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1 Introduction

Let C be a closed convex subset of a uniformly convex Banach space X. Let
G = (V(G), E(@)) be a directed graph where V(G), the set of its vertices, coincides
with C, and E(G), the set of its edges, contains all loops. A mapping T': C' — C
is G-nonexpansive if T preserves edges of G, that is (T'(z),T'(y)) € E(G) whenever
(z,y) € E(G), and [Tz — Ty|| < ||z — y|| for any (z,y) € E(G). Noor iteration
scheme was introduced by Noor [1] for studying general variational inequalities.
In the study, he also gave the convergence criterior of the scheme. Afterward the
Noor iteration has been generalized in various ways (see, for example, [2H4]).
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The study in fixed point theory on a metric space endowed with a graph struc-
ture was originated by Jachymski [5]. In the study, he gave a generalization of a
contraction on a metric space and named it a G-contraction where G is a graph.
Since then, some iterative scheme results for G-contraction and G-nonexpansive
maps on a Banach spaces endowed with graphs have been studied extensively by
many authors. Aleomraninejad, Rezapour and Shahzad [6] showed some results
on iterative scheme for G-contractive and G-nonexpansive mappings on graphs.
Alfuraidan and Khamsi 7] gave the concept of G-monotone nonexpansive multi-
valued mappings defined on a metric space with a graph. Alfuraidan [8] gave a
new definition of the G-contraction for multivalued mappings on a metric space
with a graph and obtained sufficient conditions for the existence of fixed points.
In [9], he also gave the existence of a fixed point of monotone nonexpansive map-
pings defined in Banach space endowed with a graph. Tiammee, Kaewkhao and
Suantai [10] proved Browder’s convergence theorem for G-nonexpansive mappings
in a Banach space with a directed graph. They also proved strong convergence of
the Halpern iteration for G-nonexpansive mappings. Tripak |11] proved weak and
strong convergence by using the Ishikawa iterations. Recently, Suparatulatorn,
Cholamjiak and Suantai |12] proved weak and strong convergence of a sequence
generated by a modified S-iteration process.

Our purpose for this paper is to establish weak and strong convergence re-
sults for a sequence generated by zy € X and the modified Noor iteration for
G-nonexpansive mappings:

(1 - ’Yn)xn + 'YnTana
Yn = (1 - 671)1'71 + ﬁnTQva
Tn+1 = (1 - an)xn + anlena

Zn

where {ay, }, {n} and {v,} are real sequences in [0, 1].

2 Preliminaries

In this section, we recall some of standard notations and terminologies, and
some needed results.

Consider a directed graph G with the set of vertices V(G) and the set of edges
E(G). We assume that the graph has no parallel edges. Then we can write each
edge as an ordered pair of vertices. We define a transitive graph as follows.

Definition 2.1. A directed graph G = (V(G), E(Q)) is said to be transitive if
(z,z) € E(GQ) whenever (x,y) and (y, z) are in E(G).

Definition 2.2. Let C be a nonempty convex subset of a Banach space X, G =
(V(G), E(@)) a directed graph such that V(G) = C. Then a mapping T : C — C
is G-nonezpansive (see, |7, Definition 2.3]) if it satisfies the following conditions:

(i) T is edge-preserving; that is, (Tx,Ty) € E(G) for all (z,y) € E(G),
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(i) T2 = Tyl < & — ] for all (z,5) € B(G).

Definition 2.3. [13] Let C' be a nonempty closed convex subset of a real uni-
formly convex Banach space X. We say the mappings T; (i = 1,2,3) on C satisfy
Condition B if there exists a nondecreasing function f : [0,00) — [0, 00) with
f(0) =0 and f(r) > 0 for all » > 0 such that, for all z € C,

max{||z — Thz|, |z — Tox|, [l — Tsz||} > f(d(z, F))

where F' := F(T1) N F(Ty) N F(T5) and F(T;) (i = 1,2,3) are the sets of fixed
points of T;.

Definition 2.4. [13] Let C be a subset of a metric space (X,d). A mapping T
is said to be semi-compact if for a sequence {z,} in C with lim d(z,,Tz,) =0,
n—oo

there exists a subsequence {z,,} of {x,} such that z,, - p € C.

Definition 2.5. A Banach space X is said to satisfy Opial’s property if the follow-
ing inequality holds for any distinct elements x and y in X and for each sequence
{z,} weakly convergent to z,

liminf ||z, — || < liminf ||z, — y]|.
n— 00 n—00

Definition 2.6. Let X be a Banach space. A mapping T with domain D and
range R in X is demiclosed at zero if, for any sequence {x,} in D such that {x,}
converges weakly to € D and {Tx,} converges strongly to 0, we have Tz = 0.

Lemma 2.7. [14] Let X be a uniformly convex Banach space and {a,} a sequence
in [0,1 — 0] for some § € (0,1). Suppose sequences {x,} and {y,} are in X such
that lim sup ||z,]| < ¢, limsup ||y,| < ¢ and limsup ||ax, + (1 — an)yn|| = ¢ hold

n—00 n—o0o n—o0o
for some ¢ > 0. Then lim ||z, —ys|| = 0.
n— oo

Lemma 2.8. |15] Let X be a Banach space and R > 1 be fized number. Then X
is uniformly convex if and only if there exists a continuous, strictly increasing and
convez function g : [0,00) — [0,00) with g(0) =0 such that

1Az + (1= Nyl < Ml + @ = NIyl = A1 = Ng(llz - yl)
for all x,y € Br(0) := {x € X|||z|| < R}, and X € [0,1].

Lemma 2.9. [16] Let X be a Banach space which satisfies Opial’s property and let
{z,} be a sequence in X. Letx,y in X be such that lim ||z, —z| and lim |z,—y||
n—oo n—oo

exist. If {xyn;} and {x,,} are subsequences of {x,} which converge weakly to x
and y, respectively, then r =y.
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3 Main Results

Throughout the section, we let C' be a nonempty closed convex subset of a
uniformly convex Banach space X endowed with a directed graph G such that
V(G) = C and E(G) is convex. We also suppose that the graph G is transitive.
Let Ty, T» and T3 be G-nonexpansive mappings from C to C' with F' := F(T1) N
F(T3) N F(T3) # (. Let zo be an arbitrary point in C' and let {z,} be a sequence
generated by z¢ and the following iterations:

Zn = (1 - ’Yn)xn + 7nT3xn,
Yn = (1 = Bn)rn + BuTozn,
Tnt+1l = (]- - an)x71 + anlena

where {a,}, {8,} and {v,} are real sequences in [0, 1].

Lemma 3.1. Suppose that p € F.
(a) If (zo,p) € E(Q), then (zn,p), (Yn, D), (2n,p) € E(G) forn=0,1,2,....

(b) If (p,xo) € E(G), then (p,xy), (D, yn), (D, 2n) € E(G) forn=0,1,2,....

Proof. Suppose that (zg,p) € E(G). We prove part (a) by using the mathematical
induction. Since T3 is edge-preserving, (Tsxo,p) € E(G). Write (z9,p) = (1 —
) (xo,p) + vo(T320,p). Since E(G) is convex, (z9,p) € FE(G). Since Ty is edge-
preserving, (Tzz0,p) € E(G). Since E(G) is convex, (yo,p) = (1 — So)(xo,p) +
Bo(Ta2z0,p) is in E(G).

Now suppose that (z,,p), (Yn, D), (zn,p) € E(G). Since T is edge-preserving,
(Thyn,p) € E(G). Since E(G) is convex, (Tpn11,p) = (1 —apn)(zn, p) + an(Tiyn, p)
is in E(G). Similarly, we have (z,41,p) and (yn+1,p) are in E(G). Hence we have
finished the proof of part (a). Part (b) can be proved in a similar fashion. O

Lemma 3.2. Ifp € F and (xo,p) € E(G), then lim ||z, — p| exists.
n—00

Proof. Using the definition of z,, we have

lzn — 2l = |1 = Yn)zn + ¥ Ts2n — |
= [|(1 = ) (@n — p) + Y (T320 — )|
< (1 =v)llzn = pll + vall Tszn — Tsp].

By Lemma we know that (z,,p) is in E(G). Since T3 is G-nonexpansive, we
have

Hzn —pll < (1 =7n)llzn _pH +Ynllzn —pll = |20 _pH'
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Similarly, we have

[yn = pll = [[(1 = Bn)zn + BnTozn —pl|
=[|(1 = Bn) (@ — p) + Bn(T22n — D)
< (1= Bo)llzn = pll + BullT2zn — Top||
< (A =Bu)lzn —pll + Bullzn — pl|
< (1= Bu)llen = pll + Bullzn — pll = |2, — pll

and hence

[#n41 = pll = |1 = an)zn + anTiyn — pl|
= (1 = an)(@n — p) + an(Tiyn — )|
(1 = ap)llen — pll + ol Tryn — Tip||
(1 = an)l|zn — pll + anllyn — pl|
(1 = an)llzy = pll + anllzn — pll = |20 — pl|-

IN A CIA

Since the sequence {||x,, —p||} is nonincreasing and bounded below, lim |z, —p||
n—oo
exists. ]

Lemma 3.3. Ifp € F, (z0,p), (p,%0) € E(G) and {an}, {Bn}, {1} C[6,1— 9]

for some & € (0, 3), then lim ||z, — Tiz,| =0 for all i =1,2,3.
n—oo

Proof. By Lemma lim |z, — p| exists. As a result, the sequence {z, — p}
n—o0

is bounded. By Lemma (Yn,p) is in E(G). Since T; is G-nonexpansive and
lyn — pl| < |lzn — p||, we have

1Tiyn —pll = [Tiyn — Tapll < llyn — pll < [0 — pl|
and therefore the sequence {T1y,, — p} is also bounded. By the definition of 2,11,
[#nt1 = pll = (1 = an)(@n — p) + an(Tryn — p)|l.

By Lemma [2.8] there exists a continuous, strictly increasing and convex function
g :[0,00) — [0,00) with g(0) = 0 such that

41 = plI* < (1= an)llzn =l + @l Tayn —pl* = @n(l = an)g(ITiyn — znl)-
Since ||T1yn — pl| < ||z, — p|| and o, € [6,1 = 4],

lzn41 = pII* < llzn = plI* = 0%g(| Tryn — 2all)
or equivalently

0 = pII* = #ns1 = pl*

9| T1yn — znl]) < 52
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It follows that lim g(||Tiyn — z»||) = 0 and therefore
n—oo
lim ||Tyy, — x| = 0.
n—oo
Notice that

[2n = pll < 20 = Taynll + 1 Tryn = pll < ll2n = Taynll + llyn — pl-

Taking the limit inferior on both sides of the inequality, we have ¢ < lim inf ||y, —p||,
n— oo
where ¢ = lim ||z, — p||. Since ||y, —p| < ||z —pl|, we have limsup ||y, —p|| < c.
n— oo

n—oo
Thus
lim ||y, —pll = c.
n—oo
By the definition of y,,, we obtain
T [(1 B) (2 — p) + Ba(Tzn — D) = .
By Lemma and the G-nonexpansiveness of T5,

[Tozn = pll < llzn = pll < [l2n = pll-

Thus
lim sup [[Taz, — pl| < limsup |, — p]| = c.
By Lemma [2.7]
lim ||T2z, — z,| = 0.
n—oo

By Lemma [3.1] and the G-nonexpansiveness of T,
[2n = pll < lzn — Toznll + |1 T22n — pll < l2n — Toznll + 120 — pll-

Taking the limit inferior on both sides of the inequality, we have ¢ < liminf ||z, —pl||.
n—oo

Since ||z, — p|| < ||zn — pl|, we also have limsup ||z, — p|| < ¢. Thus
n—oo

lim ||z, —pl =c.
n—oo
By the definition of z,, we obtain

lim {|(1 = yn)(zn = p) + v (T3n = p)|| =

n— oo

By Lemma [3.1 and the G-nonexpansiveness of T,

[Ts2n = pll < llzn = pl-

Thus

limsup || T3z, — p|| < limsup ||z, — p|| = c.
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By Lemma we have
lim ||T32, — z,| = 0.
n—oo

By Lemma both (z,,p) and (p,z,) are in E(G). Since G is transitive,
(Zn, zn) € G. By the G-nonexpansiveness of T5,

||T2xn - Jjn” < ||T2-77n - T2Z7LH + ||T2Zn - InH
< lzn = 2nll + 1 T22n — 2nll
= Yol T32n — 2y + HTQZn |
and hence
lim (|72, — z,| = 0.
n—oo
Using Lemma [3.I] and the G-nonexpansiveness of T}, we also have
[Ty — xn| < NT1wn — Toyall + [ T1yn — 24|
<zn = yull + 1Ty — znl
= BalTozn — |l + [ T1yn — @
and therefore
lim ||Thz, — x| = 0.
n—oo
Hence the lemma is proved. O
Theorem 3.4. Suppose that {an}, {Bn}, {n} C [6,1— 6] for some 6 € (0,3), the
mappings Ty, To and Ts satisfy Condition B, and (zq,p), (p,x0) € E(G) for each

p € F. Then {z,} converges strongly to some common fized point of Ty, To and
Ts.

Proof. Since ||zp41 —pl| < ||on — s d(@ns1, F) < d(xy, F). Thus lim d(x,, F')
n—oo
exists. Since Ty, T5, T3 satisfy Condition B and lim ||z, —T;z,| = 0fori =1,2,3,
n— oo
there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and

f(r) > 0 for all » > 0 such that li_>m f(d(zn, F)) =0 and hence
n o)

lim d(x,, F)=0.

n— o0

Hence there is a subsequence {z,,} of {z,,} and a sequence {p;} C F satisfying

1
||$nj+1 _ij < ||$TLJ _pj” < 27
Hence 3
P41 = psll < Pt = na |+ 120500 = 25l < 5557

Consequently {p;} is a Cauchy sequence whose limit is denoted by ¢. Since F is
closed, the limit ¢ must be in F'. Since ||z,,, — ¢l < ||zn, —p;ll +|lp; — ql|, we have

lim ||z, —q|| = 0.
n— oo

By Lemma lim ||z, — ¢ exists; hence it is zero. O
n—oo
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Theorem 3.5. Suppose that {a,}, {Bn}, {7n} C [0,1— 8] for some & € (0,1), one
of Ty, Ty and T3 is semi-compact and (xo,p), (p, o) € E(G) for allp € F. Then
{zn} converges strongly to some common fized point of Ty, To and Ts.

Proof. By Lemma lim ||z, — Tiz,|| = 0 for ¢ = 1,2,3. By the semi-
n—00

compactness of any of 71, Ty, and T3, there exist ¢ € C and a subsequence {z,, }
of {x,} such that |z,, — ¢|| approaches 0 as j tends to co. For each i = 1,2, 3, by
Lemma [3.1] and the G-nonexpansiveness of T}, we obtain

lg = Tigll < llg = @n, || + ll2n; = Tizn, || + (| Tizn, — Tiq||
<lg = @, [l + ll2n; — T, || + l|l2n,; — gll-

Letting j tend to oo, we have T;q = g for each ¢ = 1,2,3 and hence ¢ € F'. Since
the subsequence {z,,,} converges to ¢ € F', we have

lim d(x,, F)=0.

n— oo

Repeating the same argument as in the proof of Theorem we derive that {z,}
converges strongly to some fixed point. O

Theorem 3.6. Suppose that {an}, {Bn}, {1} C [6,1 — 8] for some § € (0,3).
If X satisfies Opial’s property, I — T; is demiclosed at zero for i = 1,2,3 and
(x0,D), (p,z0) € E(G) for allp € F, then {x,} converges weakly to some common
fixed point of Ty, To and T3.

Proof. Note that, by Lemma {z,} is bounded. Since X is uniformly convex,
there exist ¢ € X and a subsequence {x,, } which converges weakly to q. Suppose
the sequence {z,} does not converge weakly to ¢q. Then there exist f € X*, ¢ >0
and a subsequence {x,,} such that

|f(zn,) — f(q)] > e for all p € N.

Since {x,,} is bounded, there exist ¢ € F' and a subsequence {xnpj} of {zn,}
such that {znpj} converges weakly to ¢’. By Lemma

lim ||z, —Tizy,||=0 and  lim ||lz,, —Tiz,, ||=0.
—00 J—o0 J J
Since I — T; is demiclosed at zero, T;q = q and T;q' = ¢ for all ¢ = 1,2,3. Then

q,q' € F and, by Lemma W q=¢ . Then f(xnpj) — f(q) as j — oo, which is a
contradiction. Hence {z,,} converges weakly to a common fixed point in F. [
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