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Abstract : At present the option on future is popular one for trading but there
are some problems of risk. So the minimizing of risk which is call the hedging is
needed. In this paper we studied such hedging by using the Delta-hedging which
is popular at present. We found the new results which having the interesting
properties. We hope that such results may be useful in the research area the
Financial Mathematics.
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1 Introduction

Back to the year 1973 that F. Black and M. Scholes has first introduced the
Black-Scholes formula which is the solution of Black-Scholes Equation, see [1].
Such Black-Scholes formula is the option price which is fair price for trading in
European Options. Now the Black-Scholes Equation is given by
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with the terminal condition or the call payoff

u(sT , T ) = (sT − p)+ (1.2)

and denote (sT − p)+ ≡ max(sT − p, 0) where u(s, t) is the option price at time
t for 0 ≤ t ≤ T, T is the expiration date, s is the stock price at time t, r is the
interest rate, σ is the volatility of stock and p is strike price.

The well known solution of (1.1) that satisfies (1.2) which call the Black-
Scholes formula is given by

u(s, t) = sN(d1)− pe−r(T−t)N(d2) (1.3)

see [2], where
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2 dy.

At present the option price on future is the popular one for trading. Let
F = ser(T−t) be the stock price on future and write u(s, t) = C(F, t). Substitute
F and C(F, t) into (1.1) then (1.1) is transformed to the equation

∂

∂t
C(F, t) +

1

2
σ2F 2 ∂2

∂F 2
C(F, t)− rC(F, t) = 0 (1.4)

with the call payoff

C(FT , T ) = (FT − p)+, (1.5)

where C(F, t) is the option price on future, see [3] and FT is the stock price at the
expiration date T . Thus FT = sT where sT is the stock price at time T . Now in
this paper we studied the Delta-hedging of C(F, t) from (1.4). Such Delta-hedging

is defined by ∆F =
∂

∂F
C(F, t). In fact we obtain the Black-Scholes formula which

is the the solution of (1.4) and is similar to (1.3) of the form

C(F, t) = e−r(T−t) (FN(d1)− pN(d2)) . (1.6)

Now from (1.6) we obtain

∆F =
∂

∂F
C(F, t) = e−r(T−t)N(d1), (1.7)
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see [3]. Now let R = lnF and τ = T−t and write C(F, t) = V (R, τ) and substitute
into (1.4). Then (1.4) is transformed to the equation

∂

∂τ
V (R, τ) +

1

2
σ2 ∂

∂R
V (R, τ)− 1

2
σ2 ∂2

∂R2
V (R, τ) +RV (R, τ) = 0. (1.8)

with the call payoff or the initial condition

V (R, 0) = C(FT , T ) = (FT − p)+ = (eR − p)+

where τ = 0 correspond to to t = T. Let

V (R, 0) = (eR − p)+ = f(R) (1.9)

where f is the continuous function of R. Now we take the Fourier transform with
respect to R to (1.7) and (1.8), we obtain

V (R, τ) = exp
[
−rτ + σ2τ +R

]
− e−rτp (1.10)

as the solution of (1.7). Since

C(F, t) = V (R, τ) = V (lnF, T − t)
= exp

[
−r(T − t) + σ2(T − t) + lnF

]
− er(T−t)p

= F exp
[
−r(T − t) + σ2(T − t)

]
− e−r(τ−t)p.

Thus we have

∆F =
∂

∂F
C(F, t) = exp

[
−r(T − t) + σ2(T − t)

]
. (1.11)

Now (1.11) is the results of this paper which is different from the well known in
(1.7).

2 Preliminaries

The following some definitions and lemmas are needed.

Definition 2.1. Let f be locally integrable function then the Fourier transform
of f is defined by

Ff(x) = f̂(ω) =

∫ ∞
−∞

e−iωxf(x)dx (2.1)

and the inverse Fourier transform is also defined by

f(x) = Ff̂(ω) =
1

2π

∫ ∞
−∞

eiωxf̂(ω)dω (2.2)
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Definition 2.2. Let C(s, t) be the call option and s is the stock price at time t.

Then the Delta-hedging denoted by ∆ is defined by ∆ =
∂

∂s
C(s, t) or ∂C(s, t) =

∆∂s. In fact ∆ is the number of shares of stock times the change of stock price.
Now the concepts of Delta-hedging is that if we want to hedge the sale of one

call option we need to buy ∆ shares of stock.

Lemma 2.3. Recall the equation (1.8) and the call payoff (1.9) that

∂

∂τ
V (R, τ) +

1

2
σ2 ∂

∂R
V (R, τ)− 1

2
σ2 ∂2

∂R2
V (R, τ) + rV (R, τ) = 0 (2.3)

and the call payofff or the initial condition

V (R, 0) = f(R). (2.4)

Then

V (R, τ) = exp[−rτ + σ2τ +R]− e−rτp (2.5)

as the the solution of (2.3) and the Delta-hedging

∆R =
∂

∂R
V (R, τ) = exp[−rτ + σ2τ +R]. (2.6)

Proof. Take the Fourier transform defined by (2.1) with respect to R to (2.3).
Then we obtain
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V̂ (ω, τ)− 1

2
σ2iωV̂ (ω, τ) +

1

2
σ2ω2V̂ (ω, τ) + rV̂ (ω, τ) = 0. (2.7)

Thus we have

V̂ (ω, τ) = C(ω) exp

[
(−1

2
σ2ω2 +

1

2
σ2iω − r)τ

]
as the solution of (2.6). Now from (2.4),

V̂ (ω, 0) = f̂(ω).

Thus

C(ω) = f̂(ω).

Since

V (R, τ) =
1

2π

∫ ∞
−∞

eiωRV̂ (ω, τ)dω
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from (2.2). Thus

V (R, τ) =
1

2π
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−∞

eiωRf̂(ω) exp
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where f̂(ω) = Ff(y) =
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−∞ e−iωyf(y)dy. Thus

V (R, τ) =
e−rτ

2π

∫ ∞
−∞

(

∫ ∞
−∞

exp

−1

2
σ2τ(ω2 − 2i(

σ2 τ

2
+R− y

σ2τ
)ω)

 dω)f(y)dy

=
e−rτ

2π

∫ ∞
−∞

(

∫ ∞
−∞

exp

−1

2
σ2τ(ω − i(

σ2 τ

2
+R− y

σ2τ
))2

 dω)

exp

−(
σ2 τ

2
+R− y

2σ2τ
)2

 f(y)dy.
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since f(y) = ey − p, (1.9) and (2.4). Thus

V (R, τ) =
e−rτ√
2πσ2τ

∫ ∞
−∞

exp

− (
σ2

2
τ +R− y)2

2σ2τ

 eydy
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2πσ2τ
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2
τ +R− y)2

2σ2τ
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Now put u =

1

σ
√

2π
(y− σ

2

2
τ −R), then dy = σ

√
2τdu. By computing directly the

same as before, we obtain

V (R, τ) = exp[(−rτ + σ2τ +R)]− e−rτp

as the solution of (2.3) and by Definition 2.2, we also obtain

∆R =
∂

∂R
V (R, τ) = exp[−rτ + σ2 +R].

Thus we obtain (2.6) as required.

3 Main Results

Theorem 3.1. Recall the equation (1.4) and The call payoff (1.5) that

∂

∂t
C(F, t) +

1

2
σ2F 2 ∂2

∂F 2
C(F, t)− rC(F, t) = 0 (3.1)

with the call payoff

C(Ft, T ) = (Ft, T ) = (FT − p)+ (3.2)

Then (3.1) has the solution

C(F, t) = F exp
[
(−r(T − t) + σ2(T − t)

]
− e−r(τ−t)p (3.3)

with the Delta-hedging

∆F = exp
[
(−r(T − t) + σ2(T − t)

]
(3.4)

and

0 ≤ ∆F ≤ 1 (3.5)
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Proof. By Lemma (2.3), we obtain

V (R, τ) = exp
[
−(rτ + σ2τ +R)

]
− e−rτp

where τ = T − t and R = lnF . Since we let C(F, t) = V (R, τ) = V (lnF, T − t).
Thus we have

C(F, t) = exp
[
(−r(T − t) + σ2(T − t) + lnF )

]
− e−r(T−t)p

= F exp
[
(−r(T − t) + σ2(T − t))

]
− e−r(T−t)p

as the solution of (3.1). By Definition 2.2, ∆F =
∂

∂F
C(F, t). It follows that

∆F = exp
[
(−r(T − t) + σ2(T − t))

]
. Thus we obtain (3.3) and (3.4) as required.

Now at t = 0 we have ∆F = exp
[
(−rT + σ2T )

]
> 0 and at t = T . We have

∆F = 1. Since 0 ≤ t ≤ T. It follows that 0 < ∆F ≤ 1. Thus we obtain (3.5).
Moreover, from (1.6), C(F, t) = e−r(T−t) [FN(d1)− pN(d2)] which is the

Black-Scholes formula for the option price on future and from (1.7),

∆F =
∂

∂F
C(F, t) = e−r(T−t)N(d1).

Now for t = 0, ∆F = e−rTN(d1) > 0 and for t = T we have from (1.3) that
d1 = ∞ and N(∞) = 1. It follows that ∆F = N(∞) = 1 since 0 ≤ t ≤ T, thus
we have 0 < ∆F ≤ 1. We see that the option price on future which is the Black-
Scholes formula and the option price given by (3.3) of this paper has the same
condition of ∆F which is 0 < ∆F ≤ 1.

4 Conclusion

Consider the option price on future given by (3.3). That is

C(F, t) = F exp
[
((−r(T − t) + σ2(T − t))

]
− e−r(T−t)p

and the call payoff

C(FT , T ) = FT e
0 − e0p = (FT − p)+

and the option price on future which is Black-Scholes formula given by (1.6)

C(F, t) = e−r(T−t) [FN(d1)− pN(d2)] .

The call payoff at t = T ,

C(FT , T ) = e0 [FTN(∞)− pN(∞)] = (FT − p)+

where d1 = d2 = ∞ at t = T and N(∞) = 1. We see that both options price
on future has different forms but has the same call payoff. Moreover we have the
same condition of the Delta-hedging which is 0 < ∆F ≤ 1.
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