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1 Introduction

Let C be a closed convex subset of a uniformly convex Banach space X. Let
G = (V (G), E(G)) be a directed graph where V (G), the set of its vertices, coincides
with C, and E(G), the set of its edges, contains all loops. A mapping T : C → C
is G-nonexpansive if T preserves edges of G, that is (T (x), T (y)) ∈ E(G) whenever
(x, y) ∈ E(G), and ‖Tx − Ty‖ ≤ ‖x − y‖ for any (x, y) ∈ E(G). Noor iteration
scheme was introduced by Noor [1] for studying general variational inequalities.
In the study, he also gave the convergence criterior of the scheme. Afterward the
Noor iteration has been generalized in various ways (see, for example, [2–4]).
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The study in fixed point theory on a metric space endowed with a graph struc-
ture was originated by Jachymski [5]. In the study, he gave a generalization of a
contraction on a metric space and named it a G-contraction where G is a graph.
Since then, some iterative scheme results for G-contraction and G-nonexpansive
maps on a Banach spaces endowed with graphs have been studied extensively by
many authors. Aleomraninejad, Rezapour and Shahzad [6] showed some results
on iterative scheme for G-contractive and G-nonexpansive mappings on graphs.
Alfuraidan and Khamsi [7] gave the concept of G-monotone nonexpansive multi-
valued mappings defined on a metric space with a graph. Alfuraidan [8] gave a
new definition of the G-contraction for multivalued mappings on a metric space
with a graph and obtained sufficient conditions for the existence of fixed points.
In [9], he also gave the existence of a fixed point of monotone nonexpansive map-
pings defined in Banach space endowed with a graph. Tiammee, Kaewkhao and
Suantai [10] proved Browder’s convergence theorem for G-nonexpansive mappings
in a Banach space with a directed graph. They also proved strong convergence of
the Halpern iteration for G-nonexpansive mappings. Tripak [11] proved weak and
strong convergence by using the Ishikawa iterations. Recently, Suparatulatorn,
Cholamjiak and Suantai [12] proved weak and strong convergence of a sequence
generated by a modified S-iteration process.

Our purpose for this paper is to establish weak and strong convergence re-
sults for a sequence generated by x0 ∈ X and the modified Noor iteration for
G-nonexpansive mappings:

zn = (1− γn)xn + γnT3xn,

yn = (1− βn)xn + βnT2zn,

xn+1 = (1− αn)xn + αnT1yn,

where {αn}, {βn} and {γn} are real sequences in [0, 1].

2 Preliminaries

In this section, we recall some of standard notations and terminologies, and
some needed results.

Consider a directed graph G with the set of vertices V (G) and the set of edges
E(G). We assume that the graph has no parallel edges. Then we can write each
edge as an ordered pair of vertices. We define a transitive graph as follows.

Definition 2.1. A directed graph G = (V (G), E(G)) is said to be transitive if
(x, z) ∈ E(G) whenever (x, y) and (y, z) are in E(G).

Definition 2.2. Let C be a nonempty convex subset of a Banach space X, G =
(V (G), E(G)) a directed graph such that V (G) = C. Then a mapping T : C → C
is G-nonexpansive (see, [7, Definition 2.3]) if it satisfies the following conditions:

(i) T is edge-preserving; that is, (Tx, Ty) ∈ E(G) for all (x, y) ∈ E(G),
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(ii) ‖Tx− Ty‖ ≤ ‖x− y‖ for all (x, y) ∈ E(G).

Definition 2.3. [13] Let C be a nonempty closed convex subset of a real uni-
formly convex Banach space X. We say the mappings Ti (i = 1, 2, 3) on C satisfy
Condition B if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r > 0 such that, for all x ∈ C,

max{‖x− T1x‖, ‖x− T2x‖, ‖x− T3x‖} ≥ f(d(x, F ))

where F := F (T1) ∩ F (T2) ∩ F (T3) and F (Ti) (i = 1, 2, 3) are the sets of fixed
points of Ti.

Definition 2.4. [13] Let C be a subset of a metric space (X, d). A mapping T
is said to be semi-compact if for a sequence {xn} in C with lim

n→∞
d(xn, Txn) = 0,

there exists a subsequence {xni
} of {xn} such that xni

→ p ∈ C.

Definition 2.5. A Banach space X is said to satisfy Opial’s property if the follow-
ing inequality holds for any distinct elements x and y in X and for each sequence
{xn} weakly convergent to x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

Definition 2.6. Let X be a Banach space. A mapping T with domain D and
range R in X is demiclosed at zero if, for any sequence {xn} in D such that {xn}
converges weakly to x ∈ D and {Txn} converges strongly to 0, we have Tx = 0.

Lemma 2.7. [14] Let X be a uniformly convex Banach space and {αn} a sequence
in [δ, 1 − δ] for some δ ∈ (0, 1). Suppose sequences {xn} and {yn} are in X such
that lim sup

n→∞
‖xn‖ ≤ c, lim sup

n→∞
‖yn‖ ≤ c and lim sup

n→∞
‖αxn + (1 − αn)yn‖ = c hold

for some c ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.8. [15] Let X be a Banach space and R > 1 be fixed number. Then X
is uniformly convex if and only if there exists a continuous, strictly increasing and
convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)

for all x, y ∈ BR(0) := {x ∈ X|‖x‖ ≤ R}, and λ ∈ [0, 1].

Lemma 2.9. [16] Let X be a Banach space which satisfies Opial’s property and let
{xn} be a sequence in X. Let x, y in X be such that lim

n→∞
‖xn−x‖ and lim

n→∞
‖xn−y‖

exist. If {xnj
} and {xnk

} are subsequences of {xn} which converge weakly to x
and y, respectively, then x = y.
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3 Main Results

Throughout the section, we let C be a nonempty closed convex subset of a
uniformly convex Banach space X endowed with a directed graph G such that
V (G) = C and E(G) is convex. We also suppose that the graph G is transitive.
Let T1, T2 and T3 be G-nonexpansive mappings from C to C with F := F (T1) ∩
F (T2) ∩ F (T3) 6= ∅. Let x0 be an arbitrary point in C and let {xn} be a sequence
generated by x0 and the following iterations:

zn = (1− γn)xn + γnT3xn,

yn = (1− βn)xn + βnT2zn,

xn+1 = (1− αn)xn + αnT1yn,

where {αn}, {βn} and {γn} are real sequences in [0, 1].

Lemma 3.1. Suppose that p ∈ F .

(a) If (x0, p) ∈ E(G), then (xn, p), (yn, p), (zn, p) ∈ E(G) for n = 0, 1, 2, . . . .

(b) If (p, x0) ∈ E(G), then (p, xn), (p, yn), (p, zn) ∈ E(G) for n = 0, 1, 2, . . . .

Proof. Suppose that (x0, p) ∈ E(G). We prove part (a) by using the mathematical
induction. Since T3 is edge-preserving, (T3x0, p) ∈ E(G). Write (z0, p) = (1 −
γ0)(x0, p) + γ0(T3x0, p). Since E(G) is convex, (z0, p) ∈ E(G). Since T2 is edge-
preserving, (T2z0, p) ∈ E(G). Since E(G) is convex, (y0, p) = (1 − β0)(x0, p) +
β0(T2z0, p) is in E(G).

Now suppose that (xn, p), (yn, p), (zn, p) ∈ E(G). Since T1 is edge-preserving,
(T1yn, p) ∈ E(G). Since E(G) is convex, (xn+1, p) = (1−αn)(xn, p) +αn(T1yn, p)
is in E(G). Similarly, we have (zn+1, p) and (yn+1, p) are in E(G). Hence we have
finished the proof of part (a). Part (b) can be proved in a similar fashion.

Lemma 3.2. If p ∈ F and (x0, p) ∈ E(G), then lim
n→∞

‖xn − p‖ exists.

Proof. Using the definition of zn, we have

‖zn − p‖ = ‖(1− γn)xn + γnT3xn − p‖
= ‖(1− γn)(xn − p) + γn(T3xn − p)‖
≤ (1− γn)‖xn − p‖+ γn‖T3xn − T3p‖.

By Lemma 3.1, we know that (xn, p) is in E(G). Since T3 is G-nonexpansive, we
have

‖zn − p‖ ≤ (1− γn)‖xn − p‖+ γn‖xn − p‖ = ‖xn − p‖.
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Similarly, we have

‖yn − p‖ = ‖(1− βn)xn + βnT2zn − p‖
= ‖(1− βn)(xn − p) + βn(T2zn − p)‖
≤ (1− βn)‖xn − p‖+ βn‖T2zn − T2p‖
≤ (1− βn)‖xn − p‖+ βn‖zn − p‖
≤ (1− βn)‖xn − p‖+ βn‖xn − p‖ = ‖xn − p‖

and hence

‖xn+1 − p‖ = ‖(1− αn)xn + αnT1yn − p‖
= ‖(1− αn)(xn − p) + αn(T1yn − p)‖
≤ (1− αn)‖xn − p‖+ αn‖T1yn − T1p‖
≤ (1− αn)‖xn − p‖+ αn‖yn − p‖
≤ (1− αn)‖xn − p‖+ αn‖xn − p‖ = ‖xn − p‖.

Since the sequence {‖xn−p‖} is nonincreasing and bounded below, lim
n→∞

‖xn−p‖
exists.

Lemma 3.3. If p ∈ F , (x0, p), (p, x0) ∈ E(G) and {αn}, {βn}, {γn} ⊂ [δ, 1− δ]

for some δ ∈ (0, 12 ), then lim
n→∞

‖xn − Tixn‖ = 0 for all i = 1, 2, 3.

Proof. By Lemma 3.2, lim
n→∞

‖xn − p‖ exists. As a result, the sequence {xn − p}
is bounded. By Lemma 3.1, (yn, p) is in E(G). Since T1 is G-nonexpansive and
‖yn − p‖ ≤ ‖xn − p‖, we have

‖T1yn − p‖ = ‖T1yn − T1p‖ ≤ ‖yn − p‖ ≤ ‖xn − p‖

and therefore the sequence {T1yn− p} is also bounded. By the definition of xn+1,

‖xn+1 − p‖ = ‖(1− αn)(xn − p) + αn(T1yn − p)‖.

By Lemma 2.8, there exists a continuous, strictly increasing and convex function
g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖T1yn − p‖2 − αn(1− αn)g(‖T1yn − xn‖).

Since ‖T1yn − p‖ ≤ ‖xn − p‖ and αn ∈ [δ, 1− δ],

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − δ2g(‖T1yn − xn‖)

or equivalently

g(‖T1yn − xn‖) ≤
‖xn − p‖2 − ‖xn+1 − p‖2

δ2
.
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It follows that lim
n→∞

g(‖T1yn − xn‖) = 0 and therefore

lim
n→∞

‖T1yn − xn‖ = 0.

Notice that

‖xn − p‖ ≤ ‖xn − T1yn‖+ ‖T1yn − p‖ ≤ ‖xn − T1yn‖+ ‖yn − p‖.

Taking the limit inferior on both sides of the inequality, we have c ≤ lim inf
n→∞

‖yn−p‖,
where c = lim

n→∞
‖xn − p‖. Since ‖yn−p‖ ≤ ‖xn−p‖, we have lim sup

n→∞
‖yn−p‖ ≤ c.

Thus
lim

n→∞
‖yn − p‖ = c.

By the definition of yn, we obtain

lim
n→∞

‖(1− βn)(xn − p) + βn(T2zn − p)‖ = c.

By Lemma 3.1 and the G-nonexpansiveness of T2,

‖T2zn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖.

Thus
lim sup
n→∞

‖T2zn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = c.

By Lemma 2.7,
lim

n→∞
‖T2zn − xn‖ = 0.

By Lemma 3.1 and the G-nonexpansiveness of T2,

‖xn − p‖ ≤ ‖xn − T2zn‖+ ‖T2zn − p‖ ≤ ‖xn − T2zn‖+ ‖zn − p‖.

Taking the limit inferior on both sides of the inequality, we have c ≤ lim inf
n→∞

‖zn−p‖.
Since ‖zn − p‖ ≤ ‖xn − p‖, we also have lim sup

n→∞
‖zn − p‖ ≤ c. Thus

lim
n→∞

‖zn − p‖ = c.

By the definition of zn, we obtain

lim
n→∞

‖(1− γn)(xn − p) + γn(T3xn − p)‖ = c.

By Lemma 3.1 and the G-nonexpansiveness of T3,

‖T3xn − p‖ ≤ ‖xn − p‖.

Thus
lim sup
n→∞

‖T3xn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = c.
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By Lemma 2.7, we have
lim
n→∞

‖T3xn − xn‖ = 0.

By Lemma 3.1, both (xn, p) and (p, zn) are in E(G). Since G is transitive,
(xn, zn) ∈ G. By the G-nonexpansiveness of T2,

‖T2xn − xn‖ ≤ ‖T2xn − T2zn‖+ ‖T2zn − xn‖
≤ ‖xn − zn‖+ ‖T2zn − xn‖
= γn‖T3xn − xn‖+ ‖T2zn − xn‖

and hence
lim

n→∞
‖T2xn − xn‖ = 0.

Using Lemma 3.1 and the G-nonexpansiveness of T1, we also have

‖T1xn − xn‖ ≤ ‖T1xn − T1yn‖+ ‖T1yn − xn‖
≤ ‖xn − yn‖+ ‖T1yn − xn‖
= βn‖T2zn − xn‖+ ‖T1yn − xn‖

and therefore
lim

n→∞
‖T1xn − xn‖ = 0.

Hence the lemma is proved.

Theorem 3.4. Suppose that {αn}, {βn}, {γn} ⊂ [δ, 1− δ] for some δ ∈ (0, 12 ), the
mappings T1, T2 and T3 satisfy Condition B, and (x0, p), (p, x0) ∈ E(G) for each
p ∈ F . Then {xn} converges strongly to some common fixed point of T1, T2 and
T3.

Proof. Since ‖xn+1 − p‖ ≤ ‖xn − p‖, d(xn+1, F ) ≤ d(xn, F ). Thus lim
n→∞

d(xn, F )

exists. Since T1, T2, T3 satisfy Condition B and lim
n→∞

‖xn−Tixn‖ = 0 for i = 1, 2, 3,

there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that lim

n→∞
f(d(xn, F )) = 0 and hence

lim
n→∞

d(xn, F ) = 0.

Hence there is a subsequence {xnj
} of {xn} and a sequence {pj} ⊂ F satisfying

‖xnj+1
− pj‖ ≤ ‖xnj

− pj‖ ≤
1

2j
.

Hence

‖pj+1 − pj‖ ≤ ‖pj+1 − xnj+1‖+ ‖xnj+1 − pj‖ ≤
3

2j+1
.

Consequently {pj} is a Cauchy sequence whose limit is denoted by q. Since F is
closed, the limit q must be in F . Since ‖xnj

− q‖ ≤ ‖xnj
− pj‖+ ‖pj − q‖, we have

lim
n→∞

‖xnj − q‖ = 0.

By Lemma 3.2, lim
n→∞

‖xn − q‖ exists; hence it is zero.
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Theorem 3.5. Suppose that {αn}, {βn}, {γn} ⊂ [δ, 1− δ] for some δ ∈ (0, 12 ), one
of T1,T2 and T3 is semi-compact and (x0, p), (p, x0) ∈ E(G) for all p ∈ F . Then
{xn} converges strongly to some common fixed point of T1, T2 and T3.

Proof. By Lemma 3.3, lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2, 3. By the semi-

compactness of any of T1, T2, and T3, there exist q ∈ C and a subsequence {xnj}
of {xn} such that ‖xnj

− q‖ approaches 0 as j tends to ∞. For each i = 1, 2, 3, by
Lemma 3.1 and the G-nonexpansiveness of Ti, we obtain

‖q − Tiq‖ ≤ ‖q − xnj
‖+ ‖xnj

− Tixnj
‖+ ‖Tixnj

− Tiq‖
≤ ‖q − xnj

‖+ ‖xnj
− Tixnj

‖+ ‖xnj
− q‖.

Letting j tend to ∞, we have Tiq = q for each i = 1, 2, 3 and hence q ∈ F . Since
the subsequence {xnj

} converges to q ∈ F , we have

lim
n→∞

d(xn, F ) = 0.

Repeating the same argument as in the proof of Theorem 3.4, we derive that {xn}
converges strongly to some fixed point.

Theorem 3.6. Suppose that {αn}, {βn}, {γn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 12 ).
If X satisfies Opial’s property, I − Ti is demiclosed at zero for i = 1, 2, 3 and
(x0, p), (p, x0) ∈ E(G) for all p ∈ F , then {xn} converges weakly to some common
fixed point of T1, T2 and T3.

Proof. Note that, by Lemma 3.2, {xn} is bounded. Since X is uniformly convex,
there exist q ∈ X and a subsequence {xnk

} which converges weakly to q. Suppose
the sequence {xn} does not converge weakly to q. Then there exist f ∈ X∗, ε > 0
and a subsequence {xnp

} such that

|f(xnp
)− f(q)| ≥ ε for all p ∈ N.

Since {xnp
} is bounded, there exist q′ ∈ F and a subsequence {xnpj

} of {xnp
}

such that {xnpj
} converges weakly to q′. By Lemma 3.3,

lim
k→∞

||xnk
− Tixnk

|| = 0 and lim
j→∞

||xnpj
− Tixnpj

|| = 0.

Since I − Ti is demiclosed at zero, Tiq = q and Tiq
′ = q′ for all i = 1, 2, 3. Then

q, q′ ∈ F and, by Lemma 2.9, q = q′. Then f(xnpj
)→ f(q) as j →∞, which is a

contradiction. Hence {xn} converges weakly to a common fixed point in F .
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