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1 Introduction

The theory of variational inequalities be first introduced by Stampacchia [1],
provides simple and unified framwork to study a large number of problem arising
in finance, economics, transportation, network and structural analysis, elasticity
and optimization. Many research papers have been written lately, both on the
theory and applications of this field, see for example [2–4] and the references cited
therein.

The existence and iterative scheme of variational inequalities have been inves-
tigated over convex sets, and that is due to the fact that all techniques are mainly
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based on the properties of the projection operator are convex sets. Recently, the
concept of convex sets has been generalized in many differnt ways. It is known
that the uniformly prox-regular sets are an immediate consequence of the gener-
alization of convex sets, these sets are nonconvex and include convex sets as a
particular case.

Bounkhel [5, 2003], Noor [6, 2004], Pang et al. [8, 2007] and Moudafi [7, 2009]
considered the variational inequality probelm over these nonconvex sets. They
suggested and analyzed some projection type iterative algorithms by using the
prox-regular technique and auxiliary principle technique.

Recently, in 2009, Noor [9] introduced and studied some new classes of varia-
tional and the Wiener-Hiof equations and established the equivalent between the
general nonconvex variational inequalities and the fixed point problems as well as
the Wiener-Hopf equation, by using the projection technique. Noor also presented
some new projection methods for solving the nonconvex variational inequalities
and proved the convergence of iterative method under suitable conditions.

In the same year, Moudafi [7] introduced the convergence of two-step projection
methods for a system of nonconvex variational inequalities problems for a mapping
T is γ-strongly monotone and L-Lipschitz continuous.

Very recently, in 2013, Al-Shemas [10] introduced the strongly nonlinear gen-
eral nonconvex variational inequalities and proved the convergence of the predictor-
corrector method only requires pseudomonotonicity which is weaker condition than
monotonicity.

Motivated by [7] and [10], we introduce and study the convergence of a modified
algorithm for the system of strongly nonlinear nonconvex variational inequalities
problems for two mappings satisfying strongly monotone and Lipschitz continuous.
This work extends and improves some known results.

2 Preliminaries

Let C be a closed subset of a real Hilbert space H with inner product 〈·, ·〉
and norm ‖ · ‖ respectively. Let us recall the following well-known definitions and
some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called
closest point or projection of u on C if dC(u) = ‖u−v‖ when dC is a usual distance.
The set of all such closest points is denoted by PC(u), that is,

PC(u) = {v ∈ C : dC(u) = ‖u− v‖}. (2.1)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C at x is
given by

NP
C (x) = {z ∈ H : ∃ρ > 0;x ∈ PC(x+ ρz)}. (2.2)

The following characterization of NP
C (x) can be found in [11].
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Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z ∈ NP
C (x)⇐⇒ ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (2.3)

Clark et al. [12] and Poliquin et al. [13] have introduced and studied a new
class of nonconvex sets which are called uniformly prox-regular sets. This class
or uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly
r-prox-regular with respect to r if, for all x ∈ C and for all 0 6= z ∈ NP

C (x), one
has

〈 z
‖z‖

, x− x〉 ≤ 1

2r
‖x− x‖2, ∀x ∈ C. (2.4)

It is well known that a closed subset of a Hilbert space is convex if and only
if it is proximally smooth of radius r > 0. Thus, in Definition 2.4, in the case of
r = ∞, the uniform r-prox-regularity C is equivalent to convexity of C. Then, it
is clear that the class of uniformly prox-regular sets is sufficiently large to include
the class p-convex sets, C1,1 submanifolds (possibly with boundary) of H, the
images under a C1,1 diffeomorphism of convex sets, and many other nonconvex
sets, see [12,13].

In this work, let C be a closed subset of a real Hilbert space H with is uniformly
r-prox-regular (nonconvex), set Cr := {x ∈ H : d(x,C) < r}. For given nonlinear
mappings T1, T2 : Cr → H, we consider the problem of finding x∗, y∗ ∈ Cr such
that

〈ρT1y∗ + x∗ − y∗, x− x∗〉+ λ‖x− x∗‖2 ≥ 〈Ay∗, x− x∗〉,∀x ∈ Cr, ρ > 0,

〈ηT2x∗ + y∗ − x∗, y − y∗〉+ λ‖y − y∗‖2 ≥ 〈Ax∗, y − y∗〉,∀y ∈ Cr, η > 0, (2.5)

which is called the system of strongly nonlinear nonconvex variational inequalities
(SSNNVI).

If A(x∗) ≡ 0, A(y∗) ≡ 0 and T1 = T2 = T , then the problem (2.5) is equivalent
to finding x∗, y∗ ∈ Cr such that

〈ρTy∗ + x∗ − y∗, x− x∗〉+ λ‖x− x∗‖2 ≥ 0,∀x ∈ Cr, ρ > 0,

〈ηTx∗ + y∗ − x∗, y − y∗〉+ λ‖y − y∗‖2 ≥ 0,∀y ∈ Cr, η > 0, (2.6)

which is called the system of nonconvex variational inequalities (SNVI). We known
that the inequalities (2.6) is equivalent as follows:

y∗ − x∗ − ρTy∗ ∈ NP
Cr
x∗, (2.7)

x∗ − y∗ − ηTx∗ ∈ NP
Cr
y∗,

which is introduced by Moudafi [7].
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If A(x∗) ≡ 0, A(y∗) ≡ 0, T1 = T2 = T and λ = 0, then the problem (2.5) is
equivalent to finding x∗, y∗ ∈ Cr such that

〈ρTy∗ + x∗ − y∗, x− x∗〉 ≥ 0,∀x ∈ Cr, ρ > 0,

〈ηTx∗ + y∗ − x∗, y − y∗〉 ≥ 0,∀y ∈ Cr, η > 0. (2.8)

Which is called system of variational inequalities (SVI), which Cr = C introduced
by Verma [14].

If T1 = T2 = T , x∗ = y∗ and ρ = η = 1, then the problem (2.5) is equivalent
to finding x∗ ∈ Cr such that

〈Tx∗, x− x∗〉+ λ‖x− x∗‖2 ≥ 〈Ax∗, x− x∗〉,∀x ∈ Cr (2.9)

which is known as the strongly nonlinear nonconvex variational inequality and
studied by Noor [15].

In inequalities (2.9), if we let A(x∗) ≡ 0, the problem is to finding x∗ ∈ Cr
such that

〈Tx∗, x− x∗〉+ λ‖x− x∗‖2 ≥ 0,∀x ∈ Cr (2.10)

which is called the nonconvex variational inequalities (NVI), introduced and stud-
ied by Bounkhel et. al. [5] and Noor [6, 16].

It is worth mentioning that if Cr = C is convex set, then problem (2.10) is
equivalent to finding x∗ ∈ C such that

〈Tx∗, x− x∗〉 ≥ 0,∀x ∈ C, (2.11)

which is known as variational inequalities, introduced and studied by Stamphacia
[1].

Now, if Cr is a nonconvex (uniform r-prox regular) set, then problem (2.5) is
equivalent to finding x∗, y∗ ∈ Cr such that

0 ∈ ρT1y∗ + x∗ − y∗ −Ay∗ +NP
Cr
x∗, (2.12)

0 ∈ ηT2x∗ + y∗ − x∗ −Ax∗ +NP
Cr
y∗,

where NP
Cr
u is the normal cone of Cr at u. The problem (2.12) is called the

the system of nonconvex variational inclusion problem associated with nonconvex
variational inequalities.

We now recall the well-known lemmas of the uniform prox-regular sets.

Lemma 2.5. Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set
Cr := {x ∈ H : d(x,C) < r}. If C is uniform r-uniformly prox-regular, then the
following hold:

(1) for all x ∈ Cr, PC(x) 6= ∅,
(2) for all s ∈ (0, r), PC is Lipschitz continuous with constant ts = r

r−s on Cs,
(3) the proximal normal cone is closed as a set-valued mapping.
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Let H be a real Hilbert space. A mapping T : H → H is called γ − strongly
monotone if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖x− y‖2, (2.13)

for all x, y ∈ H. A mapping T is called µ − Lipschitz if there exists a constant
µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, (2.14)

for all x, y ∈ H.

Lemma 2.6. In a real Hilbert space H, there holds the inequality:

(1) ‖x+y‖2 ≤ ‖x‖2+2〈y, x+y〉 x, y ∈ H and ‖x−y‖2 = ‖x‖2−2〈x, y〉+‖y‖2,

(2) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1].

3 Main Results

In this section, we first establish the equivalent between the system of noncon-
vex variational inequalities (2.5) with the projection technique.

Lemma 3.1. For given x∗, y∗ ∈ Cr are solution of system of strongly nonlinear
general nonconvex variational inequalities (2.5), if and only if

x∗ = PCr [y∗ − ρT1y∗ +Ay∗],

y∗ = PCr [x∗ − ηT2x∗ +Ax∗], (3.1)

where PCr = (I + NP
Cr

)−1 is the projection of H onto the uniformly prox-regular
set Cr.

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5), for a constant ρ > 0, we have

〈ρT1y∗ + x∗ − y∗, x− x∗〉+ λ‖x− x∗‖2 ≥ 〈Ay∗, x− x∗〉

if and only if

〈Ay∗ − ρT1y∗ − x∗ + y∗, x− x∗〉 ≤ λ‖x− x∗‖2.

Then Ay∗ − ρT1y∗ − x∗ + y∗ ∈ NP
Cr
x∗ and it implies that

0 ∈ ρT1y
∗ + x∗ − y∗ −Ay∗ +NP

Cr
x∗ = (I +NP

Cr
)x∗ − (y∗ − ρT1y∗ +Ay∗)

⇔ (I +NP
Cr

)x∗ = (y∗ − ρT1y∗ +Ay∗)

⇔ x∗ = PCr
[y∗ − ρT1y∗ +Ay∗],

where we have used the well-known fact that PCr
= (I + NP

Cr
)−1. Similarly, we

obtain y∗ = PCr [x∗ − ηT2x∗ +Ax∗]. This prove our assertions.
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Algorithm 3.2. For arbitrarily chosen initial points x0 ∈ Cr, the sequence {xn}
and {yn} in the following way:

yn = PCr [xn − ηT2xn +Axn], η > 0

xn+1 = (1− αn)xn + αnPCr [yn − ρT1yn +Ayn], ρ > 0, (3.2)

where {αn} is a sequence in [0, 1].

Now, we suggest and analyze the following explicit projection method (3.2)
for solving the system of nonconvex variational inequalities (2.5).

Theorem 3.3. Let C be a uniformly r-prox-regular closed subset of a Hilbert space
H, and let T1, T2, A : C → H be such that T1 is a µ1-Lipschitz continuous and
γ1-strongly monotone mapping, T2 is a µ2-Lipschitz continuous and γ2-strongly
monotone mapping and A is a β-Lipschitz continuous. If there exists constant
ρ, η > 0 such that

|ρ− γ1
µ2
1

| <
√
γ21t

2
s − tsµ2

1(ts + 2β − 1)

tsµ2
1

|η − γ2
µ2
2

| <
√
γ22t

2
s − tsµ2

2(ts + 2β − 1)

tsµ2
2

(3.3)

where ts = r
r−s for some s ∈ (0, r) with ts

√
t2s − 1 < γ1

µ1
. If the sequence of

positive real number αn ∈ [0, 1] with Σ∞n=0αn = ∞, then the sequences {xn} and
{yn} obtained from Algorithm 3.2 converge to a solution of the system of nonconvex
variational inequalities (2.5).

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5) and from Lemma 3.1, we have

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnPC [yn − ρT1yn +Ayn]− x∗‖
= ‖(1− αn)(xn − x∗)

+αn(PC [yn − ρT1yn +Ayn]− PC [y∗ − ρT1y∗ +Ay∗])‖
≤ (1− αn)‖xn − x∗‖

+αnts‖(yn − ρT1yn +Ayn)− (y∗ − ρT1y∗ +Ay∗)‖
= (1− αn)‖xn − x∗‖

+αnts‖(yn − y∗)− ρ(T1yn − T1y∗) + (Ayn −Ay∗)‖
≤ (1− αn)‖xn − x∗‖

+αnts[‖(yn − y∗)− ρ(T1yn − T1y∗)‖+ ‖Ayn −Ay∗‖]
≤ (1− αn)‖xn − x∗‖

+αnts[‖(yn − y∗)− ρ(T1yn − T1y∗)‖+ β‖yn − y∗‖]. (3.4)

Since T1 are both µ1-Lipschitz continuous and γ1-strongly monotone mapping and
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from Lemma 2.6, we consider

‖(yn − y∗)− ρ(T1yn − T1y∗)‖2 = ‖yn − y∗‖2 − 2ρ〈yn − y∗, T1yn − T1y∗〉
+ρ2‖T1yn − T1y∗‖2

≤ ‖yn−y∗‖2−2ργ1‖yn−y∗‖2+ρ2µ2
1‖yn − y∗‖2

= (1− 2ργ1 + ρ2µ2
1)‖yn − y∗‖2.

It follows that

‖(yn − y∗)− ρ(T1yn − T1y∗)‖ ≤
√

1− 2ργ1 + ρ2µ2
1‖yn − y∗‖. (3.5)

Substituting (3.5) into (3.4), we have

‖xn+1− x∗‖ ≤ (1−αn)‖xn− x∗‖+αnts(β+
√

1− 2ργ1 + ρ2µ2
1)‖yn− y∗‖. (3.6)

On the other hand, we can compute that

‖yn − y∗‖ = ‖PC [xn − ηT2xn +Axn]− y∗‖
= ‖PC [xn − ηT2xn +Axn]− PC [x∗ − ηT2x∗ +Ax∗]‖
≤ ts‖(xn − ηT2xn +Axn)− (x∗ − ηT2x∗ +Ax∗)‖
≤ ts[‖(xn − x∗)− η(T2xn − T2x∗)‖+ ‖Axn −Ax∗‖]
≤ ts[‖(xn − x∗)− η(T2xn − T2x∗)‖+ β‖xn − x∗‖]. (3.7)

Similarly, from T2 are both µ2-Lipschitz continuous and γ2-strongly monotone
mapping, we have

‖(xn − x∗)− η(T2xn − T2x∗)‖2 = ‖xn − x∗‖2 − 2η〈xn − x∗, T2xn − T2x∗〉
+η2‖T2xn − T2x∗‖2

≤ ‖xn−x∗‖2−2ηγ2‖xn−x∗‖2+η2µ2
2‖xn−x∗‖2

= (1− 2ηγ2 + η2µ2
2)‖xn − x∗‖2.

It follows that

‖(xn − x∗)− η(T2xn − T2x∗)‖ ≤
√

1− 2ηγ2 + η2µ2
2‖xn − x∗‖. (3.8)

Substituting (3.8) into (3.7), we have

‖yn − y∗‖ ≤ ts(β +
√

1− 2ηγ2 + η2µ2
2)‖xn − x∗‖. (3.9)

Moreover, from (3.6) and (3.9) we put θ1 = ts(β+
√

1− 2ργ1 + ρ2µ2
1), θ2 = ts(β+√

1− 2ηγ2 + η2µ2
2), it follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ1θ2‖xn − x∗‖
= (1− (1− θ1θ2)αn)‖xn − x∗‖

≤
n∏
i=0

(1− (1− θ1θ2)αi)‖x0 − x∗‖. (3.10)
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Since Σ∞n=0αn =∞ and (3.3), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (3.11)

It follows from (3.10) and (3.11), we have

lim
n→∞

‖xn − x∗‖ = 0. (3.12)

From (3.9) and (3.12), we have limn→∞ ‖yn−y∗‖ = 0, that is, x∗, y∗ ∈ Cr satisfying
the system of nonconvex variational inequalities (2.5).

Corollary 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T : C → H be such that T are both µ-Lipschitz continuous and
γ-strongly monotone mapping. If there exists constant ρ, η > 0 such that

γ

t2sµ
2
−

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

< ρ, η <
γ

t2sµ
2

+

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

, (3.13)

where ts
√
t2s − 1 < γ

µ , ts = r
r−s for some s ∈ (0, r). If the sequence of positive real

number αn ∈ [0, 1] with Σ∞n=0αn =∞, then the sequences {xn} and {yn} generated
by for arbitrarily chosen initial points x0, y0 ∈ Cr

yn = PC [xn − ηTxn], η > 0,

xn+1 = (1− αn)xn + αnPC [yn − ρTyn], ρ > 0, (3.14)

converge to a solution of the system of nonconvex variational inequalities (2.8).

Proof. From Theorem 3.3, if T1 = T2 = T we have a result.

Corollary 3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T : C → H be such that T are both µ-Lipschitz continuous and
γ-strongly monotone mapping. If there exists constant ρ, η > 0 such that

γ

t2sµ
2
−

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

< ρ, η <
γ

t2sµ
2

+

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

, (3.15)

where ts
√
t2s − 1 < γ

µ , ts = r
r−s for some s ∈ (0, r). Then the sequences {xn} and

{yn} generated by for arbitrarily chosen initial points x0, y0 ∈ Cr

yn = PC [xn − ηTxn], η > 0,

xn+1 = PC [yn − ρTyn], ρ > 0, (3.16)

converge to a solution of the system of nonconvex variational inequalities (2.8).

Proof. By Theorem 3.3, if T1 = T2 = T and αn = 1 for n ≥ 1, we have a result.
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4 Applications

In this section, we can apply Theorem 3.3 to the system of general nonconvex
variational inequalities, for given nonlinear mappings T, g : Cr → H, we consider
the problem of finding x∗, y∗ ∈ Cr such that

〈ρT1g(y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0,∀x ∈ Cr, ρ > 0,

〈ηT2g(x∗) + g(y∗)− g(x∗), x− g(y∗)〉 ≥ 0,∀x ∈ Cr, η > 0, (4.1)

which is called the system of general nonconvex variational inequalities.
If T1 = T2 = T , then the problem (4.1) is equivalent to finding x∗, y∗ ∈ Cr

such that

〈ρTg(y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0,∀x ∈ Cr, ρ > 0,

〈ηTg(x∗) + g(y∗)− g(x∗), x− g(y∗)〉 ≥ 0,∀x ∈ Cr, η > 0. (4.2)

By using the same way as the proof of Lemma 3.1, we have the result.

Lemma 4.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex varia-
tional inequalities (4.1) if and only if

g(x∗) = PC [g(y∗)− ρT1g(y∗)],

g(y∗) = PC [g(x∗)− ηT2g(x∗)], (4.3)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space
H, and let T1, T2, g : C → H be such that T1 is a µ1-Lipschitz continuous and
γ1-strongly monotone mapping, T2 is a µ2-Lipschitz continuous and γ2-strongly
monotone mapping and g is continuous. If there exists constant ρ, η > 0 such that

|ρ− γ1
t2sµ

2
1

| <
√
γ21 − t2sµ2

1(t2s − 1)

t2sµ
2
1

and ts
√
t2s − 1 <

γ1
µ1

|η − γ2
t2sµ

2
2

| <
√
γ22 − t2sµ2

2(t2s − 1)

t2sµ
2
2

and ts
√
t2s − 1 <

γ2
µ2
, (4.4)

where ts = r
r−s for some s ∈ (0, r). If the sequence of positive real number αn ∈

[0, 1] with Σ∞n=0αn = ∞, then the sequence {xn} and {yn} is generated by for
x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηT2g(xn)], η > 0

g(xn+1) = (1− αn)g(xn) + αnPC [g(yn)− ρT1g(yn)], ρ > 0, (4.5)

strongly converge to a solution of the system of nonconvex variational inequalities
(4.1).
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Proof. By the similar proof to Theorem 3.3, let x∗, y∗ ∈ Cr be a solution of (4.1)
and from Lemma 4.1, we can compute that

‖g(xn+1)− g(x∗)‖ ≤
n∏
i=0

(1− (1− θ1θ2)αi)‖g(x0)− g(x∗)‖, (4.6)

where θ1 = ts
√

1− 2ργ1 + ρ2µ2
1, θ2 = ts

√
1− 2ηγ2 + η2µ2

2. From Σ∞n=0αn = ∞
and Conditions (4.4), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (4.7)

It follows from (4.6) and (4.7), we have

lim
n→∞

‖g(xn)− g(x∗)‖ = 0.

And we can compute that

‖g(yn)− g(y∗)‖ ≤ θ2‖g(xn)− g(x∗)‖,

it follows that
lim
n→∞

‖g(yn)− g(y∗)‖ = 0.

From g is a continuous mapping, we have limn→∞ ‖xn−x∗‖ = 0 and limn→∞ ‖yn−
y∗‖ = 0 satisfying the system of general nonconvex variational inequalities (4.1).
This complete the proof.

Corollary 4.3. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T, g : C → H be such that T are both µ-Lipschitz continuous
and γ-strongly monotone mapping and g is continuous mapping. If there exists
constant ρ, η > 0 such that

γ

t2sµ
2
−

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

< ρ, η <
γ

t2sµ
2

+

√
γ2 − t2sµ2(t2s − 1)

t2sµ
2

, (4.8)

where ts
√
t2s − 1 < γ

µ , ts = r
r−s for some s ∈ (0, r). Then the sequence {xn} and

{yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0,

g(xn+1) = PC [g(yn)− ρTg(yn)], ρ > 0, (4.9)

strongly converge to a solution of the system of nonconvex variational inequalities
(4.2).

Proof. From Theorem 4.2, if T1 = T2 = T and αn = 1 for n ≥ 0, we have a
result.
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