equivalently,

$$||e^{i\theta}D_{\alpha}P(e^{i\theta}) + n\frac{(|\alpha| - k)}{k + 1}\beta P(e^{i\theta})||_{p} \le n(1 + |\alpha| + 2\frac{(|\alpha| - k)}{k + 1}|\beta|)\frac{||P(e^{i\theta})||_{p}}{||1 + e^{i\phi}||_{p}}.$$

Remark 1.4. In Theorem 1.3, if we choose $\beta = 0$ and k = 1, we get immediately Theorem 1.2.

If we choose k = 1 in Theorem 1.3, then we obtain the following corollary:

Corollary 1.5. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for complex numbers α , β with $|\alpha| \ge 1$, $|\beta| \le 1$ and $p \ge 0$

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n(|\alpha| - 1) \frac{\beta}{2} P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \\
\leq n(1 + |\alpha| + (|\alpha| - 1)|\beta|) C_{p} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}, (12)$$

where C_p is defined by (7).

2 Lemmas

For the proof of our main theorem, we need the following lemmas. The first is due to Zireh [9].

Lemma 2.1. Let Q(z) be a polynomial of degree n having all its zeros in $|z| < k, k \le 1$ and P(z) a polynomial of degree atmost n. If $|P(z)| \le |Q(z)|$ for $|z| = k \le 1$, then for every $\alpha, \beta \in C$ with $|\alpha| \ge k$, $|\beta| \le 1$

$$\left| z D_{\alpha} P(z) + n \frac{(|\alpha| - k)}{k + 1} \beta P(z) \right| \leq \left| z D_{\alpha} Q(z) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(z) \right|.$$

The next lemma is due to Aziz and Rather [5] (see also [10]).

Lemma 2.2. If P(z) is a polynomial of degree n such that $P(0) \neq 0$ and $Q(z) = z^n P\left(\frac{1}{\overline{z}}\right)$, then for every $p \geq 0$ and ϕ real

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| Q^{'}(e^{i\theta}) + e^{i\phi} P^{'}(e^{i\theta}) \right|^{p} d\theta d\phi \leq n^{p} \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta.$$

3 Proof of the Theorem

Proof of Theorem 1.3. Let P(z) be a polynomial of degree n which does not vanish in $|z| < k \le 1$. By Lemma 2.1, for complex numbers α , β with $|\alpha| \ge k$, $|\beta| \le 1$, we have

$$\left| z D_{\alpha} P(z) + n \frac{(|\alpha| - k)}{k + 1} \beta P(z) \right| \leq \left| z D_{\alpha} Q(z) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(z) \right|. \tag{13}$$

On the other hand, for every real ϕ and $\zeta \geq 1$, we have

$$|\zeta + e^{i\phi}| \ge |1 + e^{i\phi}|.$$

This implies for any $p \geq 0$,

$$\left\{ \int_{0}^{2\pi} \left| \zeta + e^{i\phi} \right|^{p} d\phi \right\}^{1/p} \ge \left\{ \int_{0}^{2\pi} \left| 1 + e^{i\phi} \right|^{p} d\phi \right\}^{1/p}. \tag{14}$$

If $e^{i\theta}D_{\alpha}P(e^{i\theta}) + n\frac{(|\alpha|-k)}{k+1}\beta P(e^{i\theta}) \neq 0$, we can take

$$\zeta = \frac{e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n \frac{(|\alpha| - k)}{k+1} \beta Q(e^{i\theta})}{e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k+1} \beta P(e^{i\theta})},$$

where according to (13), $|\zeta| \geq 1$. Now

$$\int_0^{2\pi} \left| e^{i\theta} D_\alpha Q(e^{i\theta}) + n \frac{(|\alpha|-k)}{k+1} \beta Q(e^{i\theta}) + e^{i\phi} [e^{i\theta} D_\alpha P(e^{i\theta}) + n \frac{(|\alpha|-k)}{k+1} \beta P(e^{i\theta})] \right|^p d\phi$$

$$= \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^p \int_0^{2\pi} \left| \zeta + e^{i\phi} \right|^p d\phi.$$

$$\geq \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^p \int_0^{2\pi} \left| 1 + e^{i\phi} \right|^p d\phi.$$

If $e^{i\theta}D_{\alpha}P(e^{i\theta})+n\frac{(|\alpha|-k)}{k+1}\beta P(e^{i\theta})=0$, then the later inequality is trivally true. Integrating both sides of the above inequality with respect to θ in $[0,2\pi)$, we obtain

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(e^{i\theta}) \right|
+ e^{i\phi} \left[e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right]^{p} d\theta d\phi
\ge \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^{p} d\theta \int_{0}^{2\pi} \left| 1 + e^{i\phi} \right|^{p} d\phi.$$
(15)

Now for $0 \le \theta < 2\pi$,

$$\begin{aligned} & \left| e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(e^{i\theta}) + e^{i\phi} \left[e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right] \right| \\ &= \left| \left[e^{i\theta} \left\{ n Q(e^{i\theta}) + (\alpha - e^{i\theta}) Q'(e^{i\theta}) \right\} + n \frac{(|\alpha| - k)}{k + 1} \beta Q(e^{i\theta}) \right. \\ & + e^{i\phi} \left[e^{i\theta} \left\{ n P(e^{i\theta}) + (\alpha - e^{i\theta}) P'(e^{i\theta}) \right\} + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right] \right| \dots (16) \\ &= \left| \left[e^{i\theta} \left\{ n Q(e^{i\theta}) - e^{i\theta} Q'(e^{i\theta}) \right\} + \alpha e^{i\theta} Q'(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(e^{i\theta}) \right] \right. \\ & + e^{i\phi} \left[e^{i\theta} \left\{ n P(e^{i\theta}) - e^{i\theta} P'(e^{i\theta}) \right\} + \alpha e^{i\theta} P'(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right] \dots (17) \end{aligned}$$

Since $Q(z) = z^n \overline{P\left(\frac{1}{\overline{z}}\right)}$, we have $P(z) = z^n \overline{Q\left(\frac{1}{\overline{z}}\right)}$ and it can be easily verified that for $0 \le \theta < 2\pi$

$$nP(e^{i\theta}) - e^{i\theta}P'(e^{i\theta}) = e^{i(n-1)\theta}\overline{Q'(e^{i\theta})}$$

and

$$nQ(e^{i\theta}) - e^{i\theta}Q'(e^{i\theta}) = e^{i(n-1)\theta}\overline{P'(e^{i\theta})}.$$

From (17), we have

$$\left| e^{i\theta} D_{\alpha} Q(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta Q(e^{i\theta}) + e^{i\phi} \left[e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right] \right|$$

$$= \left| \left[e^{i\theta} \left\{ e^{i(n-1)\theta} \overline{P'(e^{i\theta})} \right\} \right] + \alpha e^{i\theta} \left[Q'(e^{i\theta}) + e^{i\phi} P'(e^{i\theta}) \right] \right.$$

$$\left. + n \frac{(|\alpha| - k)}{k+1} \beta \left[Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta}) \right] + e^{i\phi} e^{i\theta} e^{i(n-1)\theta} \overline{Q'(e^{i\theta})} \right| \dots (18)$$

Therefore (15) in conjuction with (18) gives,

$$\left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| \left[e^{i\theta} e^{i(n-1)\theta} \left\{ \overline{P'(e^{i\theta})} + e^{i\phi} \overline{Q'(e^{i\theta})} \right\} \right] + \alpha e^{i\theta} \left[Q'(e^{i\theta}) + e^{i\phi} P'(e^{i\theta}) \right] \right| + n \frac{(|\alpha| - k)}{k+1} \beta \left[Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta}) \right] \right|^{p} d\theta d\phi \right\}^{1/p} \\
\ge \left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k+1} \beta P(e^{i\theta}) \right|^{p} d\theta \int_{0}^{2\pi} \left| 1 + e^{i\phi} \right|^{p} d\phi \right\}^{1/p}.$$

By Minkowski inequality, we have

$$\begin{split} &\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^{p} d\theta \int_{0}^{2\pi} \left| 1 + e^{i\phi} \right|^{p} d\phi \right\}^{1/p} \\ &\leq \left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| Q'(e^{i\theta}) + e^{i\phi} P'(e^{i\theta}) \right|^{p} d\theta d\phi \right\}^{1/p} \\ &\quad + \left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| \alpha \left\{ Q'(e^{i\theta}) + e^{i\phi} P'(e^{i\theta}) \right\} \right|^{p} d\theta d\phi \right\}^{1/p} \\ &\quad + \left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| n \frac{(|\alpha| - k)}{k + 1} \beta \left\{ Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta}) \right\} \right|^{p} d\theta d\phi \right\}^{1/p} \\ &= \left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| Q'(e^{i\theta}) + e^{i\phi} P'(e^{i\theta}) \right|^{p} d\theta d\phi \right\}^{1/p} \left\{ 1 + |\alpha| \right\} + \left| n \frac{(|\alpha| - k)}{k + 1} \beta \right| \\ &\quad \left\{ \int_{0}^{2\pi} \int_{0}^{2\pi} \left| Q(e^{i\theta}) + e^{i\phi} P(e^{i\theta}) \right|^{p} d\theta d\phi \right\}^{1/p} . \end{split}$$

By Lemma 2, we have

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^{p} d\theta \int_{0}^{2\pi} \left| 1 + e^{i\phi} \right|^{p} d\phi \right\}^{1/p} \\
\leq \left\{ 2n^{p} \pi \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \left\{ 1 + |\alpha| \right\} + 2n/(k + 1) \left| (|\alpha| - k)\beta \right| \\
\left\{ 2\pi \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \\
= \left[n(1 + |\alpha|) + 2n \frac{(|\alpha| - k)}{k + 1} |\beta| \right] \left\{ 2\pi \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p}.$$

This implies,

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} P(e^{i\theta}) + n \frac{(|\alpha| - k)}{k + 1} \beta P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p} \le n (1 + |\alpha| + 2 \frac{(|\alpha| - k)}{k + 1} |\beta|) C_{p} \\
\left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{p} d\theta \right\}^{1/p},$$

where C_p is defined by (7). Or equivalently,

$$||e^{i\theta}D_{\alpha}P(e^{i\theta}) + n\frac{(|\alpha| - k)}{k+1}\beta P(e^{i\theta})||_{p} \le n(1 + |\alpha| + 2\frac{(|\alpha| - k)}{k+1}|\beta|)\frac{||P(e^{i\theta})||_{p}}{||1 + e^{i\phi}||_{p}}.$$

This completes the proof.

Acknowledgement: The authors are grateful to the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

- [1] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros, (Singapore: World Scientific), 1994.
- [2] A.C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941) 567-579.
- [3] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (2) (1932) 392-400.
- [4] A. Aziz, W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math. 29 (1998) 163-173.
- [5] A. Aziz, N.A. Rather, Some Zygmund type L^p -inequality for polynomial, J. Math. Anal. Appl. 289 (2004) 14-29.
- [6] N.G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. Ser. A 50 (1947) 1265-1272; Indag. Math. 9 (1947) 591-598.
- [7] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S) 50 (1944) 509-513.
- [8] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approximation Theory 55 (1988) 183-193.
- [9] A. Zireh, Inequalities for the polar derivative of a polynomial, Hindawi Publishing Corporation, Abstr. Appl. Anal. 2012 (2012), Article ID 181934, 13 pages.

[10] Q.I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969) 295-309.

(Received 25 October 2012) (Accepted 9 September 2013)

 $\mathbf{T}_{HAI}\ \mathbf{J.}\ \mathbf{M}_{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th