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Abstract : Recently, several articles have been written on the cone metric spaces.
Despite the fact that any cone metric space is equivalent to a usual metric space,
we aim in this paper to deal with some of the published articles on cone metric
spaces by repairing some gaps, providing new proofs and extending their results to
topological vector spaces. Several authors have worked with a class of special cones
which known as strongly minhedral cones where the strongly minihedrality condi-
tion (that is, each nonempty bounded above subset has a least upper bound) is very
restrictive. Another goal of this article is to eliminate or mitigate this condition.
Furthermore, we present some examples in order to show that the imagination of
many authors that the behavior of the ordering induced by a strongly minihedral
cone is just as the behavior of the usual ordering on the real line, that has caused
an error in their proofs, is not correct. We establish a relationship between strong
minihedrality and total orderness. Finally, a fixed point theorem for a contractive
mapping, which generalizes the corresponding result given in [1], is investigated.
One can consider the results of this paper as a generalization and correction of
some recent papers that have been written in this area.
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1 Introduction

Investigation of K-metric space (also known as cone metric space) was in-
troduced by several Russian authors in the middle of 20th century [2]. Ordered
normed spaces and cones have applications in applied mathematics, for instance
in using Newton’s approximation method [3]. They differ from usual metric spaces
in the fact that the values of distance functions are not positive real numbers, but
elements of a cone in some normed space [4] or topological vector space [5–9]. L.G.
Huang and X. Zhang [4], re-introduced cone metric spaces and also went further,
defining convergent and Cauchy sequences in the terms of interior points of the
underlying cone. They proved some fixed point theorems for this class of spaces.

Recently, several articles have been written on the topological properties of
cone metric spaces. In some of them there are some gaps which one of the aims
of this paper is to deal with them by providing new proofs and extending the
results to general case. Several authors were interested to work with strongly
minhedral cones where this condition (that is, each nonempty bounded above
subset has the least upper bound) is very restrictive. Another goal of this note is
to eliminate or mitigate this condition. Furthermore, some examples are presented
in this article to show that the behavior of the ordering induced by a strongly
minihedral cone is so different from the behavior of the usual ordering on the real
line. Some authors used in their proofs while working on strongly minihedral that
the oder is total without imposing such an assumption. We shall repair this and
discuss the relationship between being strongly minihedral and total orderedness.
Finally, a fixed point theorem for a contractive mapping is presented which is an
improvement of the corresponding result given in [1].
In the rest of this section we recall some definitions which are needed in the sequel.

Let E be a vector space with its zero vector θ. By a cone P 6= {θ} we
understand a subset of E such that λP ⊆ P for all λ ≥ 0 and P ∩ −P = {θ}.
Given a cone P ⊆ E, we define a partial ordering � with respect to P by x � y if
and only if y− x ∈ P . We shall write x ≺ y ( or y � x) to indicate that x � y but
x 6= y, while x� y will stand for y − x ∈ intP if P has nonempty interior. From
now onward, we always suppose that E is a real topological vector space (t.v.s.,
for short) unless otherwise explicitly stated, with its zero vector θ, P is a closed
cone with intP 6= ∅, e ∈ intP and � a partial ordering induced by P . The cone
P is called strongly minihedral if for any nonempty subset of E which is bounded
above with respect to the ordering induced by P has a least upper bound. Also
P is called regular if for any increasing sequence which is bounded from above is
convergent, that is, if {xn} is a sequence such that x1 � x2 � ... � y for some
y ∈ E then there is x ∈ E such that {xn} converges to x. A cone P of a t.v.s E is
said to be normal if X has a local base of zero consisting of P− full sets, where a
subset A is said to be P− full if {z ∈ E : x � z � y} ⊆ A for all x, y ∈ A (see, for
more details, [10, 11]). One can see that when (E, ‖ · ‖) is a normed space and P
a cone of E then being normal is equivalnt to finding a constant k ≥ 1 such that
for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ k‖y‖.

By a cone metric space we mean an ordered pair (X, d) where, X is any
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nonempty set and d : X ×X → E is a mapping, called cone metric, satisfying the
following conditions:

(i) θ � d(x, y), for all x, y ∈ X, d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

It is easy to see that if (X, d) is a cone metric space, then the family
{B(x, c)}(x,c)∈X×intP is a basis for a topology on X, where

B(x, c) = {y ∈ X : d(x, y)� c} and c ∈ intP.

Definition 1.1. A sequence (xn) in a cone metric space (X, d) is said to converge
to an element x ∈ X if for any c ∈ intP there exists a natural number n0 such
that

d(xn, x)� c, ∀n > n0.

Definition 1.2. A sequence (xn) in a cone metric space (X, d) is said to be Cauchy
if for any c ∈ intP there exists a natural number n0 such that

d(xn, xm)� c, ∀n,m > n0.

Cone metric spaces in which every Cauchy sequence is convergent are called
complete cone metric spaces.

2 Main Results

In this section we give the main results of the paper. We review some results
obtained in the papers [1, 12–15] and then we provide some examples which show
that there are some gaps in them. Finally, we repair, by giving new proofs, and
extend them to the general topological vector space (t.v.s.) case.

Theorem 2.1. (see [16, Theorem 2.1] or [3]) If the underlying cone of an ordered
t.v.s is solid and normal, then such the t.v.s must be an ordered normed space.

We begin with the following proposition which is a t.v.s version of [13, Lemma
14] which was proved in the category of locally convex space by means of semi-
norms.

Proposition 2.2. Let (X, d) be a cone metric space over a t.v.s. E and P a
normal cone of E. Then the following assertions are true.

(i) xn → x in (X, d) if and only if d(xn, x)→ θ in E.

(ii) {xn} is a cauchy sequence in (X, d) if and only if d(xn, xm)→ θ in E.
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Proof. To see (i), let xn → x (in X), c ∈ int P, and U ∈ = (local base of zero
of P− full sets). Then there exist a positive number α and a natural number n0
such that αc ∈ U and

d(xn, x) � αc, ∀n ≥ n0. (2.1)

Since U is a P−full set and αc ∈ U then the set {z : θ � z � αc} ⊆ U and so, by
(2.1), we get d(xn, x) ∈ U for all n ≥ n0 and hence xn → x in E.

Conversely, assume d(xn, x)→ θ and c ∈ int P. It is clear that U = c− int P
is a neighborhood of zero and so there exists n0 such that d(xn, x) ∈ U = c− int P
for all n ≥ n0 and hence xn → x (in X). The proof of (ii) is similar to (i).

The following proposition is a t.v.s. version of [13, Lemma 15].

Proposition 2.3. Let (X, d) be a cone metric space over a normal cone of a
topological vector space E. Let {xn} and {yn} be two sequences in X with xn → x
and yn → y. Then d(xn, yn)→ d(x, y) (in E).

Proof. It follows from Proposition 2.2 that d(xn, x)→ θ and d(yn, y)→ θ. Let V
an arbitrary neighborhood of zero. Then there exist an open neighborhood full set
(note P is normal) and a balanced open neighborhood W such that U +W ⊆ V .
Let c ∈ int P . Then there exist a positive number α and a positive integer n0
such that −2αc ∈W, 4αc ∈ U and

d(xn, x)� αc, d(yn, y)� αc, ∀n > n0.

Hence, by triangle inequality, we have

d(xn, yn) � d(xn, x) + d(x, y) + d(y, yn) � d(x, y) + 2αc, ∀n > n0 (2.2)

and

d(x, y) � d(x, xn) + d(xn, yn) + d(yn, y) � d(xn, yn) + 2αc, ∀n > n0. (2.3)

Hence it follows from (2.2) and (2.3) that

θ � d(x, y)− d(xn, yn) + 2αc � 4αc.

Since U is a P− full set with 4αc ∈ U and −2αc ∈W , then

d(x, y)− d(xn, yn) = d(x, y)− d(xn, yn) + 2αc− 2αc ∈ U +W ⊆ V, ∀n > n0.

Since V is an arbitrary open set then the proof is completed.

Remark 2.4. The proof of sufficiency in Proposition 2.2 which have been done
under normality and solidity of the cone can be achieved by Theorem 2.1 and in [4,
Lemma 1, Lemma 4] or [17, Lemma 1.5]. Similarly, the proof of Proposition 2.3
can be achieved alternatively by Theorem 2.1 and in [4, Lemma 5] or [17, Lemma
1.7].
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To prove Hausdorffness of the cone metric space, the authors in [1] assumed
that if (X, d) is a cone metric space and x 6= y are two points in X then d(x, y) =
c � θ is a member of interior of P, that is c ∈ intP (see, [1, page 491]) which is not
true in general. Next, we state and present a proof for the fact that every cone
metric space is Hausdorff.

Theorem 2.5. Every cone metric space (X, d) is Hausdorff.

Proof. Let x 6= y be two arbitrary points in X. If B(x, c) ∩ B(y, c) 6= ∅, for all
c ∈ intP, then there is zc ∈ B(x, c)∩B(y, c) and so by triangle inequality we have
d(x, y) � d(x, z

c
)+d(z

c
, y)� c+ c = 2c, for all c ∈ intP 6= ∅. Hence, for all n ∈ N

and a chosen e ∈ intP 6= ∅ we have

e

n
− d(x, y) ∈ intP.

Letting n tends to∞ and using that the cone is closed, we conclude that −d(x, y) ∈
P . Therefore, d(x, y) = θ and hence x = y which is a contradiction. This completes
the proof.

Remark 2.6. The proof of Theorem 2.5, alternatively can be done by using that
being Hausdorff is a topological property and that every t.v.s cone metric space
is ismorphic to a usual metric space [5].

Proposition 2.7. [1] Every cone metric space is first countable.

Proof. Let e ∈ intP be an arbitrary element. For each x ∈ X, the family
{B(x, 1

ne)}n∈N is a countable set of neighborhoods. If B(x, c) is a neighborhood,
then there is a natural number n such that 1

ne� c and so B(x, 1
ne) ⊂ B(x, c) and

so the proof is finished.

The proof of the locally convex version of Proposition 2.7 can be found in [13].

Corollary 2.8. Let (X, d) be a cone metric space and A a subset of X. A is closed
if and only if A is sequentially closed.

In [1, Proposition 2] and [13, Proposition 25], respectively, the authors used
the notation B(x, c) for the set {x ∈ y : d(y, x) ≤ c}, which was just a notation
and different from the closure of B(x, c) = {y ∈ X : d(y, x)� c}. Below, we give
an example showing that the closure of B(x, c) is a proper subset of B(x, c).

Let X = E = < and P = [0,∞) and define d : X ×X → < as follows:{
d(x, y) = 1, if x 6= y,
d(x, y) = 0, if x = y.

Then B(x, 1) = {x} 6= {y ∈ X : d(x, y) ≤ 1} = X = <.
In fact, in [13], it was proved that the set B(x, c) is sequentially closed. From

the proof, one can conclude that the (sequential) closure of B(x, c) is a subset of
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B(x, c). The extension to arbitrary t.v.s and not necessary locally convex is easy.
Indeed, if {yn} is a sequence with the properties d(yn, x) ≤ c and yn → y, then
for positive number ε there exists nε such that d(ynε , y)� εc. So

d(x, y) ≤ d(ynε , y) + d(ynε , x) ≤ εc+ c = (1 + ε)c.

Hence (1 + ε)c − d(x, y) ∈ P . By letting ε to zero and using the closedness of P
we obtain c− d(x, y) ∈ P.

The following Lemma given in [12] and applied, for example in [15, Lemma
1.9] and [14, page 3].

Lemma 2.9. (i) Every strongly minihedral (not necessarily closed) normal cone
is regular.
(ii) Every strongly minihedral closed cone is normal (is also regular by (i)).

The assumption that the ordering is totally ordered was missed. The following
example shows that total orderness can not be dropped.

Example 2.10. Let E = `∞ = {x = (x1, x2, ...xn, ...) : sup |xn| <∞} and

‖x‖ = sup |xn|.

Clearly, the set P = {x = (x1, x2, ...xn, ...) : xn ≥ 0,∀n = 1, 2, ...} is a cone
of E. Also θ � x = (x1, x2, ...xn, ...) � y = (y1, y2, ...yn, ...) implies that ‖x =
(x1, x2, ...xn, ...)‖ ≤ ‖y = (y1, y2, ...yn, ...)‖ and so P is a normal cone. If A is a
bounded above subset of E then it is easy to see that supA = (a1, a2, ..., an, ...)
where

an = sup{xn : x = (x1, x2, ...xn, ...), x ∈ A}, ∀n = 1, 2, 3...

Hence P is strongly minihedral. Now we show that P is not regular. To see this,
consider the sequence

a(1) = (1, 0, 0, 0, ...), a(2) = (1, 1, 0, 0, ...), a(n) = (1, 1, ..., 1
nthplace︸ ︷︷ ︸, 0, 0, ...), ...

Obviously, a(n) ∈ E and a(n) � a(n+1), for all n = 1, 2, ... and so {a(n)} is an
increasing sequence which a = (1, 1, 1, ...) is an upper bound for it. But the
sequence is not a cauchy sequence because ‖a(n+1) − a(n)‖ = 1. Consequently
{a(n)} is not a convergent sequence and so P is not a regular cone. Clearly, the
investigated ordering via the cone P is not totally ordered.

Remark 2.11. If one review the proofs given for [1, Lemma 2.6] and [1, Lemma
5] will realize that the total orderness assumption is missed there as well. In fact,
total orderness guarantees the existence of an element aM of an ordering space
such that

a− c� aM � a (2.4)
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where a is the supremum of an increasing sequence {an} and c is an element of
the interior of the cone P. Even the relation (2.4) does not hold when the sequence
{an} is constant. For example if we take E = < (the set of real numbers) and
P = [0,∞) then nonempty subset A of < has a supremum in <, say supA = α ,if
and only if the following conditions are satisfied:

(C1) α is an upper bounded (that is, x ≤ α, for all x ∈ A)

(C2) for each c ∈ < with c > 0 ( hat is c ∈ intP ) there is x ∈ A such that
α− c < x.

In general, if the ordering induced by a cone P is totally ordered, then x ≺ y
implies that y − x ∈ intP and α = supA if and only if α fulfils (C1) and (C2) it
is worth mentioning that the above behavior may even fail for arbitrary strongly
minihedral normal cones as can be seen in Example 2.10, or simply let E = <2 and
P = {(x, y) : 0 ≤ x ≤ y} with Euclidean norm. Then, the cone P is normal and
strongly minihedral for which the ordering induced by P on E is neither totally
order (for instance, a = (1, 3) and b = (2, 2) are not comparable) nor x < y implies
y − x ∈ intP (for example (0, 0) ≺ (1, 1) and (1, 1) 6∈ intP ).

Now the question that under which conditions a minihedral cone induces a
totally ordering is posed. One can see that if we add condition (C2) to a minihedral
cone then the ordering induces is a totally ordering and this is an answer to the
question. The simple example Q (the rational numbers) with usual ordering shows
that totally ordering solely cannot imply the existence least upper bound for any
nonempty bounded above subset (for example, A = {x ∈ Q : 0 ≤ x ≤

√
2}). This

means that the totally ordering cannot always ensure the strongly minihedralness.
In summary, it is obvious that the totally ordering (induced by P ) and mini-

hedral property imply the relation (C2).

The next example shows that the normal condition cannot lonely imply the
regular condition (that is a normal cone is not necessary regular).

Example 2.12. Let E = C[0, 1] (the class of all real continuous function on [0, 1])
with the supremum norm and P = {f ∈ E : f(x) ≥ 0,∀x ∈ [0, 1]}. Then P is
a cone with normal constant k = 1 which is not regular. This is clear, since the
sequence {fn(x) = xn} is monotonically decreasing, but not uniformly convergent
to zero function θ and inf{fn(x) = xn : x ∈ [0, 1], n = 1, 2, ...} 6∈ E. This means P
is not strongly minihedral.

Next we present t.v.s version of Lemma 2.9.

Lemma 2.13. Let E be a t.v.s. space and P a cone inducing a total orderness on
E. Then The following statements are true.

(i) If P is strongly minihedral (not necessarily closed) normal cone then it is
regular.

(ii) If P is strongly minihedral closed then it is normal (is also regular by (i)).
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Proof. (i) Let {xn} be an increasing sequence with least upper bound x, that is
x = sup{xn : n = 1, 2, ...} (note that P is a strongly minihedral cone). We claim
that limn→∞ xn = x. Indeed let U be a balanced open full-set of zero (note P is a
normal cone) and e ∈ intP. Then there is a positive number α such that αc ∈ U.
Since x−αc � x and x = sup{xn : n = 1, 2, ...}, then it follows from the definition
of the supremum that there exists xn0 such that xn0 � x−αc and so x−αc � xn0

(note that � is totally ordered). Then

x− αc � xn0
� xn, ∀n > n0

and hence
θ � x− xn � αc, ∀n > n0.

Then since U is a full-set (note θ, αc ∈ U) we get

x− xn ∈ U ∀n > n0,

and so
xn ∈ x− U(= x+ U), ∀n > n0,

(note U is a balanced set) and hence that xn → x.

The proof of (ii) is similar to the proof of (ii) in [12, Lemma 1].

Remark 2.14. Alternatively, by means of Theorem 2.1, the proof of Lemma 2.13
can be proved following the normed space proof version of Lemma 2.9 presented
in [12] after taking into account the total orderness assumption.

Let A be a subset of a cone metric space X. We say that A is bounded if there
exists c ∈ intP such that d(x, y) � c, for all x, y ∈ A. This definition is equivalent
to the following statement:

∃c ∈ intP, a ∈ E; d(a, x) � c, ∀x ∈ A.

It worth noting that in the aforementioned definition we do not need the existence
of the least upper bound for the set {d(x, y) : x, y ∈ A} whence it was necessary
in [1, Definition 6]. Moreover, the definition is an extension of the boundedness
for metric spaces.

The following proposition is a t.v.s. version of in [1, Proposition 3] and in [13,
Proposition 29] by eliminating the strongly minihedral assumption.

Proposition 2.15. Let (X, d) be a cone metric space over a t.v.s. E and P a
normal cone of E. Then A ⊂ X is bounded if and only if the set {d(x, y) : x, y ∈ A}
is a bounded subset of E.

Proof. Let A be bounded and U a balanced open (full-set) neighborhood of zero
(note P is normal). Since A is bounded then there exists c ∈ intP such that

d(x, y) � c, ∀x, y ∈ A. (2.5)
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There is a positive number α such that αc ∈ U . From (2.5), we get αd(x, y) � αc.
Since U is a full set and θ, αc ∈ U , we deduce

αd(x, y) ∈ U, ∀x, y ∈ A.

This means that U absorbs the set {d(x, y) : x, y ∈ A} and so {d(x, y) : x, y ∈ A}
is a bounded subset of E. Conversely, suppose {d(x, y) : x, y ∈ A} is a bounded
subset of E and on the contrary that A is not bounded. Then for all e ∈ intP and
natural number m there exists (xnm , ynm) ∈ A × A such that d(xnm , ynm) � me
and so

me− d(xnm , ynm) ∈ E\P ⊂ E\intP.

Hence,

e− 1

m
d(xnm , ynm) ∈ E\P ⊂ E\intP,

(note E\P stands for the complement of P with respect to E and E\P, E\intP
are closed under positive scalar multiplication), E\intP is closed, and

e− 1

m
d(xnm , ynm)→ e

that e ∈ E\intP which is contradicted by e ∈ intP and so A is a bounded subset
of E. This completes the proof.

Definition 2.16. [1] Let (X, d) be a cone metric space and c ∈ intP. A finite
subset M = {e1, e2, ..., en} of X is called a c−net for A ⊆ X if for each x ∈ A
there exists ei0 ∈M such that d(x, ei0)� c.

The following definition is slightly different from [1, Definition 8] by relaxing
the strongly minihedral condition on the cone.

Definition 2.17. Let (X, d) be a cone metric space. A subset A of X is called
totally bounded if for each c ∈ intP there exist bounded subsets M1, ...,Mk of X
such that

A ⊆ ∪ki=1Mi and d(x, y)� c, ∀x, y ∈Mi, ∀i = 1, 2, ..., k.

It is clear that a finite set is totally bounded and a totally bounded set is
bounded while the converse is not true as the following example.

Example 2.18. Take X = E = < and P = [0,∞) with discrete metric (that is
d(x, y) = 1, if x 6= y and d(x, y) = 0, if x = y). It is clear that X is a bounded
subset (take c=2) but it is not totally bounded because if we take c = 1

2 then Mi,
in the definition of totally boundedness, should be singleton and it is impossible
to cover an infinite set with a finite family of singletons.
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It follows from the proof of Proposition 4 in [1] that the strongly minihedral
assumption is necessary but it has been omitted from the hypothesis of the propo-
sition (see [1, page 492]). In the following, we will prove Proposition 4 in [1] based
upon Definitions 2.12 and 2.13 without using the notion of the strongly minihedral
and its proof is slightly different from that given in [1]. However, for the sake of
completeness we present the proof here again.

Proposition 2.19. Let (X, d) be a cone metric space and A a subset of it. Then
A is totally bounded if and only if for each c ∈ intP , A has a c−net.

Proof. Let A be totally bounded and c ∈ intP . Then there exist bounded subsets
M1, ...,Mk such that A ⊂ ∪ki=1Mi and d(x, y) � c, for all x, y ∈ ∪ki=1Mi and so
M = ∪ki=1Mi is a c−net for A. To see the converse, let c ∈ intP. Hence there
exists M = {e1, ..., en} such that for each x ∈ A there exists ei ∈ M (1 ≤ i ≤ n)
such that d(x, ei) � c. Now we take Mi = B(ei, c) for i = 1, 2, ..., n. It is clear
d(x, y)� c for all x, y ∈Mi, for all i = 1, 2, ..., n and A ⊂ ∪ni=1Mi. This completes
the proof.

The following definition is slightly different from [1, Definition 9].

Definition 2.20. Let (X, d) be a cone metric space. An element c ∈ intP is called
Lebesgue of an open cover Λ = {Gi} for a subset A of (X, d) if for each subset B
of A with d(x, y) ≺ c, for all x, y ∈ B, there exists Gi0 ∈ Λ such that B ⊆ Gi0 .

A subset B of a cone metric space (X, d) is called compact if every open cover
for B can be reduced to finite subcover. Also B is said to be sequentially compact
if for any sequence {xn} in B there exists a subsequence {xnk} of {xn} which is
convergent to a point in B.

Proposition 2.21. [1] Let (X, d) be a cone metric space and A ⊂ X. If A is
sequentially compact, then it is totally bounded.

The following proposition is converse of Proposition 2.21.

Proposition 2.22. Let (X, d) be a complete cone metric space and A ⊂ X. If A
is totally bounded then it is sequentially compact.

Proof. Let A be totally bounded and {xn} a sequence in A. On the contrary
assume that {xn} does not have any cauchy subsequence ((X,d) is complete).
Hence for each subsequence {xnk} there exist c ∈ intP and natural numbers k1, k2
such that c− d(xnk1 , xnk2 ) 6∈ intP. Since A is totally bounded then there is M =
{e1, e2, ..., en} so that, for each x ∈ A, there exists ei ∈M with c

2 −d(x, ei) ∈ intP
and then c−d(xnk1 , xnk2 ) ∈ intP (note that {nk} is infinite and M is finite) which
is a contradiction.

Proposition 2.23. [1] Let (X, d) be a cone metric space and A is sequentially
compact subset of X. Then every open covering for A has a Lebesguse element.
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In the following, we show that a sequential compact set of a cone metric
space is compact set. The proof is slightly different and repair the proof given
in [1, Proposition 7]. Moreover, we do not assume that the cone has strongly
minihedral property.

Proposition 2.24. Let (X, d) be a cone metric space. Then every sequentially
compact subset A ⊂ X is compact.

Proof. Let Λ = {Gi}i∈I be an open cover for A. By Proposition 2.17 there exists
c ∈ intP such that for any B ⊆ A with d(x, y) ≺ c, for all x, y ∈ B, there is
i ∈ I with B ⊂ Gi. It follows from to be totally boundedness of A that there
exist N1, ..., Nk so that A ⊂ ∪ki=1Ni with d(x, y) � c, for all x, y ∈ Ni for all
i = 1, 2, ..., k. Now we take Bi = A ∩ Ni,for all i = 1, 2, ..., k, then Bi ⊆ A and
d(x, y)� c for all x, y ∈ Bi and i = 1, 2, ..., k. Hence, for each i ∈ {1, 2, ..., k} there
exists Gi ∈ Λ such that Bi ⊂ Gi and so A = ∪ki=1Bi ⊂ ∪ki=1Gi and this completes
the proof.

Definition 2.25. [4] Let (X, d) be a cone metric space. A mapping T : X → X
is called (Banach) contractive if

d(Tx, Ty) � d(x, y), ∀x, y ∈ X.

Definition 2.26. [1] A mapping T : X → X on a complete cone metric space is
said to be diametrically contractive if

δ(TA) = sup{d(T (x), T (y)) : x, y ∈ A} ≺ δ(A),

for all closed bounded subsets A ⊂ X such that δ(A) = sup{d(x, y) : x, y ∈ X}
exits and δ(A) > 0.

Remark that the Definition 2.26 does not indicate the existence of the least
upper bound for the set {d(T (x), T (y)) : x ∈ A} (that is δ(TA) exists). Also it
follows from the Definition 2.26 that each closed bounded subset A of X with δ(A)
exists and the diameter of its image under T , i.e., δ(T (A)) satisfies δ(T (A)) ≺ δ(A).
In fact it is not always true that every nonempty subset of a set which has a least
upper bound has also a least upper bound. For example if we take X = C[0, 1],
the set of all continuous mappings on [0, 1], P = {f ∈ X : f(x) ≤ 0,∀x ∈ [0, 1]}.
It is clear that the set B = {f ∈ X : f ≥ 1} has a least upper bound which is the
constant function one, note for all f ∈ B, we have 1− f ≤ 0 so f � 1 while the
subset C = {1 +x, 1 +x2, 1 +x3, ...} of B does not have a least upper bound in X.
Indeed, if we take g as the least upper bound of C then we get 1+xk � g, ∀k ∈ N
which means g(x) ≤ 1 + xk, ∀k ∈ N, ∀x ∈ [0, 1]. For fixed x ∈ [0, 1], we have
g(x) ≤ 1 + xk, ∀k ∈ N. Hence we have

• g(x) ≤ 1 ∀x ∈ [0, 1);

• g(1) ≤ 2,
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which it is possible to choose uncountable functions to verify the aforementioned
properties g and then g is not unique. This is contradicted by being the least
upper bound.

Depending on the above discussion, the following condition is different from
and weaker than the condition introduced in Definition 2.26:

δ(T (A)) ≺ δ(A), (2.6)

for any bounded closed subset of X with both δ(A) and δ(T (A)) exist.
Under condition (2.6), existence of a closed bounded subset whose diameter

exists but the diameter of its image under T does not exist, is possible. However,
existence of such subset A is not possible under the diametrically contractive
condition in Definition 2.26.

Theorem 2.27. [4] Let (X, d) be a sequentially compact cone metric space P a
normal cone with normal constant k. If the mapping T : X → X satisfies the
contractive condition,

d(Tx, Ty) ≺ d(x, y), ∀x, y ∈ X, x 6= y,

then T has a unique fixed point.

Theorem 2.28. [1] Let (X, d) be a sequentially compact cone metric space with
strongly minihedral cone and T : X → X be diametrically contractive mapping.
Then T has a fixed point.

It is clear that the family of all Banach contractive mappings and diametrically
contractive mappings is a subset of the family of all contractive mappings. Then it
is important that we obtain fixed point theorems for this class of mappings. In the
next theorem, we present a fixed point theorem for a contractive mapping without
considering neither the normality condition nor strongly minihedral condition on
the cone. The proof of the next theorem is slightly different from that one given
in [1, Theorem 2.22].

Theorem 2.29. Let (X, d) be a sequentially compact cone metric space. If the
mapping T : X → X is a contractive mapping, that is,

d(Tx, Ty) ≺ d(x, y), ∀x, y ∈ X, x 6= y,

then T has a unique fixed point.

Proof. Set Γ = {A ⊆ X : A is nonempty, sequentially compact and T (A) ⊆ A}.
First, X ∈ Γ and hence Γ is nonempty. We consider inclusion ordering on Γ. In
fact, for A,B ∈ Γ,

A � B ⇔ B ⊆ A.
We show that (Γ,�) fulfils all the conditions of Zorn’s lemma. To see this, let
S = {Ai}i∈I be a chain in Γ. It follows from finite intersection property that
∩i∈IAi is nonempty and compact. Moreover,

T (∩i∈IAi) ⊆ ∩i∈IT (Ai) ⊆ ∩i∈IAi,
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and so ∩i∈IAi belongs to Γ and it also is an upper bound for the chain S. Then
each chain in Γ has an upper bound in Γ. Hence by Zorn’s lemma Γ has a maximal
element B with respect to the relation � which is minimal element with respect
to the relation ⊆. Since B ∈ Γ, then T (B) ⊂ B and so it follows from the
minimality that T (B) = B (note the image of a compact set by T is compact and
T (T (B)) ⊆ T (B), and then T (B) ∈ Γ). So B is singleton (note B ∈ Γ, then B
is nonempty and since T is a contractive mapping and T (B) = B, then it cannot
have more than one element). Hence T has a fixed point. This fixed point is
unique because T is a contractive mapping. This completes the proof.

The following lemma given in [1]. From its proof one can understand that
the normal condition for the cone is necessary and shall be added it (because the
authors used from [1, Lemma 1]).

Lemma 2.30. [1] Let (X, d) be a cone metric space, P be strongly minihedral and
A ⊂ X be bounded. Then δ(A) = δ(A).

Now this question will be raised that it is possible one can prove the previous
lemma without the normal condition on the cone. The following lemma will give
a positive answer.

Lemma 2.31. Let (X, d) be a cone metric space, and A ⊂ X with α = δ(A).
Then A is bounded and δ(A) = δ(A).

Proof. Assume x, y are arbitrary elements of A and e ∈ intP a fixed element.
Hence if ε is a positive number, then there exist a, b ∈ A such that d(x, a) � εe
and d(y, b)� εe and so it follows from the triangle inequality that

d(x, y) � d(x, a) + d(a, b) + d(b, y) � 2εe+ α.

Since ε is an arbitrary positive number, we get d(x, y) � α. Since x, y were
arbitrary members of A, we deduce that α is an upper bound for A. Now if β is
another upper bound of A, then it is also an upper bound for A (because A ⊆ A)
and so α � β. Hence supA = α and the proof is finished.
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