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1 Introduction

Let E be an ordered Banach space with the partial order ≤, K be a nonempty
subset of an ordered Banach space E. A mapping T : K → K is said to be
monotone if Tx ≤ Ty for all x, y ∈ K with x ≤ y and recall that T is monotone
nonexpansive if T is monotone and ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ K with x ≤ y.
Following, Aoyama and Kohsaka [1], a mapping T : C → C is said to be α-
nonexpansive for some α < 1 if

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖, ∀x, y ∈ C. (1.1)

Clearly, nonexpansive mapping is 0-nonexpansive maps. An example of a discon-
tinuous α-nonexpansive mapping (with α > 0) has been given in [1]. It is well
known that, the concept of nonexpansivity of a map T from a convex set plays an
important role in the study of the Mann iteration given by

xn+1 = (1− sn)xn + snTxn, x0 ∈ K,

for each n ≥ 1, where sn ∈ [0, 1] such it was introduced by Mann [2] in 1953.
In 1974, Ishikawa [3] introduced the Ishikawa iteration given by

xn+1 = (1− an)xn + anT (yn);

yn = (1− bn)xn + bnTxn.

For each n ≥ 1, where an and bn ∈ [0, 1]. In particular, when all bn = 0, then
Ishikawa iteration becomes the standard Mann iteration.

In this paper, we introduce and approximating common fixed points of two
α-nonexpansive mappings S and T throught weak and strong convergence of the
sequence be defined by we use the following Ishikawa iteration [4–6]

xn+1 = (1− an)xn + anS(yn); (1.2)

yn = (1− bn)xn + bnTxn,

for each n ≥ 1, where an and bn ∈ [0, 1], satisfying certain condition.

2 Preliminaries

Next, we state some useful lemmas and definitions as follows.

Lemma 2.1. [7] Suppose that E is a uniformly convex Banach space and 0 < p ≤
q < 1 for all n = 1, 2, · · · . Suppose further that {xn} and {yn} are sequence of E
such that limn→∞ ‖xn‖ ≤ r, limn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn+(1−tn)yn‖ = r
hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

We recall that a Banach space E is said to satisfy Opial’s condition [8] if for
any sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ ≤ lim sup
n→∞

‖xn − y‖
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for all y ∈ E with x 6= y. Moreover, we also know that a mapping T is called
demiclosed with respect to y ∈ K if for each sequence {xn} ∈ K and each x ∈
E, xn ⇀ x and Txn ⇀ y imply that x ∈ K and Tx = y.

Lemma 2.2. [9] Let E be a uniformly convex Banach space satisfying Opial’s
condition and K be a nonempty closed convex subset of E. Let T : K −→ K be a
nonexpansive mapping. Then I − T is demiclosed with respect to zero.

Definition 2.3. Let K be a nonempty closed convex subset of Banach space E.
A mapping T : K → K is said to be :

(1) α-nonexpansive for some α < 1,

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖2

for all x, y ∈ K.

(2) quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖ for all p ∈ F (T )
and x ∈ K.

Lemma 2.4. Let K be a nonempty closed convex subset of Banach space E.
A mapping T : K → K be a α-nonexpansive mapping. Then T is a quasi-
nonexpansive.

Proof.

‖Tx− p‖2 = ‖Tx− Tp‖2

≤ α‖Tx− p‖2 + α‖Tp− x‖2 + (1− 2α)‖x− p‖2

= α‖Tx− p‖2 + (1− α)‖x− p‖2

≤ ‖x− p‖

and so T is a quasi-nonexpansive.

3 Weak and Strongly Convergence Theorems

In this section, first we prove the following Lemma which, in fact, forms a
major part of the proofs of both weak and strong convergence theorems.

Lemma 3.1. Let C be a bounded, closed and convex subset of a uniformly convex
ordered Banach space (E,≤). Let S, T : C → C be monotone α-nonexpansive
mappings. Assume there exists x1 ∈ C such that x1 ≤ Sx1, x1 ≤ Tx1 and there
exists p ∈ F (S)∩F (T ) such that x1 and p are comparable. Consider the sequences
{xn} be defined by Ishikawa’s iteration. Then

lim
n→∞

‖Sxn − xn‖ = 0 = lim
n→∞

‖Txn − xn‖.
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Proof. Let p ∈ F (S) ∩ F (T ). By Lemma 2.4, we consider

‖xn+1 − p‖ = ‖(1− an)xn + anSyn − p‖
= ‖(1− an)xn + anS((1− bn)xn + bnTxn)− p‖
≤ ‖(1− an)(xn − p)‖+ ‖anS((1− bn)xn + bnT (xn))− p‖
≤ ‖(1− an)(xn − p)‖+ ‖an((1− bn)xn + bnT (xn))− p‖
≤ ‖(1− an)(xn − p)‖+ ‖an(1− bn)(xn − p)‖+ ‖anbn(Txn − p)‖
≤ (1− an)‖xn − p‖+ an(1− bn)‖xn − p‖+ anbn‖xn − p‖
= ‖xn − p‖.

Hence limn→∞ ‖xn − p‖ exists. Let limn→∞ ‖xn − p‖ = r where r ≥ 0 is a real
number. By T is quasi-nonexpansive mapping then we have ‖Txn−p‖ ≤ ‖xn−p‖
for all n = 1, 2, 3, . . ., so

lim sup
n→∞

‖Txn − p‖ ≤ r.

Also

‖yn − p‖ = ‖(1− bn)xn + bnTxn − p‖
≤ ‖(1− bn)(xn − p)‖+ ‖bnTxn − p‖
≤ (1− bn)‖(xn − p)‖+ bn‖xn − p‖
= ‖xn − p‖

and we get

lim sup
n→∞

‖yn − p‖ ≤ r. (3.1)

By S is quasi-nonexpansive mapping then we have

lim sup
n→∞

‖Syn − p‖ ≤ r.

Moreover, limn→∞ ‖xn − p‖ = r means that

lim
n→∞

‖(1− an)(xn − p) + an(Syn − p)‖ = r.

By Lemma 2.1 , we get

lim
n→∞

‖Syn − xn‖ = 0. (3.2)

Now

‖xn − p‖ ≤ ‖xn − Syn‖+ ‖Syn − p‖ ≤ ‖xn − Syn‖+ ‖yn − p‖,

then we get

r ≤ lim inf
n→∞

‖yn − p‖. (3.3)
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By (3.1) and (3.3), we get

lim
n→∞

‖yn − p‖ = r. (3.4)

That is
lim
n→∞

‖(1− bn)(xn − p) + bn(Txn − p)‖ = r.

By Lemma 2.1, we get

lim
n→∞

‖Txn − xn‖ = 0. (3.5)

And we consider,

‖Txn − yn‖ = ‖Txn − (1− bn)xn − bnT (xn)‖
= ‖(1− bn)Txn − (1− bn)xn‖
= (1− bn)‖(Txn − xn)‖,

then by (3.5), we get

lim
n→∞

‖Txn − yn‖ = 0. (3.6)

By Definition 2.3, we consider

‖Sxn − xn‖2 ≤ [‖Sxn − Syn‖+ ‖Syn − xn‖]2

= ‖Sxn − Syn‖2 + 2‖Sxn − Syn‖‖Syn − xn‖+ ‖Syn − xn‖2

≤ α‖Sxn − yn‖2 + α‖Syn − xn‖2 + (1− 2α)‖xn − yn‖2

+ 2‖Sxn − Syn‖‖Syn − xn‖+ ‖Syn − xn‖2

= α‖Sxn − yn‖2 + (1− 2α)‖xn − yn‖2 + (1 + α)‖Syn − xn‖2

+ 2‖Sxn − Syn‖‖Syn − xn‖
≤ α[‖Sxn − xn‖+ ‖xn − yn‖]2 + (1− 2α)‖xn − yn‖2

+ (1 + α)‖Syn − xn‖2 + 2‖Sxn − Syn‖‖Syn − xn‖
= α‖Sxn − xn‖2 + 2α‖Sxn − xn‖‖xn − yn‖+ α‖xn − yn‖2

+ 2‖Sxn − Syn‖‖Syn − xn‖+ (1− 2α)‖xn − yn‖2

+ (1 + α)‖Syn − xn‖2

then

(1− α)‖Sxn − xn‖2 ≤ (1− α)‖xn − yn‖2 + 2α‖Sxn − xn‖‖xn − yn‖
+ 2‖Sxn − Syn‖‖Syn − xn‖+ (1 + α)‖Syn − xn‖2

≤ (1− α)[‖xn − Txn‖+ ‖Txn − yn‖]2

+ 2α‖Sxn − xn‖[‖xn − Txn‖+ ‖Txn − yn‖]
+ 2‖Sxn − Syn‖‖Syn − xn‖+ (1 + α)‖Syn − xn‖2.
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By (3.2), (3.5) and (3.6), we can conclude that

lim
n→∞

‖Sxn − xn‖ = 0 = lim
n→∞

‖Txn − xn‖. (3.7)

Theorem 3.2. Let C be a bounded, closed and convex subset of a uniformly convex
ordered Banach space (E,≤). Let S, T : C → C be monotone α-nonexpansive
mappings. Assume E satisfies Opial’s condition and the sequence {xn} be defined
by Ishikawa’s iteration with x1 ≤ Sx1, x1 ≤ Tx1. If F (S) ∩ F (T ) 6= ∅ then {xn}
converges weakly to a unique common fixed point of S and T .

Proof. From we let p be a common fixed point of S and T and limn→∞ ‖xn − p‖
exists. Next we will prove that {xn} has a uniqua weak subsequential limit in
F (S) ∩ F (T ). Let u and v be weak limit of the subsequences {xni

} and {xnj
} of

{xn} respectively. By Lemma 3.1, we have limn→∞ ‖Sxn − xn‖ = 0 and I − S
is demiclosed with respect to zero, respectively. Therefore, we obtain Su = u.
Similarly, Tu = u. Again in the same fashion, we can prove that v ∈ F (S)∩F (T ).

Next, we will prove the uniqueness by Opial’s condition,

lim
n→∞

‖xn − u‖ = lim
n→∞

‖xni
− u‖

≤ lim
i→∞

‖xni − v‖

= lim
n→∞

‖xn − v‖

= lim
j→∞

‖xnj
− v‖

≤ lim
j→∞

‖xnj
− u‖

= lim
n→∞

‖xn − u‖.

This is a contradiction, then u = v.

Theorem 3.3. Let C be a compact, closed and convex subset of a uniformly convex
ordered Banach space (E,≤). Let S, T : C → C be monotone α-nonexpansive
mappings. Assume E satisfies Opial’s condition and the sequence {xn} be defined
by Ishikawa’s iteration with x1 ≤ Sx1, x1 ≤ Tx1. If F (S) ∩ F (T ) 6= ∅ then {xn}
converges strongly to a unique common fixed point of S and T .

Proof. By Lemma 3.1, limn→∞ ‖Sxn − xn‖ = 0 = limn→∞ ‖Txn − xn‖. Since
K is compact so there exists a subsequence {xni

} of {xn} such that xni
→ q.

Continuity of S and T gives Sxni
→ Sq and Txni

→ Tq as ni →∞. Then we get

‖Sq − q‖ = 0 = ‖Tq − q‖.

This results q ∈ F (S) ∩ F (T ) so that {xni
} converges strongly to q in ∈ F (S) ∩

F (T ). But again by Lemma 3.1, limn→∞ ‖xn − p‖ exists for all p ∈ F (S) ∩ F (T )
therefore {xn} must itself converge to q ∈ F (S) ∩ F (T ). This completes the
proof.
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