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Abstract : Let T (X) denote the full transformation semigroup on a set X. For
an equivalence relation E on X, let

TE∗(X) = {α ∈ T (X) | ∀x, y ∈ X, (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

Then TE∗(X) is a subsemigroup of T (X). For θ ∈ TE∗(X), we define a sandwich
operation ∗ on TE∗(X) by α ∗ β = αθβ where αθβ is the composition of func-
tions α, θ and β. Under this operation, TE∗(X) is a semigroup which is called
the variant semigroup of TE∗(X) with the sandwich function θ, and denoted by
(TE∗(X), θ). In this paper, we give a necessary and sufficient condition for an
element of (TE∗(X), θ) to be regular and determine when (TE∗(X), θ) is a regular
semigroup.
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1 Introduction

An element a of a semigroup S is called regular if a = axa for some x ∈ S.
The semigroup S is said to be regular if all of its elements are regular. The set of
all regular elements of S is denoted by Reg(S).
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The domain and the range of a mapping α will be denoted by domα and ranα,
respectively. For an element x ∈ domα, the image of x under α is written as xα.

Notice that domα =

.⋃
x∈ranα

xα−1 where the notation

.⋃
stands for a disjoint union.

For A ⊆ domα, denote by α|A the restriction of α to A. The identity mapping on
a nonempty set A is denoted by 1A.

For convenience, we write a mapping by using a bracket notation. For example,(
a b
c d

)
stands for a mapping α with domα = {a, b}, ranα = {c, d},

aα = c and bα = d,(
Ai
ai

)
i∈I

stands for a mapping β with domβ =
⋃
i∈I

Ai,

ranβ = {ai | i ∈ I} and xβ = ai for allx ∈ Ai.
For a nonempty set X, let P (X) and T (X) be the partial transformation

semigroup on X and the full transformation semigroup on X, respectively. It is
well known that P (X) and T (X) are regular semigroups.

In [1], Fernandes and Sanwong introduced the partial transformation semi-
group with restricted range P (X,Y ) defined by

P (X,Y ) = {α ∈ P (X) | Xα ⊆ Y }

where ∅ 6= Y ⊆ X. They proved that {α ∈ P (X,Y ) | Xα = Y α} is the largest
regular subsemigroup of P (X,Y ). Later, Sangkhanan and Sanwong [2] defined the
partial linear transformation semigroup with restricted range P (V,W ) where W is
a subspace of a vector space V, and also described the largest regular subsemigroup
of P (V,W ).

For a nonempty subset Y of X, let

T (X,Y ) = {α ∈ T (X) | Xα ⊆ Y },
T (X,Y ) = {α ∈ T (X) | Y α ⊆ Y }.

Then T (X,Y ) ⊆ T (X,Y ) and both are subsemigroups of T (X). The semigroup
T (X,Y ) was introduced and studied by Symons [3] in 1975, while Magill [4] in-
troduced and studied the semigroup T (X,Y ) in 1966. Regular elements of these
semigroups are discussed in [5]. Recently, subsemigroups of T (X,Y ) were studied
by Sanwong [6] and Laysirikul [7].

In [8], Anantayasethi and Koppitz introduced the semigroup TP (X,Y ) of all
nonempty subsets of the semigroup T (X,Y ), ∅ 6= Y ⊆ X, under the operation
AB := {αβ | α ∈ A, β ∈ B} where A and B are nonempty subsets of T (X,Y ).
They determined regular elements in TP (X,Y ) for the case |Y | = 2.

For nonempty sets X and Y , let T (X,Y ) be the set of all mappings from X
into Y . For θ ∈ T (Y,X), we define a sandwich operation ∗ on T (X,Y ) by

α ∗ β = αθβ for all α, β ∈ T (X,Y ).

Then (T (X,Y ), ∗) is a semigroup which we denote by (T (X,Y ), θ). This semigroup
is called a sandwich semigroup with the sandwich function θ. Sandwich semigroups
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have been studied by many authors, such as Magill and Subbiah [9, 10], Magill et
al. [11], Symons [12] and Hickey [13].

If X = Y , then the sandwich semigroup (T (X,Y ), θ) is written as (T (X), θ)
and called the variant semigroup of T (X) with the sandwich function θ ∈ T (X).

Let E be an equivalence relation on a set X, A,B be subsets of X and α be a
mapping from A into B. α is said to be E-preserving if for any x, y ∈ A, (x, y) ∈ E
implies that (xα, yα) ∈ E. If α satisfies the condition that (x, y) ∈ E if and only
if (xα, yα) ∈ E, then α is called E∗-preserving. Denote by X/E the set of all
equivalence classes determined by E. Let

TE(X) = {α ∈ T (X) | α is E-preserving}.

Then TE(X) is a subsemigroup of T (X) and its regular elements are investigated
in [14]. The regular elements of the variant semigroup (TE(X), θ) of TE(X) where
θ ∈ TE(X) are characterized in [15]. Denote

TE∗(X) = {α ∈ T (X) | α is E∗-preserving}.

Then TE∗(X) is a subsemigroup of TE(X). It is obvious that if E = X ×X,
then TE∗(X) = TE(X) = T (X). The characterizations of the regular elements in
TE∗(X) and the regularity of TE∗(X) are given in [16] as follows:

Theorem 1.1. [16] Let α ∈ TE∗(X).Then α is regular if and only if A∩ranα 6= ∅
for every A ∈ X/E.

Theorem 1.2. [16] TE∗(X) is regular if and only if |X/E| is finite.

For a fixed element θ ∈ TE∗(X), the variant semigroup of TE∗(X) with the
sandwich function θ will be denoted by (TE∗(X), θ). The purpose of this paper is to
characterize the regular elements of the variant semigroup (TE∗(X), θ). This char-
acterization is then applied to determine when the variant semigroup (TE∗(X), θ)
and the semigroup TE∗(X) have the same set of regular elements. In addition,
we give a necessary and sufficient condition for the semigroup (TE∗(X), θ) to be
regular.

2 Main Results

We first give a characterization of the regular elements of the variant semigroup
(TE∗(X), θ).

Theorem 2.1. For θ, α ∈ TE∗(X), α is regular in (TE∗(X), θ) if and only if the
following conditions hold:

(i) A ∩ ran(αθ) 6= ∅ for any A ∈ X/E,

(ii) ranα = ran(θα),

(iii) θ|ranα is injective.
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Proof. Assume that α is regular in (TE∗(X), θ). Then α = αθβθα for some β ∈
(TE∗(X), θ). It follows that αθ, βθ ∈ TE∗(X) and αθ = (αθ)(βθ)(αθ). Thus αθ
is regular in TE∗(X). By Theorem 1.1, A ∩ ran(αθ) 6= ∅ for any A ∈ X/E. This
verifies (i). Now, since

ranα = Xα = Xαθβθα ⊆ Xθα ⊆ Xα = ranα,

we get ranα = ran(θα). Hence (ii) holds. Finally, since α = αθβθα, we get

z = zθβθα for all z ∈ ranα. (2.1)

If y1, y2 ∈ ranα are such that y1θ = y2θ, then from (2.1), we obtain

y1 = y1θβθα = y2θβθα = y2.

This shows that θ|ranα is injective.
Conversely, assume that (i), (ii) and (iii) hold. Since A ∩ ran(αθ) 6= ∅ for any

A ∈ X/E, by Theorem 1.1, αθ is regular in TE∗(X). Let β ∈ TE∗(X) be such
that αθ = (αθ)β(αθ). Then α(θ|ranα) = αθβα(θ|ranα). Since θ|ranα is injective, we
obtain α = αθβα. Then

ranα = ran(αθβα) ⊆ ran(βα) ⊆ ranα,

so ranα = ran(βα) which implies that ran(βα) = ran(θα).
For each y ∈ ran(βα) = ran(θα), choose an element dy ∈ y(θα)−1. Then

dy(θα) = y for all y ∈ ran(βα). (2.2)

Note that X =

.⋃
y∈ran(βα)

y(βα)−1. Define β′ : X → X by

β′ =

(
y(βα)−1

dy

)
y∈ran(βα)

.

To show that β ∈ TE∗(X), let x1, x2 ∈ X. Then x1 ∈ (x1βα)(βα)−1 and x2 ∈
(x2βα)(βα)−1, so

x1β
′ = dx1βα and x2β

′ = dx2βα.

By (2.2),
(dx1βα)(θα) = x1βα and (dx2βα)(θα) = x2βα.

Since βα, θα ∈ TE∗(X), we obtain that

(x1, x2) ∈ E ⇔ (x1βα, x2βα) ∈ E
⇔
(
(dx1βα)(θα), (dx2βα)(θα)

)
∈ E

⇔ (dx1βα, dx2βα) ∈ E
⇔ (x1β

′, x2β
′) ∈ E.
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In order to show that α = αθβ′θα, we must verify that xα = xαθβ′θα for all
x ∈ X. Let x ∈ X. Then xα ∈ ranα = ran(βα) and xα = (xαθ)βα, that is,
xαθ ∈ (xα)(βα)−1. Thus (xαθ)β′ = dxα and by (2.2), dxα(θα) = xα. Hence
xαθβ′θα = dxα(θα) = xα. Consequently, α = αθβ′θα. The proof is thereby
complete.

Remark 2.2. It is obvious that all regular elements in (TE∗(X), θ) are also regular
in TE∗(X). However, the converse is not generally true. For example, let X =
{1, 2, 3} and E = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}. Then X/E = {{1, 3}, {2}}.
Define α, θ ∈ T (X) by

α =

(
1 2 3
3 2 1

)
and θ =

(
1 2 3
1 2 1

)
.

Thus α, θ ∈ TE∗(X) and ranα = X. Since A ∩ ranα 6= ∅ for any A ∈ X/E, by
Theorem 1.1, α is regular in TE∗(X). However, by Theorem 2.1, α is not regular
in (TE∗(X), θ) since θ|ranα = θ is not injective.

We have seen that Reg((TE∗(X), θ)) ⊆ Reg(TE∗(X)). The following theorem
tells us when Reg((TE∗(X), θ)) = Reg(TE∗(X)).

Theorem 2.3. Let θ ∈ TE∗(X). Then Reg((TE∗(X), θ)) = Reg(TE∗(X)) if and
only if θ is a bijection.

Proof. Assume that Reg((TE∗(X), θ)) = Reg(TE∗(X)). Since 1X is regular in
TE∗(X), it follows that 1X is regular in (TE∗(X), θ). By Theorem 2.1, we obtain
ran(θ) = ran(θ1X) = ran(1X) = X and that θ = θ|ran(1X )

is injective. That is, θ is
a bijection.

For the converse, suppose that θ is a bijection. Then, so is θ−1. Since
θ ∈ TE∗(X), we have θ−1 ∈ TE∗(X). Since Reg((TE∗(X), θ)) ⊆ Reg(TE∗(X)),
it remains to show that Reg(TE∗(X)) ⊆ Reg((TE∗(X), θ)). Let α be a regular ele-
ment in TE∗(X). Then α = αβα for some β ∈ TE∗(X). Consequently, θ−1βθ−1 ∈
TE∗(X) and α = αθ(θ−1βθ−1)θα which implies that α ∈ Reg((TE∗(X), θ)).

In what follows we investigate when the semigroup (TE∗(X), θ) is regular.

Theorem 2.4. For θ ∈ TE∗(X), (TE∗(X), θ) is a regular semigroup if and only if

(i) θ is a bijection and

(ii) |X/E| is finite.

Proof. Assume that (TE∗(X), θ) is regular. Then Reg((TE∗(X), θ)) = TE∗(X).
Since Reg((TE∗(X), θ)) ⊆ Reg(TE∗(X)), it follows that

Reg((TE∗(X), θ)) = Reg(TE∗(X))

and TE∗(X) is regular. By Theorem 2.3 and Theorem 1.2, we obtain that θ is a
bijection and |X/E| is finite, respectively.
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Conversely, assume that θ is a bijection and |X/E| is finite. Since θ is a
bijection, by Theorem 2.3, Reg((TE∗(X), θ)) = Reg(TE∗(X)). Also, since |X/E| is
finite, we get from Theorem 1.2 that TE∗(X) is regular. Then Reg((TE∗(X), θ)) =
Reg(TE∗(X)) = TE∗(X) which implies that (TE∗(X), θ) is regular.

Remark 2.5. The condition (i) of Theorem 2.4 cannot be removed. For example,

let θ =

(
X
a

)
where a ∈ X and E = X ×X. It is clear that

{(
X
b

)
| b ∈ X

}
⊆

Reg((TE∗(X), θ)). If α ∈ Reg((TE∗(X), θ)), then α = αθβθα for some β ∈

TE∗(X), so α =

(
X
aα

)
. Thus Reg((TE∗(X), θ)) =

{(
X
b

)
| b ∈ X

}
. Hence

(TE∗(X), θ) is not a regular semigroup.
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