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Abstract : In this paper, the generalized strong vector variational inequality
problem with fuzzy mappings is introduced. The relationship between the so-
lution set of it with the solution sets of the problems generalized vector com-
plementarity problem with fuzzy mappings (GVCPFM) and generalized vector
variational inequality problem with fuzzy mappings (GVVIPFM) is investigated.
Also the equality of the solution sets of (GVCPFM) and (GVVIPFM) under mild
assumptions is presented. Finally some existence results of a solution for the above
problems by relaxing the upper semicontinuity and 0−digonally convexity on the
mappings, which are assumed in some papers, are established. The results of
this paper can be viewed as an improvement of the corresponding results in the
literature.
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1 Introduction

The concept of fuzzy set has penetrated almost all branches of mathematics
ever since the introduction of fuzzy sets by Zadeh [1]. Fuzzy sets have been applied
to many fields including information sciences and control theory. In 1989, Chang
and Zhu [2] introduced the concept of variational inequalities for fuzzy mappings
in abstract spaces and investigated the existence problem for solutions of some
classes of variational inequalities for fuzzy mappings. The variational inequality
problem with its extensions and its numerous applications has been intensively
studied in the last years, see, for examples, [3–5] and the references therein.

Recently Chang et al. [6] introduced and studied a new class of generalized
vector variational-like inequalities and generalized vector variational inequalities
in fuzzy environment by using the KKM-technique and Maximal Element Lemma.
Several kinds of variational inequalities and complementarity problems for fuzzy
mapping were studied by Chang et al. [7], Chang and Salahuddin [8], Anastassiou
and Salahuddin [9]. Very recently, Kilicman et al. [10] introduced and studied
a generalized vector complementarity problem with fuzzy mappings. They under
suitable conditions, showed that generalized vector complementarity problem with
fuzzy mappings is equivalent to generalized vector variational inequality problem
with fuzzy mappings and they also derived some existence results for their prob-
lems.

The purpose of this paper is to introduce a new kind of generalized vector
complementarity problems and to establish an existence result of a solution for it
with mild assumptions. The results of this paper can be viewed as an improve-
ment of the corresponding results in the literature, mainly the main results of the
reference [10] by relaxing some conditions and using the KKM theory for proving
the main theorem.

2 Preliminaries

Let X be a nonempty set. A fuzzy set A in X is characterized by its member-
ship mapping µA : X → [0, 1] and µA(x) is interpreted as the degree of membership
of element x in the fuzzy set A, for each x ∈ X. The collection of all fuzzy sets
of X is denoted by F(X) and a mapping F from D into F(X) is called fuzzy. If
F : D → F(X) is a fuzzy mapping, then F (x), x ∈ D (denoted by Fx , in the
sequel) is a fuzzy set in F(X) and Fx(y), y ∈ X is the degree of membership of y
in Fx. Let A ∈ F(X) and α ∈ [0, 1]. The set

(A)α = {x ∈ X : A(x) ≥ α}

is called α-cut set of A.

Let E and Z be Hausdorff topological vector spaces. We denote by L(E,Z)
the space of all continuous linear operators from E into Z and 〈l, x〉, the evaluation
of l ∈ L(E,Z) at x ∈ E.
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Let T : K → F(L(E,Z)) be a fuzzy mapping and α : K → [0, 1] be a mapping.
The mapping T induces a new multivalued mapping T̆ : K → 2L(E,Z), where
2L(E,Z) denotes the family of all nonempty subsets of L(E,Z), which is defined by

T̆ (x) = (Tx)α(x), ∀x ∈ K.

Let X and Y be two topological spaces and let T : X → 2Y be a multivalued
mapping. T is said to be upper semicontinuous, if for each x ∈ X and each open
set V in Y with T (x) ⊆ V , then there exists an open neighborhood U of x in X
such that T (u) ⊆ V , for each u ∈ U .

Let K be a cone, that is, tK ⊆ K for all t ≥ 0, Y a topological vector space
and F : K → Y be a mapping. F is said to be positively homogenous if

F (tx) = tF (x), ∀(t, x) ∈ [0,∞)×K.

Also a mapping G : K ×K → Y is said to be positive homogeneous if

G(tx, tx) = tG(x, x), ∀(t, x) ∈ [0,∞)×K,

(for more details, see [10]). Remark that if we define K = K × K and F (x) =
G(x, x) for all x ∈ K, then G is positively homogenous if and only if F is positively
homogenous.

As an example we can characterize all positively homogenous mappings F :
[0,∞)→ Y, Y is a linear space over the real numbers, as follows: F : [0,∞)→ Y
is positively homogenous if and only if

F (x) = xF (1),∀x ∈ [0,∞).

Let X be a nonempty set and Y a topological space. A multivalued mapping
G : X → 2Y is called transfer closed-valued if and only if⋂

x∈X
G(x) =

⋂
x∈X

clG(x),

where clG(x) denotes the closure of G(x).
It is clear the multivalued mapping G is transfer closed-valued when G(x) is

closed for each each x in X. While the example G : X = (0,∞) → 2R defined by
G(x) = (−x, x], shows that the converse may drop.

Let X and Y be two vector spaces, K a convex subset of X and C : X → 2Y

be a multivalued mapping. A mapping h : K × K → Y is said to be vector
0−diagonally convex in the second variable, if for any subset Ω = {x1, x2, ..., xn}
of K, and x =

n∑
i=1

tixi with ti ≥ 0 for i = 1, 2, ..., n and
n∑
i=1

ti = 1, the following

relation holds
n∑
i=1

tih(x, xi) ∈ C(x),
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(for more details, see [11,12]).
A mapping f : K → Z is C(x)−convex if for any x1, x2 ∈ K and t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤C(x) tf(x1) + (1− t)f(x2),

that is
tf(x1) + (1− t)f(x2)− f(tx1 + (1− t)x2) ∈ C(x),

(for me details, see [6]). It is easy to check that if h : K ×K → Y is C(x)−convex
in the second variable and h(x, x) = 0 for each x ∈ K then h is vector 0−diagonally
convex in the second variable. While the converse may fail, because, for instance,
if we take K = X = R, C(x) = [0,∞) and h(x, y) = −1 for all (x, y) ∈ K ×K.

A multivalued mapping Γ : K0 → 2K is said to be the KKM mapping if

coA ⊆
⋃
x∈A

Γ(x), ∀A ∈ 〈K0〉,

where coA and 〈K0〉, respectively, stand for the convex hull of A and the set of all
nonempty finite subsets of K0.

The following result plays a crucial in the article.

Theorem 2.1. [13] Let K be a nonempty subset of a topological vector space
E and Γ : K → 2E be a KKM mapping with closed values in K. Assume that
there exist a nonempty compact convex subset B of K such that D =

⋂
x∈B Γ(x)

is compact. Then ⋂
x∈K

Γ(x) 6= ∅.

3 Main Results

In this section, we show that, under sufficient conditions, the solution sets
of the problems generalized vector complementarity problem with fuzzy mappings
(GVCPFM) and generalized vector variational inequality problem with fuzzy map-
pings(GVVIPFM) are equal. Moreover, an existence result for (GSVVIPFM) is
established. The results of this part improves and repairs the corresponding results
given in this area, specially [10].

The following problems have been introduced and studied by Kiliman et al.
[10]. They called them, respectively, generalized vector complementarity problem
with fuzzy mappings (GVCPFM) and generalized vector variational inequality
problem with fuzzy mappings (GVVIPFM) which consist of

(a) Finding x ∈ K and t ∈ (Tx)α(x) such that

〈t, f(x, x)〉+H(x) = 0 and 〈t, f(y, y)〉+H(y) ∈ C(x),∀y ∈ K.

(b) Finding x ∈ K and t ∈ (Tx)α(x) such that

〈t, f(y, x)〉+H(y)−H(x) ∈ C(x) ∀y ∈ K,



On Generalized Strong Vector Variational Inequality Problem ... 83

where K is a nonempty subset of topological vector space X, T : K → F(L(X,Y ))
is a fuzzy mapping, α : K → [0, 1] is a mapping and f : K ×K → Y, H : K → Y
are mappings and finally C : K → 2Y is a multivalued mapping.

We call the following property Condition (4), see [10].

Condition (4) : f(y, x) = f(y, y)− f(x, x), ∀x, y ∈ K.

Theorem 3.1. [10] If H is positive homogeneous and f is positive homogeneous of
order 1 and condition (4) is satisfied, then problems (GVCPFM) and (GVVIPFM)
are equivalent (that is their solution sets are equal).

The next result characterizes the class of all mappings which satisfy the con-
dition (4).

Proposition 3.2. A mapping f : K ×K → Y satisfies condition (4) if and only
if f equals to zero (i.e., f(x, y) = 0, for all (x, y) ∈ K ×K.)

Proof. It is obvious that the zero function satisfies in the condition (4). Con-
versely, let the mapping f fulfil condition (4) and x be an arbitrary element of
K. By taking y = x in the condition (4) we get f(x, x) = 0 and so f(y, y) = 0.
Hence f(y, x) = 0 for all x, y ∈ K. This completes the proof.

Hence, by applying Proposition 3.2, we can rewrite Theorem 3.1 by omitting
the positively homogeneous on the mappings as follows:

Theorem 3.3. Let K be a subset of a real vector space X with 2K ⊂ K and
0 ∈ K. Assume that f : K ×K → Y satisfies the condition (4) and H : K → Y a
mapping with H(2x) = 2H(x), for all x ∈ K. Then the problems (GVCPFM) and
(GVVIPFM) are equivalent; that is their solution sets are equal.

Proof. By using Proposition 3.2, the problems (GVCPFM) and (GVVIPFM) re-
duce to the following problems:

(GVCPFM) Find x ∈ K and t ∈ (Tx)α(x) such that

H(x) = 0 and H(y) ∈ C(x),∀y ∈ K,

(GVVIPFM) Find x ∈ K and t ∈ (Tx)α(x) such that

H(y)−H(x) ∈ C(x), ∀y ∈ K.

Hence the solution set of (GVCPFM) is a subset of the solution set of (GVVIPFM).
Conversely, let x ∈ K be a solution of (GVVIPFM). Then

H(y)−H(x) ∈ C(x) ∀y ∈ K.

Then by taking y = 2x and y = 0 in the last equation we deduce that x is a
solution of (GVCPFM). This completes the proof.
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Remark that if H is positively homogeneous then H(2x) = 2H(x) for all
x ∈ K. Although, the example, X = Y = K = R and H(x) = x for x is a rational
number and H(x) = 0 when x is an irrational number, shows that the converse is
not true.

The following existence result given by Kilicman et al. [10].

Theorem 3.4. ( [10, Theorem 3.2]) Assume that

(a) for all finite subset A of K, the multi-valued mapping GA : coA → 2K

defined by

GA(y) = {x ∈ K : 〈t, f(y, x)〉+H(y)−H(x) ∈ C(x)},

for all y ∈ K and t ∈ (Tx)α(x), is a transfer closed-valued mapping;

(b) (i) there exists a mapping h : K × K → Y such that h is 0−diagonally
convex in the second argument;

(ii) 〈t, f(y, x)〉 + H(y) − H(x) − h(x, y) ∈ C(x), for all x, y ∈ K and t ∈
(Tx)α(x);

(c) let the mapping T : K → 2L(X,Y ) be upper semi-continuous, compact valued
and f,H be hemicontinuous;

(d) there exist a nonempty compact subset B and a non-empty compact convex
subset D of K such that for each x ∈ K\B, there exists y ∈ D such that

〈t, f(y, x)〉+H(y).H(x) ∈ C(x),∀(x, y) ∈ K ×Kand t ∈ (Tx)α(x).

Then, the generalized vector variational inequality problem with fuzzy mappings
(GVVIPFM) is solvable. Moreover, the solution set is compact.

We are interested in providing a new version of Theorem 3.4 by relaxing con-
ditions (b) and (c) of it.

In order to do it, we first introduce the following problem and then we establish
an existence result for it. Our method for proving our main theorem is different
from the proof of Theorem 3.4 presented in [10].

Generalized strong vector variational inequality problem with fuzzy mappings
(GSVVIPFM), consists of finding x ∈ K such that

〈t, f(y, x)〉+H(y)−H(x) ∈ C(x), ∀(y, t) ∈ K × (Tx)α(x).

It is obvious that the solution set of (GSVVIPFM) is a subset of the solution set
(GVVIPFM).

Now, we are ready to present our main theorem.

Theorem 3.5. Assume that the following conditions hold:
(i) The multivalued mapping

z → {x ∈ K : 〈t, f(z, x)〉+H(z)−H(x) ∈ C(x),∀t ∈ (Tx)α(x)}
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is transfer closed-valued and f(z, z) = 0, for all z ∈ K;
(ii) For each z ∈ K the set Y \C(z) is convex;
(iii) For each z ∈ K, the mappin (t, y)→ 〈t, f(y, z)〉+H(y)−H(z) is convex;
(iv) There exist convex and convex and compact subsets D and M of K such

that
∀x ∈ K\M, ∃y ∈ D; f(y, x)〉+H(y)−H(x) 6∈ C(x).

Then the solution set of the problem (GSVVIPFM) is nonempty and compact.

Proof. Define Γ : K → 2K by

Γ(y) = {x ∈ K : 〈t, f(y, x)〉+H(y)−H(x) ∈ C(x),∀t ∈ (Tx)α(x)}}.

It is obvious that y ∈ Γ(y), for each y ∈ K. Also Γ is a KKM mapping. Because,
otherwise there exist a finite subset A = {y1, ..., yn} of K and z =

∑n
i=1 λiyi ∈

coA\ ∪ni=1 Γ(yi). Then

〈t, f(yi, z)〉+H(yi)−H(z) ∈ Y \C(z), ∀(t, i) ∈ (T (z))a(z) × {1, 2, ..., n}.

By multiplying the last equation by λi and summing them we get

n∑
i=1

λi〈ti, f(yi, z)〉+

n∑
i=1

λiH(yi)−H(z) ∈ Y \C(z), (3.1)

(note that Y \C(z) is convex). Also it follows from (iii) that

n∑
i=1

λi〈ti, f(yi, z)〉− 〈
n∑
i=1

λiti, f((

n∑
i=1

λi, yi)=z, z)〉+
n∑
i=1

λiH(yi)−H(z) ∈ C(z).

(3.2)
Hence, since f(z, z) = 0, the relation (3.2) reduces to

n∑
i=1

λi〈tif(yi, z)〉+

n∑
i=1

λiH(yi)−H(z) ∈ C(z),

which is contradicted by (3.1). Consequently, the mapping Γ is a KKM mapping.
It is clear from (iv) that ∩x∈DΓ(x) ⊆ M and so ∩x∈DΓ(x) is relatively compact.
Then the multivalued mapping x → clΓ(x) (the closure of Γ(x)) satisfies all as-
sumptions of Theorem 2.1 and then ∩x∈KclΓ(x) is nonempty. This means that
there exists z ∈ K such that z ∈ ∩x∈KclΓ(x). Consequently, it follows from (i)
that

z ∈ ∩x∈KclΓ(x) = ∩x∈KΓ(x).

This means, for each y ∈ K and t ∈ T (z)a(z), that

f(y, z)〉+H(y)−H(z) ∈ C(z).

Hence, z is a solution of the problem (GSVVIPFM). Further, since the solution
set of the problem (GSVVIPFM) equals to the set ∩x∈KΓ(x) = ∩x∈KclΓ(x) which
is a closed subset of the compact set M by the condition (iv), So the solution set
of problem (GSVVIFM) is compact. This completes the proof.
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Remark 3.6. We have the following remarks:

1. Since the solution set of (GSVVIFM) is a subset of (GVVIFM), then any
existence result of (GSVVIFM) is an existence result of (GVVIFM). Hence
Theorem 3.5 is a new version of Theorem 3.4 by relaxing conditions (b) and
(c) of it. Moreover, it provides an accurate proof of an existence result of
(GVVIFM).

2. Condition (iii) of Theorem 3.5 trivially holds when the mappings z → H(z)
and (t, x) → 〈t, f(z, x)〉 are convex, for each z ∈ K. Also one can omit
condition (iv) when K is compact.

3. If for each z ∈ K, the set

{x ∈ K : 〈t, f(z, x)〉+H(z)−H(x) ∈ C(x),∀t ∈ (Tx)α(x)}

is convex, then the solution set of (GSVVIFM) is a convex set.

Combining Theorem 3.3 and Theorem 3.5, we get the following theorem.

Theorem 3.7. If all the assumptions of Theorem 3.3 and Theorem 3.5 are sat-
isfied, then the generalized vector complementarity problem with fuzzy mappings
(GVCPFM) is solvable. Moreover, the solution set is compact.
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