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1 Introduction

The notion of weak subdifferential which is a generalization of the classic sub-
differential, is introduced by Azimov and Gasimov [1]. It uses explicitly defined
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supporting conic surfaces instead of supporting hyperplanes. Recall that, a con-
vex set has a supporting hyperplane at each boundary point. This leads to one
of the central notions in convex analysis, that of a subgradient of a possible non-
smooth even extended real valued function [2]. The main reason of difficulties
arising when passing from the convex analysis to the nonconvex one is that, the
nonconvex cases may arise in many different forms and each case may require
a special approach. The main ingredient is the method of supporting the given
nonconvex set. Subgradients plays an important role in deriving of optimality con-
ditions and duality theorems. The first canonical generalized gradient introduced
by Clarke [3,4]. He applied this generalized gradient systematically to nonsmooth
problems in a variety of problems. Since a nonconvex set has no supporting hy-
perline at each boundary point, the notion of subgradient have been generalized
by most researchers on optimality conditions for nonconvex problems [5, 6]. By
using the notion of subgradients, a collection of zero duality gap conditions for
a wise class of nonconvex optimization problems was derived [1]. In this study
we give some important properties of the ε-generalized weak subdifferentials. By
using the definition and properties of the weak subdifferential which are described
in [1,2,5,7], we prove some theorems connecting ε-generalized weak subdifferential
in nonsmooth and nonconvex analysis. It is also obtained sufficient optimality
condition by using the ε-generalized weak subdifferential. The paper is organized
as follows. The definition and preliminaries of ε-generalized weak subdifferential is
provided in the following sections. In Section 4, we prove some theorems connect-
ing operations on ε-generalized weak subdifferential in nonsmooth and nonconvex
analysis. sequently, we state sufficient conditions that with them a function obtains
a global minimum.

2 Preliminaries

In this section, we give some basic definitions and results. Let Y be a real
vector space and C be a convex cone in Y , then the binary relation

≤C := {(x, y) ∈ Y × Y ; y − x ∈ C}

is a partial ordering on Y . If, in addition, C is pointed, i.e, C ∩−C = 0, then ≤C
is antisymmetric. we denote ≤C as a partial ordering induced by a convex cone
C. It is clear that ≤C is a partial order on Y , and so (Y,≤C) is a partially ordered
vector space.

Definition 2.1. [8] Let X and Y be real vector spaces and let C be a convex cone
in Y . A function ||| . |||: X −→ C is called vectorial norm on X, if for all x, z ∈ X
and all λ ∈ R, then the following conditions are satisfied:

(i) ||| x |||= 0Y ⇐⇒ x = 0X ,

(ii) ||| λx |||=| λ | ||| x |||,
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(iii) ||| x+ z ||| ≤C ||| x ||| + ||| z |||.
If, in addition, Y = R, C = R+, the set of nonnegative real numbers, the function
||| . ||| is called a norm on X and it is denoted by ‖ . ‖.

Let (Y,≤C) be an ordered locally convex topological vector space. The topol-
ogy that is induced by vertical norm on X is the topology induced by the neigh-
borhood base {X(a, U) : U ∈ B(0)}, where

X(a, U) = {x ∈ X :||| x− a |||∈ U},

with B(0) is a neighborhood base of the origin in Y and a running over X.

Definition 2.2. [8] Let (X, ‖ . ‖X) and (Y, ‖ . ‖Y ) be real normed spaces and S
be a nonempty open subset of X. Let f : S −→ Y be a given function and x̄ ∈ S.
If there is a continuous linear function f́(x̄) : X −→ Y with the property

lim
‖h‖X−→0

‖ f(x̄+ h)− f(x̄)− f́(x̄)(h) ‖Y
‖ h ‖X

= 0,

then f́(x̄) : X −→ Y is called the Fréchet derivative of f at x̄ and f is called the
Fréchet differentiable at x̄.

The next definition is a generalization of the usual convexity for the real func-
tions.

Definition 2.3. [8] Let X and Y be real vector spaces and C be a convex cone
in Y . Let S be a nonempty convex subset of X. A function f : S −→ Y is called
C-convex if for all x, y ∈ S and all λ ∈ [0, 1]

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ∈ C. (2.1)

If ≤C is the partial ordering in Y induced by C, then the condition (2.1) can also
be written as

f(λx+ (1− λ)y) ≤C λf(x) + (1− λ)f(y).

A function f : S −→ Y is called C-concave, if −f is C-convex.

Theorem 2.4. [8] Let (X, ‖ . ‖X) and (Y, ‖ . ‖Y ) be real normed spaces and S be
a nonempty open convex subset of X and C be a closed convex cone in Y and let
f : S −→ Y be a Fréchet differentiable at every point x ∈ S. Then f is C-convex
if and only if

f́(y)(x− y) ≤C f(x)− f(y) (∀x, y ∈ S).

Definition 2.5. [9] Let X and Y be real topological vector spaces. Let S be an
open subset of X and f : S −→ Y be a given function. If for x̄ ∈ S and u ∈ X the
limit

f́(x̄, u) = lim
t→o+

f(x̄+ tu)− f(x̄)

t

exists, then f́(x̄, u) is called the directional derivative of f at x̄ in the direction u.
If this limit exists for all u ∈ X, then f is called directionally differentiable at x̄.



150 Thai J. Math. 16 (2018)/ P. Cheraghi et al.

Definition 2.6. [9] Let X be a real topological vector space and (Y,≤C) be a
real ordered topological vector space with intC 6= ∅. Let S be an open subset of
X and f : S −→ Y be a given function and ε ∈ R+. If for x̄ ∈ S and u ∈ X the
infimum

f́ε(x̄, u) = inf
t>0

f(x̄+ tu)− f(x̄) + ε1

t

exists in Y , then f́ε(x̄, u) is called the ε-directional derivative of f at x̄ in the
direction u. If this infimum exists in Y for all u ∈ X, then f is called ε-directionally
differentiable at x̄ . Note that 1 ∈ intC.

3 ε-Generalized Weak Subgradient

In this section, the definition of subgradient, ε-subgradient, ε-weak subgradient
and ε-generalized weak subgradient are given. Also in the sequel the relation
between them is considered.

Definition 3.1. [8] Let X and Y be real topological vector spaces and C be a
convex cone in Y . Assume that f : X −→ Y is a given function and x̄ ∈ X. The
set

∂f(x̄) = {T ∈ B(X,Y ) : f(x)− f(x̄)− T (x− x̄) ∈ C ∀x ∈ X},
where B(X,Y ) denotes the vector space of all continuous linear functions from
X to Y is called the subdifferential of f at x̄. Every T ∈ B(X,Y ) is called a
subgradient of f at x̄ . Also if ∂f(x̄) 6= ∅, then f is called subdifferentiable at x̄.

Definition 3.2. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y that (Y,≤C) be a real ordered topological vector space.
Assume that intC 6= ∅, f : X −→ Y is a given function and x̄ ∈ X and ε ∈
R+.Then a point T ∈ B(X,Y ) is called ε-subgradient of f at x̄ if

f(x)− f(x̄)− T (x− x̄) + ε1 ∈ C (∀x ∈ X)

where 1 ∈ intC. The set of all ε-subgradients of f at x̄ is called the ε-subdifferntial
of f at x̄ and denoted by

∂εf(x̄) = {T ∈ B(X,Y ) : T is an ε-subgradient of f at x̄},

where B(X,Y ) is the vector space of all continuous linear functions from X to Y.
Also if ∂εf(x̄) 6= ∅, then f is called ε-subdifferentiable at x̄.

Remark 3.3. If f : X −→ Y is subdifferentiable at x̄, then there exists T ∈
B(X,Y ), such that

f(x)− f(x̄)− T (x− x̄) ∈ C (∀x ∈ X),

since 1 ∈ intC and ε ∈ R+, then we have ε1 ∈ C and therefore

f(x)− f(x̄)− T (x− x̄) + ε1 ∈ C (∀x ∈ X),

this means that f is ε-subdifferentiable at x̄ for all ε ∈ R+.
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The following example shows that the converse may failed.

Example 3.4. Let X = Y = R, C = R+, and let

f(x) =

{ √
1− x2 −1 ≤ x ≤ 1

0 otherwise

Then ∂f(0) = ∅ and ∂2f(0) = {0}.

Definition 3.5. [9] Let X be a real normed space, f : X −→ R̄ be a proper
function, x̄ ∈ X be such that f(x̄) ∈ R and ε ∈ R+. Then (x∗, c) ∈ X∗ × R+ is
called an ε-weak subgradient of f at x̄ if

f(x)− f(x̄) + ε ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ (∀ x ∈ X).

The set of all ε-weak subgradients of f at x̄ is called the ε-weak subdifferntial of f
at x̄ and denoted by

∂wε f(x̄) = {(x∗, c) ∈ X∗ × R+ : (x∗, c)}

is an ε-weak subgradient of f at x̄. Also if ∂wε f(x̄) 6= ∅, then f is called ε-weak
subdifferentiable at x̄.

Definition 3.6. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y that (Y,≤C) be a real ordered topological vector space
with intC 6= ∅. Let f : X −→ Y be a function and ||| . |||: X −→ C be a vectorial
norm on X and, let x̄ ∈ X and ε ∈ R+ be arbitrary. A point (T, c) ∈ B(X,Y )×R+

is called an ε-generalized weak subgradient of f at x̄ if

f(x)− f(x̄)− T (x− x̄)− {c} ||| x− x̄ ||| +ε1 ∈ C (∀x ∈ X),

where 1 ∈ intC. The set of all ε-generalized weak subgradients of f at x̄ is called
the ε-generalized weak subdifferntial of f at x̄ and denoted by

∂ε
gwf(x̄) = {(T, c) ∈ B(X,Y )× R+ : (T, c) is an ε-weak subgradients of f at x̄}.

Also if ∂ε
gwf(x̄) 6= ∅, then f is called ε-generalized weak subdifferentiable at x̄.

In the above definition, if ε = 0, then ε-generalized weak subdifferntial is called
generalized weak subdifferntial.

Remark 3.7. If f is generalized weak subdifferentiable at x̄, then f is also ε-
generalized weak subdifferentiable at x̄, for all ε ∈ R+, that is, if (T, c) ∈ ∂wf(x̄),
then by definition of ε-generalized weak subgradient (T, c) ∈ ∂εgwf(x̄), for all ε ∈
R+. But the converse may failed as the following example.

Example 3.8. Let X = Y = R, C = R+, and let f be a function defined by
Example 3.4. Then ∂wf(0) = ∅ and ∂gw2 f(0) = {(0, c) : c ≥ 0}.
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Remark 3.9. If f is ε-subdifferentiable at x̄, then f is also ε-generalized weak
subdifferentiable at x̄, that is, if T ∈ ∂εf(x̄), then by definition of ε-generalized
weak subgradient (T, c) ∈ ∂εgwf(x̄), for every c ≥ 0. But the converse may failed
as the following example.

Example 3.10. Let X = Y = R, C = R+, and let f(x) = − | x |, ε ∈ R+. Then
it follows from definition of ε-generalized weak subgradient that

(a, c) ∈ ∂εgwf(0)⇐⇒ (a, c) ∈ R×R+ and − | x | + ε ≥ ax− c | x |, for all x ∈ X.

Hence the ε-generalized weak subdifferential can explicity be written as

∂ε
gwf(0) = {(a, c) ∈ R× R+ : | a | ≤ c− 1}.

On the other hand, it follows from the definition of the ε-subdifferential that
∂εf(0) = ∅.

Remark 3.11. From definition of ε-generalized weak subgradient that if ∂ε
gwf(x̄)

is a nonempty set, then it has uncountable members. Because if (T, c̄) ∈ ∂εgwf(x̄),
then we have

f(x)− f(x̄)− T (x− x̄) + c̄ ||| x− x̄ ||| +ε1 ∈ C ∀ x ∈ X,

where 1 ∈ intC. Since ć ||| x − x̄ |||∈ C, for all ć ∈ R+, C is a convex cone, it
follows that

f(x)− f(x̄)− T (x− x̄)− (c̄+ ć) ||| x− x̄ ||| +ε1 ∈ C ∀ x ∈ X,

that is, (T, c̄+ ć) ∈ ∂εgwf(x̄), for all ć ∈ R+. This completes proof of the assertion.
Similarly, if (T, c̄) ∈ ∂εgwf(x̄), then (T, c̄) ∈ ∂έgwf(x̄), for all έ ≥ ε. This means
that

∂ε
gwf(x̄) 6= ∅ =⇒ ∂έ

gwf(x̄) 6= ∅ ∀έ ≥ ε.

Remark 3.12. We have the following notices:

(T, c) ∈ ∂wf(x̄) ⇐⇒ T ∈ ∂(f + c ||| .− x̄) |||)(x̄),

(T, c) ∈ ∂εgwf(x̄) ⇐⇒ T ∈ ∂ε(f + c ||| .− x̄ |||)(x̄).

Example 3.13. Let X be a real topological vector space and C be a pointed
closed convex cone in Y that (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X and
ε ∈ R+. If vectorial norm is ||| . ||| is ε-generalized weak subdifferentiable, then{
(T, c) ∈ B(X,Y )×R+ : T (x̄)− c ||| x̄ |||=||| x̄ |||, T (x)− c |||x |||≤C |||x |||,∀x ∈ X

}
⊂ ∂εgw ||| x̄ ||| .
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Remark 3.14. It follows from Definition 3.5 that the pair (T, c) ∈ B(X,Y )×R+

is a ε-generalized weak subdifferential of f at x̄ ∈ X, iff the continuous (super
linear) C-concave function

g(x) = f(x̄) + T (x− x̄)− c̄ ||| x− x̄ |||

satisfy the following conditions:

(i) g(x) ≤C f(x) + ε1 (∀x ∈ X),

(ii) g(x̄) = f(x̄).

Theorem 3.15. [9] Let the ε-generalized weak subdifferential of f : X −→ Y at
x̄ is nonempty set. Then the set ∂ε

gwf(x̄) is closed and convex.

In the sequel, we need the following definition that generalizes the notion of
lower Lipschitz functions.

Definition 3.16. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y that (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. A function f : X −→ Y is called ε-generalized lower locally Lipschitz
at x̄ ∈ X if there exist a nonnegative real number L (Lipschitz constant) and a
neighborhood N(x̄) of x̄ such that

−L ||| x− x̄ ||| ≤C f(x)− f(x̄) + ε1 (∀ x ∈ N(x̄)).

If the above inequality holds for all x ∈ X, then f is called ε-generalized lower
Lipschitz at x̄ with the Lipschitz constant L.

If ε = 0, then the definition of ε-generalized lower Lipschitz function and the
definition of generalized lower Lipschitz function concide with each other.

4 Main results

In this section by recall the results in [9], we present some result in ε-generalized
weak subdifferential. The first result states the link between ε-generalized lower
Lipschitz functions and ε-generalized lower locally Lipschitz functions.

Proposition 4.1. Let X and Y be real topological vector spaces and C be a pointed
closed convex cone in Y , that induces a totally order on Y , intC 6= ∅ and ||| . |||:
X −→ C be a vectorial norm on X, and let x̄ ∈ X and ε ∈ R+. Let f : X −→ Y be
a function. If f is ε-generalized lower locally Lipschitz at x̄ and there exists p ≥ 0
and q ∈ Y such that

q − p ||| x ||| ≤C f(x) (∀x ∈ X),

then f is ε-generalized lower Lipschitz at x̄.



154 Thai J. Math. 16 (2018)/ P. Cheraghi et al.

Proof. Assume to the contrary that f is not ε-generalized lower Lipschitz at x̄.
Then for every k ∈ N, there exists xk ∈ X such that

−k ||| xk − x̄ ||| 6≤C f(xk)− f(x̄) + ε1

i.e.
f(xk)− f(x̄) + ε1 + k ||| xk − x̄ ||| 6∈ C,

therefore,
f(xk)− f(x̄) + k ||| xk − x̄ ||| 6∈ C.

Since (Y,≤C) is a real totally ordered topological vector space, we have

− f(xk) + f(x̄)− k ||| xk − x̄ ||| ∈ C. (4.1)

As q − p ||| x ||| ≤C f(x) for all x ∈ X and from triangle inequality, we have

−p ||| xk − x̄ ||| −p ||| x̄ ||| +q ≤C − p ||| xk ||| +q ≤C f(xk),

i.e.,
f(xk) + p ||| xk − x̄ ||| +p ||| x̄ ||| −q ∈ C. (4.2)

From the inequalities (4.1), (4.2) we obtain

(p− k) ||| xk − x̄ ||| +f(x̄) + p ||| x̄ ||| −q ∈ C.

Therefore,
(k − p) ||| xk − x̄ ||| ≤C f(x̄) + p ||| x̄ ||| −q.

As k − p > 0 for a sufficiently large k and C is a convex cone, then we have

||| xk − x̄ ||| ≤C
f(x̄) + p ||| x̄ ||| −q

k − p

as k −→ ∞, then we obtain f(x̄)+p|||x̄|||−q
k−p −→ 0. Hence, we have xk −→ x with

respect to vectorial norm. Now since f is ε-generalized lower locally Lipschitz at x̄,
there exist a nonnegative real number L (Lipschitz constant) and a neighborhood
N(x̄) of x̄ such that

−L ||| x− x̄ ||| ≤C f(x)− f(x̄) + ε1 (∀ x ∈ N(x̄)).

As xk −→ x, there exists k0 ∈ N such that xk ∈ N(x̄) for all k ≥ k0. Therefore,

− L ||| xk − x̄ ||| ≤C f(xk)− f(x̄) + ε1. (4.3)

From the inequalities (4.1) and (4.3), we obtain

k ||| xk − x̄ ||| ≤C L ||| xk − x̄ ||| (∀k ≥ k0)

which is a contradiction. So f is ε-generalized lower Lipschitz at x̄.
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In the sequel, we recall the sufficient condition for ε-generalized weak subdif-
ferentiability of f at x̄ and then we present the interesting neccesary condition for
ε-generalized weak differentiability of f at x̄.

Theorem 4.2. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X and
ε ∈ R+. Let f : X −→ Y be a function. If f is ε-generalized lower Lipschitz at x̄,
then f is ε-generalized weak subdifferentiable at x̄.

Proposition 4.3. Let X be a real topological vector space and C be a closed convex
cone in Y and (Y,≤C) be a real ordered topological vector space with intC 6= ∅ and
||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X and ε ∈ R+. Let
f : X −→ Y be a function that (T, c) ∈ ∂εgwf(x̄) and there exists L such that

L ||| x− x̄ ||| ≤c T (x− x̄) (∀x ∈ X).

Then f is ε-generalized lower Lipschitz at x̄.

Proof. Suppose that (T, c) ∈ ∂εgwf(x̄), then we have

f(x)− f(x̄)− T (x− x̄) + c ||| x− x̄ ||| +ε1 ∈ C (∀ x ∈ X).

Therefore,

T (x− x̄)− c ||| x− x̄ ||| ≤c f(x)− f(x̄) + ε1 (∀ x ∈ X).

Since L ||| x− x̄ ||| ≤c T (x− x̄) (∀x ∈ X), we get

(L− c) ||| x− x̄ ||| ≤c f(x)− f(x̄) + ε1 (∀ x ∈ X).

This means that f is ε-generalized lower Lipschitz at x̄.

Remark 4.4. If L ≥ 0, then T = 0, and result is obvious. But the case L < 0 is
nontrivial and considerable.

Theorem 4.5. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and |‖ . |‖: X −→ C be a vectorial norm on X, and let x̄ ∈ X and
ε ∈ R+. Let f : X −→ Y be a function. If f is ε-generalized lower Lipschitz at x̄,
then there exists p ≥ 0 and q ∈ Y such that

q − p |‖ x |‖ ≤c f(x) + ε1 (∀ x ∈ X),

where 1 ∈ intC.

Proposition 4.6. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and |‖ . |‖: X −→ C be a vectorial norm on X, and let x̄ ∈ X and
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ε ∈ R+. Let f : X −→ Y be a function that (T, c) ∈ ∂εgwf(x̄) and there exists L
such that

L |‖ x− x̄ |‖ ≤c T (x− x̄) (∀x ∈ X),

then there exists p ≥ 0 and q ∈ Y such that

q − p |‖ x |‖ ≤c f(x) + ε1 (∀ x ∈ X),

where 1 ∈ intC.

Proof. From (T, c) ∈ ∂εgwf(x̄), then we have

f(x)− f(x̄)− T (x− x̄) + c ||| x− x̄ ||| +ε1 ∈ C (∀ x ∈ X),

therefore

f(x̄) + T (x− x̄)− c ||| x− x̄ ||| ≤c f(x) + ε1 (∀ x ∈ X).

Since L ||| x− x̄ ||| ≤c T (x− x̄) (∀ x ∈ X), we obtain

(L− c) ||| x− x̄ ||| +f(x̄) ≤c f(x) + ε1 (∀ x ∈ X).

For L ≥ c, we have,

(L− c) ||| x ||| −(L− c) ||| x̄ ||| +f(x̄) ≤c f(x) + ε1 (∀ x ∈ X),

and it is enough to set that p = −(L− c), q = f(x̄)− (L− c) ||| x̄ ||| . Similarly,
for L ≤ c, we have

(L− c) ||| x ||| +(L− c) ||| x̄ ||| +f(x̄) ≤c f(x) + ε1 (∀ x ∈ X),

and it is enough to set that p = −(L− c), q = f(x̄) + (L− c) ||| x̄ ||| .

The following proposition states the sufficient conditions for ε-generalized weak
subdifferentiability of f at x̄. This results generalizes the results in [9].

Proposition 4.7. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , that induces a totally order on Y , with intC 6= ∅ and
|‖ . |‖: X −→ C be a vectorial norm on X, and let x̄ ∈ X and ε ∈ R+. Let
f : X −→ Y be a function. If f is ε-generalized lower locally Lipschitz at x̄ and
either one of the following two statements holds:

(1) f is bounded from below, i.e., there exists y ∈ Y such that y ≤c f(x) for all
x ∈ X;

(2) There is a point x0 ∈ X where T ∈ ∂εf(x0), and there exists L such that

L |‖ x− x̄ |‖ ≤c T (x− x̄) ∀x ∈ X,

then f is ε-generalized weak subdifferential at x̄.



On Optimization via ε-generalized Weak Subdifferentials 157

Proof. Let the statement (1) holds. Then there exists y ∈ Y such that y ≤c f(x)
for all x ∈ X. By choosing p = 0, q = y and from last inequality we have

−p ||| x ||| +q ≤c f(x) ∀x ∈ X.

From Proposition 4.1 and Theorem 4.2, we obtain f is ε-generalized weak subd-
ifferential at x̄.

If the statement (2) holds, then there exists T ∈ B(X,Y ) such that

f(x)− f(x0)− T (x− x0) + ε1 ∈ C.

By assumptions, we obtain,

f(x0) + L ||| x || −L ||| x̄ ||| ≤C f(x0) + L ||| x− x0 ||| ≤C f(x),

therefore,

f(x0) + L ||| x || −L ||| x̄ ||| ≤C f(x).

If L < 0, by choosing p = −L, q = f(x0) − L ||| x̄ ||| similarly to the first part of
the proof. From Proposition 4.1 and Theorem 4.2, we obtain f is ε-generalized
weak subdifferential at x̄. Now if L ≥ 0, we can write

f(x0)− L ||| x || −L ||| x̄ ||| ≤C f(x0) + L ||| x ||| −L ||| x̄ ||| ≤C f(x).

Therefore,

f(x0)− L ||| x ||| −L ||| x̄ ||| ≤C f(x),

by choosing p = L, q = f(x0) − L ||| x̄ |||, we obtain f is ε-generalized weak
subdifferential at x̄.

The following conclusion is a generalization of Proposition 3.5 in [10], that
provides a link between Fréchet differentiability and ε-generalized weak subdiffer-
entiability of a function.

Proposition 4.8. Let X and Y be real normed spaces and C be a pointed closed
convex cone in Y , f : X −→ Y be a given function and x̄ ∈ X. Assume f is
subdifferentiable and Fréchet differentiable at x̄. Then

{(f́(x̄), c) : c ≥ 0} ⊂ ∂εgwf(x̄) (∀ε ≥ 0).

Proof. Since f is subdifferentiable at x̄ ∈ X, then from definition of subdifferen-
tiable of f at x̄, there is T ∈ B(X,Y ) such that

T (x− x̄) ≤c f(x)− f(x̄) ∀ x ∈ X.

By taking x = x̄+ te such that t ≥ 0, e ∈ X, ‖ e ‖= 1, this leads to the inequality

T (te) ≤c f(x̄+ te)− f(x̄),
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therefore,

T (e) ≤c
f(x̄+ te)− f(x̄)

t
.

By Fréchet differentiability of f at x̄ and by letting t −→ 0+, we have

(T − f́)(x̄)(e) ≤c 0.

Note that C is pointed and closed convex cone, hence we have T = f́(x̄) and f́(x̄) ∈
∂f(x̄). By Remark 3.3 and Remark 3.9, f is ε-generalized weakly subdifferentiable

at x̄ ∈ X for all ε ≥ 0 and hence {(f́(x̄), c); c ≥ 0} ⊂ ∂εgwf(x̄) for all ε ≥ 0.

The following example shows that subdifferentiability of f at x̄ in above Propo-
sition is essential.

Example 4.9. Let X = Y = R, C = R+, and let f(x) = −x2, x̄ = 0. Then it is

easy to verify that ∂f(0) = ∅, ∂0
gwf(0) = ∅ and f́(0) = 0.

Remark 4.10. If f is C-convex function and Fréchet differentiable at x̄ with a
Fréchet dirivative f́(x̄), then ∂f(x̄) = {f́(x̄)}. That is, convexity is a sufficient
condition for subdifferentiability and therefore ε-generalized weak subdifferentiabil-
ity of a Fréchet differentiable function.

The next result generalizes the Proposition 3.9 in [10], that gives a charac-
terization of having global minimum for a ε-generalized weakly subdifferentiable
function.

Proposition 4.11. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. Let f : X −→ Y be a function such that f is ε-generalized weak
subdifferentiable at x̄. Then f has a global minimizer at x̄ iff (0, c) ∈ ∂εgwf(x̄),
for all ε ∈ R+, for all c ∈ R+.

Proof. The proof follows from the definition of ε-generalized weak subdifferentia-
bility of f at x̄ ∈ X.

In fact, the function f defined by Example 3.4. has not a global minimizer at
x̄ = 0. So ε-generalized weakly subdifferentiability of f at x̄ ∈ X for all ε ∈ R+ is
a essential conditiion.

The next result asserts the relation between ε-generalized weak subdifferential
f and ε-generalized weak subdifferential λf for all λ > 0.

Remark 4.12. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. Let f : X −→ Y be a function such that f is ε

λ -generalized weak
subdifferentiable at x̄, then

∂ε
gw(λf)(x̄) = λ∂gwε

λ
f(x̄) (∀λ > 0).
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Note that ∂gwε (f(αx̄)) = ∂gwε αf(x̄) may failed. Let X = Y = R, C = R+,
x̄ = 1, α =

√
2 ,

f(x) =
{ 1, if x ∈ Qc

0, if x ∈ Q.

Then we have

∂gw0 f(1) =
{

(a, c) ∈ R× R+ : | a | ≤ c
}
, ∂gw0 f(

√
2) = ∅.

Next, we investigate a sufficient condition that the following equality holds.

Proposition 4.13. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X and, let x̄ ∈ X and
ε ∈ R+. Let f : X −→ Y be ε-generalized weak subdifferentiable at x̄, αx̄ and f is
positively homogeneous function. Then we have

∂ε
gwf(αx̄) = ∂gwε

α
f(x̄) (∀α > 0).

Proof. From assumptions we have

(T, c) ∈ ∂εgwf(αx̄)⇐⇒ T (αx−αx̄)− c ||| αx−αx̄ ||| ≤c f(αx)− f(αx̄) + ε1⇐⇒

α(T (x− x̄)− c ||| x− x̄ |||) ≤c α(f(x)− f(x̄) +
ε

α
1)⇐⇒ (T, c) ∈ ∂gwε

α
f(x̄).

Proposition 4.14. If all fi, i ∈ I (I is a finite nonempty set) and f(u) =
sup
i∈I

fi(u), u ∈ X, are finite at x̄, then the closure of the convex hull of the set⋃
i∈I0(x̄)

∂εi
gwfi(x̄) is a subset of ∂gwε f(x̄), where ε =

∑
i∈I0(x̄) εi, i.e.,

cl(co(∪i∈I0(x̄)∂εi
gwfi(x̄))) ⊂ ∂gwε f(x̄),

where I0(x̄) =
{
i ∈ I : fi(x̄) = f(x̄)

}
.

Proof. Suppose that ∑
i∈I0(x̄)

αi(Ti, ci) ∈ co(
⋃

i∈I0(x̄)

∂εi
gwfi(x̄)),

such that
∑

i∈I0(x̄)

αi = 1, αi ≥ 0, (Ti, ci) ∈ ∂εi
gwfi(x̄). Then we have

(
∀x ∈ X, ∀i ∈ I0(x̄)

)
Ti(x− x̄) ≤C fi(x)− fi(x̄) + εi1− ci ||| x− x̄ ||| .

Therefore, ∀x ∈ X,∑
i∈I0(x̄)

αiTi(x− x̄)−
∑

i∈I0(x̄)

αici ||| x− x̄ ||| ≤C
∑

i∈I0(x̄)

αifi(x)−
∑

i∈I0(x̄)

αifi(x̄) + ε1.
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Since f(x) = supi∈I fi(x), x ∈ X, we have I0(x̄) =
{
i ∈ I : fi(x̄) = f(x̄)

}
, so that∑

i∈I0(x̄)

αiTi(x− x̄)−
∑

i∈I0(x̄)

αici ||| x− x̄ ||| ≤C f(x)− f(x̄) + ε1 (∀x ∈ X)

and ∑
i∈I0(x̄)

αi(Ti, ci) ∈ ∂gwε f(x̄).

Consequently,

co(
⋃

i∈I0(x)

∂εi
gwfi(x̄)) ⊂ ∂gwε f(x̄).

Now the clossedness of the set ∂gwε f(x̄) completes the proof.

Remark 4.15. If f is Fréchet differentiable at x̄, then f,−f are subdifferentiable
at x̄, if and only if f(x)− f(x̄) = f́(x̄)(x− x̄) (∀x ∈ X).

The following theorem recall the fuzzy sum rule and then we investigate special
sufficient condition which the equality holds.

Theorem 4.16. [9] Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X and
ε1, ε2 ∈ R+. Let f, g : X −→ Y are functions such that f is ε1-generalized weak
subdifferentiable and g is ε2-generalized weak subdifferentiable at x̄. Then

∂ε1
gwf(x̄) + ∂ε2

gwg(x̄) ⊂ ∂ε1+ε2
gw(f + g)(x̄).

Proposition 4.17. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. Let f : X −→ Y be a Fréchet differentiable at x̄ and f,−f be
subdifferentiable at x̄, g : X −→ Y be a function such that g is ε-generalized weak
subdifferentiable at x̄. Then

(∂f(x̄), 0) + ∂ε
gwg(x̄) = ∂ε

gw(f + g)(x̄).

Proof. By Theorem 4.16, f + g is ε-generalized weak subdifferentiable at x̄. Then
there exist (T, c) such that

T (x− x̄)− c ||| x− x̄ ||| ≤c (f + g)(x)− (f + g)(x̄) + ε1 (∀ x ∈ X),

and f(x)− f(x̄) = f́(x̄)(x− x̄). Thus,

(T − f́)(x− x̄)− c ||| x− x̄ ||| ≤c g(x)− g(x̄) + ε1 (∀ x ∈ X),

this means that (T − f́ , c) ∈ ∂εgwg(x̄). From (T, c) = (T − f́ , c) + (f́ , 0), we obtain

∂ε
gw(f + g)(x̄) ⊂ ∂f(x̄) + ∂gwε g(x̄).

Therefore, the equality is obtained by Theorem 4.16.
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Proposition 4.18. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X. Let
f : X −→ Y be a Fréchet differentiable at x̄ and f,−f be subdifferentiable at x̄,
g : X −→ Y be a function. If f + g attains a global minimum at x̄, then

(−f́(x̄), 0) ∈ ∂εgwg(x̄) (∀ε ≥ 0).

Proof. Since f + g attains a global minimum at x̄, then

0 ≤c (f + g)(x)− (f + g)(x̄) (∀ x ∈ X),

and so we can rewrite the inequality as:

g(x̄)− g(x) ≤c f(x)− f(x̄) = f́(x̄)(x− x̄) (∀ x ∈ X),

this means that (−f́(x̄), 0) ∈ ∂εgwg(x̄) (∀ε ≥ 0).

Proposition 4.19. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. Let f, g : X −→ Y are functions such that f is ε-generalized weak
subdifferentiable at x̄ and g − f has a global minimizer at x̄. Then we have

∂ε
gwf(x̄) ⊂ ∂ε

gwg(x̄).

Proof. Since g − f has a global minimizer at x̄, then we have

0 ≤c (g − f)(x)− (g − f)(x̄).

Now, assume that (T, c) ∈ ∂εgwf(x̄), then we have

T (x− x̄)− c ||| x− x̄ ||| ≤c f(x)− f(x̄) + ε1 (∀x ∈ X),

and so
T (x− x̄)− c ||| x− x̄ ||| ≤c g(x)− g(x̄) + ε1 (∀ x ∈ X),

that is, (T, c) ∈ ∂εgwg(x̄). Therefore, the proof is completed.

Corollary 4.20. Let f : X −→ Y be a ε-generalized weak subdifferentiable func-
tion at x̄ and f has a global minimizer at x̄. Then we have

∂ε
gw0(x̄) ⊂ ∂ε

gwf(x̄).

Proposition 4.21. Let X be a real topological vector space and C be a pointed
closed convex cone in Y , and (Y,≤C) be a real ordered topological vector space
with intC 6= ∅ and ||| . |||: X −→ C be a vectorial norm on X, and let x̄ ∈ X
and ε ∈ R+. Let f, g : X −→ Y are functions such that f, g is ε-generalized weak
subdifferentiable at x̄ and g − f is a constant function. Then

∂ε
gwf(x̄) = ∂ε

gwg(x̄).
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Proof. From 0 ≤c (g − f)(x)− (g − f)(x̄) with the proposition, we obtain

∂ε
gwf(x̄) ⊂ ∂ε

gwg(x̄).

Similarly, by (g − f)(x)− (g − f)(x̄) ≤c 0, we have

∂ε
gwg(x̄) ⊂ ∂ε

gwf(x̄).

So, the desired result is obtained.

Corollary 4.22. Let f : X −→ Y be a constant function. Then

∂ε
gwf(x̄) = ∂ε

gw0(x̄) (∀ε ≥ 0).

Let X,Y, Z be a linear normed space and C be a pointed closed convex cone
in Y , and (Y,≤C) be a real ordered topological vector space with intC 6= ∅ and
||| . |||: X −→ C be a vectorial norm on X. Let ||| . |||1: Z −→ C be a vectorial
norm on Z and let x̄ ∈ X and ε ∈ R+. For any T ∈ B(Z, Y ), we consider a
function < T, h > defined by the equality

< T, h > (u) := < T, h(u) >,

where h : X −→ Z be a function such that there exsists a nonnegative L with the
following property

||| h(x)− h(x̄) |||1 ≤C L ||| x− x̄ ||| (∀x ∈ X).

In this case h is called a Lipschitz function at x̄ with Lipschitz constant L. Let
g : Z −→ Y be finite at z̄ = h(x̄). We consider a composition f(u) = g(h(u))u ∈ X
and recall that projection operator π : X × Y −→ X such that π(x, y) = x for all
(x, y) ∈ X × Y .

Proposition 4.23. Let g be ε-weak subdifferentiable at z̄ and < T, h > is ε̄ - weak
subdifferentiable at x̄ for some T ∈ π(∂ε

gwg(z̄)) and h be a Lipschitz function at
x̄ with nonnegative Lipschitz constant L. Then f is (ε+ ε̄)-weak subdifferentiable
at x̄ and

∂ε̄
gw < T, h > (x̄) ⊂ ∂(ε+ε̄)

gwf(x̄).

Proof. If (w, c) ∈ ∂ε̄gw < T, h > (x̄), then

0 ≤C < T, h > (x)− < T, h > (x̄)− w(x− x̄) + c ||| x− x̄ ||| +ε̄1, (∀ x ∈ X).

From (T, c̄) ∈ ∂εgwg(z̄), we have

0 ≤C g(z)− g(z̄)− T (z − z̄) + c̄ ||| z − z̄ |||1 +ε1, (∀ z ∈ Z).

Specially,

0 ≤C g(h(x))− g(h(x̄))− T (h(x)− h(x̄)) + c̄ ||| h(x)− h(x̄) |||1 +ε1, (∀ x ∈ X).



On Optimization via ε-generalized Weak Subdifferentials 163

Hence
0 ≤C f(x)− f(x̄)− T (h(x)− h(x̄)) + c̄ ||| h(x)− h(x̄) |||1 +ε1

≤C f(x)− f(x̄)− (w, x− x̄) + c ||| x− x̄ ||| +c̄L ||| x− x̄ ||| +(ε+ ε̄)1

= f(x)− f(x̄)− (w, x− x̄) + (c+ c̄L) ||| x− x̄ ||| +(ε+ ε̄)1.

Then w ∈ π(∂(ε+ε̄)
gwf(x̄)).

The conclusion of Proposition 4.23 can be rewritten in the following form:⋃{
∂ε̄
gw < T, h > (x̄) : T ∈ ∂εgwg(z̄)

}
⊂ ∂(ε+ε̄)

gwf(x̄).

Proposition 4.24. Let f be ε-weak subdifferentiable at x̄, −g be ε̄- weak subdiffer-
entiable at z̄, h be a Lipschitz function with Lipschitz constant L, then < −T, h >
is (ε+ ε̄)-weak subdifferentiable at x̄ for any T ∈ π(∂ε

gw(−g(z̄))) and

∂ε
gwf(x̄) ⊂ ∂(ε+ε̄)

gw < −T, h > (x̄).

Proof. If (w, c) ∈ ∂εgwf(x̄), then we have

0 ≤C f(x)− f(x̄)− w(x− x̄) + c ||| x− x̄ ||| +ε1, (∀ x ∈ X).

If (T, c̄) ∈ ∂εgw(−g(z̄)), then we have

0 ≤C −g(z) + g(z̄)− < T, z − z̄ > +c̄ ||| z − z̄ |||1 +ε̄1, (∀ z ∈ Z).

Hence, ∀ z ∈ Z,

0 ≤C − < T, h > (x)+ < T, h > (x̄)− g(z) + g(z̄) + c̄ ||| z − z̄ |||1 +ε̄1,

therefore

0 ≤C − < T, h > (x)+ < T, h > (x̄)− f(x) + f(x̄) + c̄ ||| h(x)− ¯h(x) |||1 +ε̄1

and

0 ≤C − < T, h > (x)+ < T, h > (x̄)− w(x− x̄) + c ||| x− x̄ ||| +(ε+ ε̄)(1)

+ c̄||| h(x)− ¯h(x) |||1.
Thus,

0 ≤C − < T, h > (x)+ < T, h > (x̄)− w(x− x̄) + c||| x− x̄ |||
+ c̄L||| x− x̄ |||+ (ε+ ε̄)(1)

= − < T, h > (x)+ < T, h > (x̄)− w(x− x̄) + (c+ c̄L)||| x− x̄ |||
+ (ε+ ε̄)(1),

this means that w ∈ π(∂(ε+ε̄)
gw < −T, h > (x̄)).

Corollary 4.25. Let f be ε-weak subdifferentiable at x̄, g be Frechet differentiable
at ȳ, g,−g be subdifferentiable, and h be a Lipschitz function, then

∂ε
gwf(x̄) = ∂ε

gw < ǵ(ȳ), h > (x̄).

Proof. Combining Proposition 4.23 with Proposition 4.24.
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