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1 Introduction and Preliminaries

The fact that fixed point theory furnishes a unified treatment and is a vital
tool for solving equations of form Tx = x, where T is a self-mapping defined on
a subset of a normed linear space, metric space, topological vector space or some
suitable space, leads to the significance of this subject. However, almost all such
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results dilate upon the existence of a fixed point for self-mappings. In fact, if T is
a non-self-mapping, then it is probable that the equation Tx = x has no solution.
In this case, Fan [1] introduced the concept of the best approximation theorems
which is a concept that explore the existence of an approximate solution, that is,
if A is a nonempty subset of a considered space X and T : A→ X then we find a
point x ∈ A such that d(x, Tx) = d(Tx,A).

On the other hand, we also considered the best proximity point theorems
which is a concept that analyze the existence of an approximate solution that
is optimal, that is, if A and B are a nonempty subset of a considered space and
T : A∪B → A∪B then we find a point x ∈ A∪B such that d(x, Tx) = dist(A,B),
where dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. An interesting class of mappings
for considering the best proximity point theorems is a concept so-called cyclic map,
which is defined by following: let A and B be nonempty subsets of a nonempty
set X, a map T : A ∪B → A ∪B is a cyclic map if T (A) ⊂ B and T (B) ⊂ A.

In [2], Eldred and Veeramani introduced and proved the following interesting
best proximity point theorem.

Definition 1.1. [2] Let A and B be nonempty subsets of a metric space (X, d). A
cyclic map T : A∪B → A∪B is called a cyclic contraction if there exists k ∈ [0, 1)
such that

d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(A,B)

for all x ∈ A, y ∈ B.

Theorem 1.2. [2] Let A and B be nonempty closed subsets of a complete metric
space X. Let T : A ∪ B → A ∪ B be a cyclic contraction map, x1 ∈ A and define
xn+1 = Txn, n ∈ N. Suppose {x2n−1} has a convergent subsequence in A. Then
there exists x ∈ A such that

d(x, Tx) = dist(A,B).

Remark 1.3. If A and B are nonempty closed subsets of a complete metric space
(X, d) and T : A ∪ B → A ∪ B is a cyclic contraction, and A ∩ B 6= ∅, then
dist(A,B) = 0, subsequently, T is a contraction on the complete metric space
(A ∩B, d). Hence, applying the Banach contraction principle, by Theorem 1.2 we
known that T has a unique fixed point in A ∩B.

For more examples of best proximity point theorems, the readers may consult
[3–16].

On the other hand, let us recall that a function ϕ : [0,∞) → [0, 1) is said to
be an R−function if

lim sup
s→t+

ϕ(s) < 1 for all t ∈ [0,∞).

By using R-function, Du and Lakzian [17] introduced the following concept.
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Definition 1.4. Let A and B be nonempty subsets of a metric space (X, d). A
cyclic mapping T : A∪B → A∪B is called an cyclic R−contraction if there exists
an R-function ϕ such that

d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + (1− ϕ(d(x, y)))dist(A,B)

for all x ∈ A, y ∈ B.

Under some suitable proposed conditions, they provided a following best prox-
imity point theorem.

Theorem 1.5. Let A and B be nonempty subsets of a metric space (X, d). Let
T : A ∪ B → A ∪ B be an R-cyclic contraction. Let x1 ∈ A be given. Define
an iterative sequence xn+1 = Txn, n ∈ N. Suppose {x2n−1} has a convergent
subsequence in A. Then there exists x ∈ A such that

d(x, Tx) = dist(A,B).

Note that if ϕ : [0,∞)→ [0, 1) is a nondecreasing function or a nonincreasing
function, then ϕ is an R-function. So the set of R−function is a rich class, and
subsequently, the results those present in [17] are of interesting. Thus, motivated
by the presented results above, the main objective of this paper is to consider a
wider class of mappings which was considered by Du and Lakzian [17]. Also, some
new existence theorems of such introduced mappings will be considered. In order
to do that, the following well know result on a class of R-function is needed.

Lemma 1.6. [18] Let ϕ : [0,∞) → [0, 1) be a function. Then, ϕ is an R −
function if an only if for any nonincreasing sequence {xn}n∈N in [0,∞), we have
0 ≤ supn∈N ϕ(xn) < 1.

2 Main Results

Here we introduce a following new subclass of cyclic mappings.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d). A
cyclic map T : A∪B → A∪B is called generalized cyclic R−contraction mapping
if there exists an R−function ϕ such that

d(Tx, Ty) ≤ ϕ(d(x, y)) max
{
d(x, y),

1

2

[
d(Tx, x) + d(Ty, y)

+ min{d(x, Ty), d(y, Tx)}
]}

+ (1− ϕ(d(x, y)))dist(A,B)

for all x ∈ A, y ∈ B.

First, we establish a following theorem related to generalized cyclicR−contrac-
tion mappings.
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Theorem 2.2. Let A and B be nonempty subsets of a metric space (X, d) and
T : A ∪ B −→ A ∪ B be a generalized R−cyclic contraction. For each x1 ∈ A
define an iterative sequence {xn}n∈N by

xn+1 = Txn, for all n ∈ N. (2.1)

Then,

lim
n−→∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = dist(A,B).

Proof. We first show that {d(xn+1, xn)} is a nonincreasing sequence. Now, let us
fix n ∈ N. Since T is a generalized R−cyclic contraction mapping type, we see
that

d(xn+2, xn+1) = d(Txn+1, Txn)

≤ ϕ(d(xn+1, xn)) max
{
d(xn+1, xn),

1

2

[
d(xn+2, xn+1)

+d(xn+1, xn) + min{d(xn+1, xn+1), d(xn, xn+2)}
]}

+(1− ϕ(d(xn+1, xn)))dist(A,B)

= ϕ(d(xn+1, xn)) max
{
d(xn+1, xn),

1

2

[
d(xn+2, xn+1)

+d(xn+1, xn) + d(xn+1, xn+1)
]}

+

(1− ϕ(d(xn+1, xn)))dist(A,B)

= ϕ(d(xn+1, xn)) max
{
d(xn+1, xn),

1

2

[
d(xn+2, xn+1)

+d(xn+1, xn)
]}

+ (1− ϕ(d(xn+1, xn)))dist(A,B). (2.2)

Suppose that d(xn+1, xn) < 1
2

[
d(xn+2, xn+1) + d(xn+1, xn)

]
, then d(xn+1, xn) <

d(xn+2, xn+1). This would implies,

d(xn+2, xn+1) ≤ ϕ(d(xn+1, xn))
1

2

[
d(xn+2, xn+1) + d(xn+1, xn)

]
+(1− ϕ(d(xn+1, xn)))dist(A,B)

< ϕ(d(xn+1, xn))
1

2

[
d(xn+2, xn+1) + d(xn+2, xn+1)

]
+(1− ϕ(d(xn+1, xn)))dist(A,B)

= ϕ(d(xn+1, xn))d(xn+2, xn+1) + (1−ϕ(d(xn+1, xn)))dist(A,B)

≤ ϕ(d(xn+1, xn))d(xn+2, xn+1) +

(1− ϕ(d(xn+1, xn)))d(xn+2, xn+1)

= d(xn+2, xn+1),
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which is a contradiction. Subsequently, by (2.2), we must have

d(xn+2, xn+1) ≤ ϕ(d(xn+1, xn))d(xn+1, xn) + (1− ϕ(d(xn+1, xn)))dist(A,B)

≤ ϕ(d(xn+1, xn))d(xn+1, xn) + (1−ϕ(d(xn+1, xn)))d(xn+1, xn)

= d(xn+1, xn).

This shows that {d(xn+1, xn)} is a nonincreasing sequence.
If there exists j ∈ N such that xj = xj+1 ∈ A ∩B, then

lim
n−→∞

d(xn+1, xn) = inf
n∈N

d(xn+1, xn) = dist(A,B) = 0,

and the proof is completed. So it remains to consider for the case xn+1 6= xn for all
n ∈ N. Since the sequence {d(xn+1, xn)} is nonincreasing in (0,∞), by Lemma1.6,
we have

0 ≤ sup
n∈N

ϕ(d(xn+1, xn)) < 1.

Let λ := supn∈N ϕ(d(xn+1, xn)). Then 0 ≤ ϕ(d(xn+1, xn)) ≤ λ < 1 for all n ∈ N.
From x1 ∈ A, we have x2n−1 ∈ A and x2n ∈ B for all n ∈ N. Since T is a cyclic
R−contraction, we have

d(x2, x3) = d(Tx1, Tx2)

≤ ϕ(d(x1, x2))d(x1, x2) + (1− ϕ(d(x1, x2)))dist(A,B)

≤ λd(x1, x2) + dist(A,B). (2.3)

and

d(x3, x4) = d(Tx2, Tx3)

≤ ϕ(d(x2, x3))d(x2, x3) + (1− ϕ(d(x2, x3)))dist(A,B)

≤ ϕ(d(x2, x3))[λd(x1, x2) + dist(A,B)]

+(1− ϕ(d(x2, x3)))dist(A,B)

= ϕ(d(x2, x3))λd(x1, x2) + dist(A,B)

≤ λ2d(x1, x2) + dist(A,B).

Continuing this process, we obtain

dist(A,B) ≤ d(xn+1, xn+2) ≤ λnd(x1, x2) + dist(A,B). (2.4)

Since λ ∈ [0, 1), lim
n→∞

λn = 0. Using (2.4) and the decreasingness of {d(xn, xn+1)},
we obtain

lim
n−→∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = dist(A,B).

This complete the proof.

Next, we give a best proximity point theorem for a subclass of cyclic mappings.
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Theorem 2.3. Let A and B be nonempty subsets of a metric (X, d) and T :
A ∪B −→ A ∪B be a cyclic map such that

d(Tx, Ty) ≤ max

{
d(x, y),

1

2
[d(Tx, x) + d(Ty, y) + min{d(x, Ty), d(y, Tx)}]

}
(2.5)

for all x ∈ A, y ∈ B. Let x1 ∈ A be given. Define an iterative sequence {xn}n∈N
by xn+1 = Txn for all n ∈ N. Suppose that

(i) {x2n−1} has a convergent subsequence in A

(ii) limn→∞ d(xn, xn+1) = dist(A,B).

Then there exists v ∈ A such that d(v, Tv) = dist(A,B).

Proof. Since T is a cyclic map and x1 ∈ A, it follows that x2n−1 ∈ A and x2n ∈ B,
for all n ∈ N. By (i), there are v ∈ A and a subsequence {x2nk−1} of {x2n−1} such
that x2nk−1 → v as k →∞. Also, we note that

dist(A,B) ≤ d(v, x2nk
) ≤ d(v, x2nk−1) + d(x2nk−1, x2nk

),

for all k ∈ N. Thus, by lim
k→∞

d(v, x2nk−1) = 0 and the condition (ii), we know that

lim
k−→∞

d(v, x2nk
) = dist(A,B).

On the other hand, by (2.5), we have

dist(A,B) ≤ d(Tv, x2nk+1)

≤ max
{
d(v, x2nk

),
1

2

[
d(Tv, v) + d(x2nk+1, x2nk

)

+ min{d(v, x2nk+1), d(x2nk+1, T v)}
]}

for all k ∈ N. Letting k →∞, we obtain

dist(A,B) ≤ d(Tv, v)

≤ max
{
dist(A,B),

1

2

[
d(Tv, v) + dist(A,B) +

min{d(v, v), d(v, Tv)}
]}

= max
{
dist(A,B),

1

2

[
d(Tv, v) + dist(A,B)

]}
. (2.6)

Now we consider the following two cases:

Case I: If max
{
dist(A,B), 12

[
d(Tv, v) + dist(A,B)

]}
= dist(A,B).

In this case, it is easy to very that

d(Tv, v) = dist(A,B).
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Case II: If max
{
dist(A,B), 12

[
d(Tv, v)+dist(A,B)

]}
= 1

2

[
d(Tv, v)+dist(A,B)

]
.

Then, from (2.6), we have

d(Tv, v) ≤ 1

2

[
d(Tv, v) + dist(A,B)

]
,

which is equivalent to
d(Tv, v) ≤ dist(A,B),

and it follows that d(Tv, v) = dist(A,B). Thus, by the two cases above, we reach
the desired result.

Applying Theorems 2.2 and 2.3, we establish the following new best proximity
point theorem for a subclass of generalized cyclic R−contraction mappings.

Theorem 2.4. Let A and B be nonempty subsets of a metric space (X, d) and
T : A ∪B → A ∪B be an generalized cyclic R−contraction. Let x1 ∈ A be given.
Define an iterative sequence {xn}n∈N by xn+1 = Txn, for n ∈ N. Suppose that
{x2n−1} has a convergent subsequence in A, then there exists v ∈ A such that
d(v, Tv) = dist(A,B).

Proof. Let us observe that every generalized cyclic R−contraction satisfies con-
dition (2.5). Also, by Theorem 2.2, we know that the conditions (i) and (ii) of
Theorem 2.3 are always satisfied. Using these observations, in view of Theorem
2.3, we get the desired result immediately.

Note that Theorem 2.4 contains Theorem 1.5, and then Theorem 1.2, as special
cases. We will complete this research by giving an example which shows that
Theorem 2.4 is a genuine generalization of Theorem 1.5.

Example 2.5. Let X = R and d is a usual metric on R. Let us consider for
A = [−2,−1], B = [2, 3] and a cyclic mapping T : A∪B → A∪B which is defined
by

Tx :=


2, if x ∈ [−2,−1],

−1, if x ∈ [2, 3),

−2, if x = 3.

Now, we will show that T is a generalized cyclic R−contraction mapping with
respect to an R− function ϕ that defined by

ϕ(t) =
2

3
for all t ∈ [0,∞).

We consider the following cases:
Case(i): If x = −1 and y = 3.

We see that

1

2
[d(x, Tx) + d(y, Ty) + min{d(x, Ty), d(y, Tx)}] =

1

2
[3 + 5 + min{1, 1}] = 4.5.
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It follows that,

d(Tx, Ty) = 4 =
2

3
(4.5) +

(
1− 2

3

)
3

≤ ϕ(d(x, y)) max
{
d(x, y),

1

2

[
d(Tx, x) + d(Ty, y)

+ min{d(x, Ty), d(y, Tx)}
]}

+ (1− ϕ(d(x, y)))dist(A,B).

Case(ii): For each x ∈ [−2,−1] and y ∈ [2, 3).
We note that d(Tx, Ty) = 3, and

d(x, y) = | x− y | = y − x,
d(x, Tx) = | x− 2 | = 2− x,
d(y, Ty) = | y + 1 | = y + 1,

d(x, Ty) = | x+ 1 | = − x− 1,

d(y, Tx) = | y − 2 | = y − 2.

Next, from y ∈ [2, 3) and x ∈ [−2,−1], we see that d(x, y) = y − x ≥ 3. This
gives

d(Tx, Ty) = 3 ≤ 2

3
(y − x) + 3− 2

3
(3)

=
2

3
(y − x) +

(
1− 2

3

)
3

≤ ϕ(d(x, y)) max
{
d(x, y),

1

2

[
d(Tx, x) + d(Ty, y)

+ min{d(x, Ty), d(y, Tx)}
]}

+ (1− ϕ(d(x, y)))dist(A,B).

Therefore, T is generalized a cyclic R−contraction on A ∪B.
On the other hand, let us consider when x = −1 and y = 3. For anyR−function

ϕ, we see that

d(Tx, Ty) = 4 > 4ϕ(d(x, y)) + 3− 3ϕ(d(x, y))

= 4ϕ(d(x, y)) + (1− ϕ(d(x, y)))3

= d(x, y)ϕ(d(x, y)) + (1− ϕ(d(x, y)))dist(A,B).

This means that T does not satisfy the Definition 1.4.
Further, one can see that −1 ∈ A and y = 2 ∈ B are two best proximity points

for T .
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