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1 Introduction

Let H be a real Hilbert space endowed with an inner product 〈·〉 and a norm
‖ · ‖ associated with this inner product, respectively. Let C be a nonempty closed
convex subset of H. A mapping T : C → C is called contraction, if there exists a
constant δ ∈ (0, 1) such that

‖Tx− Ty‖ ≤ δ‖x− y‖, ∀x, y ∈ C. (1.1)

From (1.1), if δ = 1, T is called nonexpansive. Further, we consider the following
fixed point problem for a nonexpansive mapping T : C → C :

Find x ∈ C such that Tx = x. (1.2)

We denote the set of solutions of fixed point problem (1.2) by Fix(T ). It is well
known that if Fix(T ) 6= ∅, Fix(T ) is closed and convex. Next, let f be a bifunction
from C × C to R such that f(x, x) = 0 for all x ∈ C. An equilibrium problem in
the sense of Blum and Oettli [1] is stated as follows:

Find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C. (1.3)

Problem of the form (1.3) on one hand covers many important problems in opti-
mization as well as in nonlinear analysis such as (generalized) variational inequal-
ity, nonlinear complementary problem, nonlinear optimization problem, just to
name a few. Convex minimization problems have a great impact and influence
in the development of almost all branches of pure and applied sciences. On the
other hand, it is rather convenient for reformulating many practical problems in
economic, transportation and engineering (see [1, 2]) and the references quoted
therein). We denote the set of solutions of the problem (1.3) by Sol(f, C).

The existence of solution and its characterizations can be found, for example,
in [3], while the methods for solving problem (1.3) have been developed by many
researchers [4,5]. On the other hand, iterative methods for nonexpansive mappings
have recently been applied to solve convex minimization problems [6]. The problem
P (C, f, T ) of finding a common point in the solution set of problem EP (C, f) and
the set of fixed points of a nonexpansive mapping T recently becomes an attractive
subject, and various methods have been developed for solving this problem. Most
of the existing algorithms for this problem are based on the proximal point method
applying to equilibrium problem EP (C, f) combining with a Mann’s iteration to
the problem of finding a fixed point of T .

In 2006, Takahashi and Takahashi [7] proposed an iterative scheme under the
name viscosity approximation methods for finding a common element of set of
solutions of (1.3) and the set of fixed points of non-expansive mapping T in a real
Hilbert space H. This method generated an iteration sequence {xk} starting from
a given initial point x0 ∈ H and computed xk+1 as

{

Find uk ∈ C such that f(uk, y) + 1
rk
〈y − uk, uk − xk〉 ≥ 0, for all y ∈ C,

Compute xk+1 = αkg(x
k) + (1 − αk)T (u

k), k ≥ 0,
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where g is a contraction ofH into itself, the sequences of parameters {rk} and {αk}
were chosen appropriately. Under certain choice of {αk} and {rk}, the authors
showed that two iterative sequences {xk} and {uk} converge strongly to z =
PFix(T,C)∩Sol(f,C)(g(z)), where PC denotes the projection onto C.

Recently, Anh in [8] proposed to use the extragradient-type iteration instead
of the proximal point iteration given in [9] for solving Problem P (C, f, T ). More
precisely, given zk ∈ C, the proximal point iteration given in [9] is replaced by
the two following mathematical programs, which seems numerically easier than
previous ones. More precisely, It is suggested in [8] the following algorithm:















For an initial point x0 ∈ C,

yk = argmin
{

f(xk, y) + 1
2λk

‖y − xk‖2 : y ∈ C
}

,

zk = argmin
{

f(yk, z) + 1
2λk

‖z − xk‖2 : z ∈ C
}

, k ≥ 0.

(1.4)

It was proved that if f is pseudomonotone and satisfies the Lipschitz-type condi-
tion: there are Lipschitz constants c1 > 0 and c2 > 0 if

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C. (1.5)

then the sequence {zk} strongly converges to a solution of Problem P (C, f, T ).
Recently, Anh and Muu [10] emphasized that the Lipschitz-type condition (1.5),
in general is not satisfied, and if yes, finding the constants c1 and c2 is not an
easy task. Furthermore solving the strongly convex programs (1.4) is expensive
excepts special cases when C has a simple structure. They suggested and studied
a new algorithm for finding a common point in the solution set of a class of
pseudomonotone equilibrium problems and the set of fixed points of nonexpansive
mappings in a real Hilbert space. The proposed algorithm uses only one projection
and does not require any Lipschitz condition for the bifunctions. More precisely,
they introduced the following algorithm:























Pick any x0 ∈ C;
yk ∈ ∂εkf(x

k, ·)(xk);

γk := max{λk, ‖yk‖} and αk := βk

γk
;

wk = PC(x
k − αky

k);
xk+1 = δkx

k + (1− δk)Tw
k, for each k = 0, 1, . . .

where ∂εf(x, ·)(x) stands for ε- subdifferential of the convex function f(x, ·) at x,
{εk}, {λk}, {βk} and {δk} were chosen appropriately. Under the certain condi-
tions, {xk} converse strongly to a common point in the solution set of a class of
pseudomonotone equilibrium problems and the set of fixed points of nonexpansive
mappings in a real Hilbert space.

Our main purpose in this paper is to present a method for finding hierarchically
a common element in Fix(T )∩Sol(f, C) with respect to a nonexpansive mapping
S, namely

Find x̃ ∈ Ω := Fix(T ) ∩ Sol(f, C) such that 〈x̃− S(x̃), x̃− x〉 ≤ 0, ∀x ∈ Ω, (1.6)
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i.e., 0 ∈ (I − S)x̃ + NΩx̃, where NΩx̃ is the normal cone of Ω at x̃ ∈ Ω. It is not
hard to check that solving (1.6) is equivalent to the following fixed point problem

Find x̃ ∈ C such that x̃ = PΩ ◦ S(x̃). (1.7)

It is worth mentioning that when S = I, the solution set S of (1.6) is nothing but
Ω. From now on, we assume that

SOL := {x̃ ∈ C|x̃ = PΩ ◦ S(x̃)} 6= ∅.

Now, let us consider some special cases of the problem (1.6).

• If f ≡ 0, then the problem (1.6) is reduced to the problem of finding hi-
erarchically a fixed-point of a nonexpansive mapping T with respect to a
nonexpansive mapping S, namely

Find x̃ ∈ Fix(T ) such that 〈x̃− S(x̃), x̃− x〉 ≤ 0 ∀x ∈ Fix(T ). (1.8)

This problem was studied by Moudafi [11]. He extended the KM iteration
in order to analyze an algorithm in a more broad setting. More precisely, it
is proposed in [11] the following algorithm:

xn+1 = (1 − αn)xn + αn(σnSxn + (1 − σn)Txn), for n ≥ 0, (1.9)

where x0 ∈ C, {σn} and {αn} ⊂ (0, 1).

• By setting S = I − γF in (1.8), where F is η-Lipschitzian and κ-strongly

monotone with γ ∈
(

0,
2κ

η2

]

, (1.8) reduces to

find x̃ ∈ Fix(T ) such that 〈x− x̃,F(x̃)〉 ≥ 0 ∀x ∈ Fix(T ),

a variational inequality studied in Yamada [12].

• For a given a maximal monotone operator A, by setting T = JA
λ := (I +

λA)−1 and S = I − γ∇ψ where ψ is a convex function such that ∇ψ is
η-Lipschitzian (which is equivalent to the fact that ∇ψ is η−1 cocoercive)

with γ ∈
(

0,
2

η2

]

, and thanks to the fact that Fix
(

JA
λ

)

= (A)−1(0), (1.8)

reduces to the following mathematical program with generalized equation
constraint:

min
0∈A(x)

ψ(x),

a problem considered in [13].

• By taking A = ∂ϕ, where ∂ϕ is the subdifferential of a lower semicontinuous
convex function, the latter reduces to the following hierarchical minimization
problem considered in Cabot [14] and Solodov [15]:

min
x∈argminϕ

ψ(x).
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For related works, please refer to [16–24].
Now, we are in a position to propose new iterative scheme for finding a solution

of (1.6).

Algorithm 1.1. Let us assume that the bifunction f : C × C → R satisfy the
following conditions: Step 1:

(i) For each x, f(x, x) = 0 and f(x, ·) is lower semicontinuous convex on C;

(ii) If {xk} ⊆ C is bounded and εk ↓ 0 as k → ∞, then the sequence {yk} with
yk ∈ ∂εkf(x

k, ·)(xk) is bounded;

(iii) f is pseudomonotone on C with respect to every solution of EP (C, f) and
satisfies the following condition, called strict paramonotonicity property:

x ∈ Sol(C, f), y ∈ C, f(y, x) = 0 ⇒ y ∈ Sol(C, f); (1.10)

(iv) For each x ∈ C, f(·, x) is weakly upper semicontinuous on the open set C.

Step 2: Suppose that the sequences {λk}, {βk}, {εk}, {δk} and {σk} of nonnegative
numbers satisfy the following conditions:

(i) 0 < λk < λ̄, 0 < a < δk < b < 1, δk → 1
2 , 0 < a′ < σk < b′ < 1, σk → 1

2 ;

(ii) βk > 0,
∑

∞

k=0 βk = +∞ and
∑

∞

k=0 β
2
k < +∞;

(iii)
∑

∞

k=0 βkεk < +∞.

Step 3: Let T and S be two nonexpansive mappings of C into itself such that
SOL 6= ∅. Now the iteration scheme for finding a common point in SOL can be
written as follows:























x0 ∈ C;
yk ∈ ∂εkf(x

k, ·)(xk);

γk := max{λk, ‖yk‖} and αk := βk

γk
;

wk = PC(x
k − αky

k);
xk+1 = δkx

k + (1− δk)(σkSw
k + (1− σk)Tw

k), for each k = 0, 1, . . .
(1.11)

Remark 1.2. [10, Remark 2.1]

1. If f is pseudomonotone on C with respect to the solution set Sol(C, f) of
the problem EP (C, f), then under Step 1 (i) and (iv), the set Sol(C, f) is
convex.

2. Step 1 (ii) is true if whenever Step 1 (i) is satisfied and the bifunction f is
continuous on C × C.

3. Step 1 (iii) is true if f is pseudomonotone on C and satisfies the paramono-
tone property :

x ∈ Sol(C, f), y ∈ C, f(y, x) = f(y, x) = 0 ⇒ y ∈ Sol(C, f). (1.12)
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4. Since f(x, ·) is lower semicontinuous convex on C, applying Remark 2.5, we
conclude that ∂εkf(x

k, ·)(xk) 6= ∅. Thus the Algorithm (1.1) is well defined.

In this paper, the strong convergence of proposed algorithms is investigated
under certain assumptions. Our results complement many known recent results in
the literature.

2 Preliminaries

Let C be a nonempty convex subset of a real Hilbert space H. We write
xk ⇀ x to indicate that the sequence {xk} converges weakly to x as k → ∞, and
xk → x to indicate that the sequence {xk} converges strongly to x as k → ∞. In
a real Hilbert space H, we have

‖δx+ (1− δ)y‖2 = δ‖x‖2 + (1− δ)‖y‖2 − δ(1− δ)‖x− y‖2 (2.1)

for all x, y ∈ H and δ ∈ R. Since C is closed, convex, for any x ∈ H, there exists
a unique nearest point of C, denoted by PC(x) satisfying

‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.

PC is called the metric projection of H to C. It is well known that PC satisfies
the following properties:

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x) − PC(y)‖
2, ∀x, y ∈ H, (2.2)

〈x− PC(x), PC(x) − y〉 ≥ 0, ∀x ∈ H, y ∈ C, (2.3)

‖x− y‖2 ≥ ‖x− PC(x)‖
2 + ‖y − PC(x)‖

2, ∀x ∈ H, y ∈ C. (2.4)

Lemma 2.1. [25] If {ak} is a sequence of nonnegative real numbers such that

ak+1 ≤ (1− σk)an + δk,

where {σk} is a sequence in (0, 1) and {δk} is a sequence in R such that

(i)
∑

∞

k=1 σk = ∞;

(ii) lim supn→∞

δk

σk
≤ 0 or

∑

∞

k=1 |δk| <∞.

Then, limk→∞ ak = 0.

Lemma 2.2. Let {αk} be a sequence of nonnegative real numbers such that

αk+1 ≤ (1 − ηk)αk + βk, k ≥ 0,

where {ηk} ⊂ (0, 1),
∑

∞

n=1 ηk = ∞, limk→∞ ηk = 0 and
∑

∞

k=0 βk <∞. Then

(i) αk+1 ≤ αk + βk, for all k ≥ 0;
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(ii) the sequence {αk} is convergent.

Proof. (i) Since limk→∞ σk = 0. Then limk→∞(1− σk) = 1. So, we get

αk+1 ≤ αk + βk, for all k ≥ 0.

(ii) In Lemma 2.1 setting ηk = σk and βk = δk, we get the sequence {αk}
is convergent as desired.

Lemma 2.3. [26] Let H be a real Hilbert space, {δk} be a sequence of real numbers
such that 0 < L < δk < 1 for all k = 0, 1, . . . and let {vk}, {uk} be sequences of H
such that

lim sup
k→∞

‖vk‖ ≤ c, lim sup
k→∞

‖uk‖ ≤ c,

and

lim
k→∞

‖δkv
k + (1− δk)u

k‖ = c, for some c > 0.

Then

lim
k→∞

‖vk − uk‖ = 0.

The following idea of the ε-subdifferential of convex functions can be found
in the work of Bronsted and Rockafellar [27] but the theory of ε-subdifferential
calculus was given by Hiriart-Urruty [28].

Definition 2.4. Consider a proper convex function φ : C → R̄. For a given ε > 0,
the ε-subdifferential of φ at x0 ∈ domφ is given by

∂εφ(x0) = {x ∈ C : φ(y)− φ(x0) ≥ 〈x, y − x0〉 − ε, for all y ∈ C}.

Remark 2.5. It is know that if the function φ is proper lower semicontinuous
convex, then for every x ∈ domφ, the ε-subdifferential ∂εφ(x) is a nonempty closed
convex set (see [29]).

Lemma 2.6.

(i) Let A be a maximal monotone operator, then {t−1
k } graph converges to NA−1(0)

as tk → 0 provided that A−1(0) 6= ∅.

(ii) Let {Bk} be a sequence of maximal monotone operators which graph converges
to an operator B. If A is a Lipschitz maximal monotone operators, then {A+Bk}
graph converges to A+B and A+B is a maximal monotone.

Remark 2.7. It is well-known that since T is a nonexpansive mapping on C, I−T
is a maximal monotone operator on C which is 1

2 -co-coercive. In addition, T is
a demiclosed on C in the sense that, if {xk} converges weakly to x in C and
{xk − Txk} strongly converges to 0, then x is a fixed point of T .
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3 Main Results

Theorem 3.1. Suppose that Step 1. and Step 2. of Algorithm 1.1 are satisfied.
Then the sequences {xk} and {wk} generated by (1.11) converge strongly to the
same point x̄ ∈ Ω which solves the problem (1.6), where x̄ = limk→∞ PΩ(x

k).

Proof. We divide the proof into five steps as follows.
Step 1. For every x∗ ∈ C and every k, we show that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(1− δk)αk(f(x
k, x∗) + εk) + 2(1− δk)β

2
k, (3.1)

and there exists the limit

c := lim
k→∞

‖xk − x∗‖. (3.2)

Let {xk} and {wk} be two sequences generated by 1.11 and x∗ ∈ C. Then, for all
k ≥ 1, we have

‖xk+1 − x∗‖2 = ‖δkx
k + (1− δk)(σkSw

k + (1 − σk)Tw
k)− x∗‖2

≤ δk‖x
k− x∗‖2 + (1− δk)

∥

∥σk(Sw
k−Sx∗) + (1− σk)(Tw

k−Tx∗)
∥

∥

2

≤ δk‖x
k− x∗‖2 + (1− δk)

[

σk‖Sw
k−Sx∗‖+ (1− σk)‖Tw

k−Tx∗‖
]2

≤ δk‖x
k − x∗‖2 + (1− δk)

[

σk‖w
k − x∗‖+ (1− σk)‖w

k − x∗‖
]2

= δk‖x
k − x∗‖2 + (1− δk)

∥

∥wk − x∗
∥

∥

2

= δk‖x
k − x∗‖2 + (1− δk)

(

‖xk − x∗‖2 − ‖wk − x∗‖2

+2
〈

xk − wk, x∗ − wk
〉 )

≤ ‖xk − x∗‖2 + 2(1− δk)
〈

xk − wk, x∗ − wk
〉

. (3.3)

Since wk = PC(x
k − αky

k) and x∗ ∈ C, we have

〈

xk − wk, x∗ − wk
〉

≤ αk

〈

yk, x∗ − wk
〉

. (3.4)
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Combining this inequality with (3.3) yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(1− δk)
〈

xk − wk, x∗ − wk
〉

≤ ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − wk
〉

= ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − xk
〉

+2(1− δk)αk

〈

yk, x∗ − wk
〉

≤ ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − xk
〉

+2(1− δk)αk‖y
k‖‖xk − wk‖

= ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − xk
〉

+2(1− δk)
βk

max{λk, ‖yk‖}
‖yk‖‖xk − wk‖

≤ ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − xk
〉

+2(1− δk)βk‖x
k − wk‖. (3.5)

Using again wk = PC(x
k − αky

k) and xk ∈ C, we have

‖xk − wk‖2 ≤ αk

〈

yk, x∗ − wk
〉

≤ αk‖y
k‖‖xk − wk‖

=
βk

max{λk, ‖yk‖}

∥

∥yk
∥

∥

∥

∥xk − wk
∥

∥

≤ βk‖x
k − wk‖,

which implies that
‖xk − wk‖ ≤ βk. (3.6)

Consequently,
‖xk − wk‖ → 0 as k → ∞. (3.7)

Therefore from (3.5) and (3.6), we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(1− δk)αk

〈

yk, x∗ − xk
〉

+ 2(1− δk)β
2
k. (3.8)

Since yk ∈ ∂εkf(x
k, .)(xk), x∗ ∈ C and f(x, x) = 0 for all x ∈ C, we have

〈

yk, x∗ − xk
〉

≤ f(xk, x∗)− f(xk, xk) + εk ≤ f(xk, x∗) + εk. (3.9)

Combining (3.8) and (3.9), we obtain that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(1− δk)αk(f(x
k, x∗) + εk) + 2(1− δk)β

2
k. (3.10)

On the other hand, since x∗ ∈ Sol(C, f), that is, f(x∗, x) ≥ 0 for all x ∈ C, by
pseudomonotonicity of f with respect to x∗, we have f(xk, x∗) ≤ 0 for all x ∈ C.
Replacing x by xk ∈ C, we get f(xk, x∗) ≤ 0. Then, from (3.10), it follows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(1− δk)αkεk + 2(1− δk)β
2
k. (3.11)
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Using Lemma 2.2 and (3.11), we get the existence of

c := lim
k→∞

‖xk − x∗‖. (3.12)

Step 2. For every x∗ ∈ C, we show that

lim
k→∞

sup f(x∗, xk) = 0. (3.13)

Since f is pseudomonotone on C and f(x∗, xk) ≥ 0, we have −f(xk, x∗) ≥ 0. Then
by Step 1., for every k, we have

2(1− δk)αk[−f(x
k, x∗)] ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2(1− δk)αkεk

+ 2(1− δk)β
2
k

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2αkεk + 2β2
k. (3.14)

Summing up the above inequalities for every k, we obtain that

0 ≤ 2

∞
∑

k=0

αk[−f(x
k, x∗)] ≤ ‖x0 − x∗‖2 + 2

∞
∑

k=0

αkεk + 2

∞
∑

k=0

β2
k < +∞. (3.15)

It follows from the boundedness of the sequences {yk} and {λk} that we can
assume that

max{λk, ‖y
k‖} ≤M, (3.16)

for a constant M ≥ 0. Thus,

αk =
βk

γk
=

βk

max{λk, ‖yk‖}
≥
βk

M
, (3.17)

which together with 0 < a < δk < b < 1 and (3.15), implies

0 ≤
2(1− a)

M

∞
∑

k=0

βk[−f(x
k, x∗)] ≤ 2

∞
∑

k=0

(1 − δk)αk[−f(x
k, x∗)] < +∞. (3.18)

Thus
∞
∑

k=0

βk[−f(x
k, x∗)] < +∞. (3.19)

Then, by
∑

∞

k=0 βk = ∞ and −f(xk, x∗) ≥ 0, we can deduce that
lim supk→∞

f(xk, x∗) = 0 as desired.
Step 3. For any x∗ ∈ Ω, suppose that xkj is the subsequence of xk such that

lim sup
k→∞

f(xk, x∗) = lim
j→∞

(xkj , x∗), (3.20)

and, without loss of generality, we may assume that xkj ⇀, x̄ as j → ∞ for some
x̄ ∈ C. We show that x̄ solves EP (C, f). To this end, since f(·, x∗) is weakly
upper semicontinuous, we have

f(x̄, x∗) ≥ lim sup
j→∞

f(xkj , x∗) = lim
j→∞

f(xkj , x∗) = lim sup
k→∞

f(xk, x∗) = 0. (3.21)
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On the other hand, since f is pseudomonotone with respect to x∗ and f(x∗, x̄) ≥ 0,
we have

f(x∗, x̄) ≤ 0. (3.22)

From 3.21 and 3.22, we can conclude that f(x̄, x∗) = 0. By Step 1. of Algorithm
1.1, we can deduce that x̄ is a solution of EP (f, C) as well.
Step 4. We prove that any weakly cluster point of the sequence {xk} is a fixed
point of T . In particular, x̄ ∈ Fix(T ). Let x̃ ∈ FixT and Tσk

:= σkS + (1 − σk)T.
By (1.9), we can write

‖xk+1 − x̃‖ ≤ (1− δk)‖x
k − x̃‖+ δk‖Tσk

(xk)− T x̃‖

≤ ‖xk − x̃‖+ δk‖Tσk
(x̃)− T x̃‖

= ‖xk − x̃‖+ δkσk‖S(x̃)− T x̃‖.

By Lemma 2.2 and taking into account the fact that
∑

∞

k=0 δkσk < +∞, we have
that the limit

l(x̃) = lim
k→+∞

‖xk − x̃‖ (3.23)

exists and is finite. Also the sequence {xk} is bounded. Then, by setting x̄k+1 =
(1− δk)x

k + δkTx
k and G = I − T we obtain

‖xk+1 − x̄k+1‖ = δk‖Tσk
(xk)− Txk‖ = δkσk‖Tx

k − Sxk‖.

On the other hand, using the fact that G is 1
2 -co-coercive, we obtain

‖x̄k+1 − x̃‖2 = ‖xk+1 − x̃− δkGx
k‖2

= ‖xk − x̃‖2 − 2〈xk − x̃, Gxk −Gx̃〉+ δ2k‖Gx
k‖2

≤ ‖xk − x̃‖2 − δk(1− δk)‖Gx
k‖2.

Since {xk} is bounded, there is an M1 > 0 such that ‖Txk − Sxk‖ ≤ M1 ∀k ∈ N

and we derive

δk(1− δk)‖Gx
k‖2 ≤ ‖xk − x̃‖2 − ‖x̄k+1 − x̃‖2

= ‖xk − x̃‖2 − ‖x̄k+1 − xk+1 + xk+1 − x̃‖2

≤ ‖xk − x̃‖2 − ‖xk+1 − x̃‖2 − 2〈x̄k+1 − xk+1, xk+1 − x̃〉

≤ ‖xk − x̃‖2 − ‖xk+1 − x̃‖2 + 2M1δkσk.

This leads to

∞
∑

k=0

δk(1− δk)‖Gx
k‖2 ≤ ‖x0 − x̃‖2 + 2M1

∞
∑

k=0

δkσk < +∞.

As
∑

∞

k=0 δk(1−δk) = +∞, we infer that lim infk→+∞ ‖Gxk‖ = lim infk→+∞ ‖xk−
Txk‖ = 0. However, for all k

Txk+1 − xk+1 = Txk+1 − Tσk
(xk) + (1 − δk)(Tσk

(xk)− xk)
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and therefore

‖xk+1 − Txk+1‖ = ‖Txk+1 − Txk + Txk − Tσk
(xk) + (1− δk)(Tσk

(xk)− xk)‖

≤ ‖Txk+1 − Txk‖+ ‖Txk − Tσk
(xk)‖

+‖(1− δk)(Tσk
(xk)− xk)‖

≤ ‖xk+1 − xk‖+ ‖Txk − Tσk
(xk)‖+ (1− δk)‖(Tσk

(xk)− xk)‖

≤ ‖Txk − Tσk
(xk)‖ + ‖Tσk

(xk)− xk‖

≤ ‖xk − Txk‖+ 2M1σk.

Consequently as
∑

∞

k=0 σk < +∞, Lemma 2.2 ensures that the sequence
{‖xk − Txk‖} converges and thus

lim
k→∞

‖xk − Txk‖ = 0. (3.24)

As {xk} is bounded, there has a weak cluster point x̄ which amounts to saying
that there exists a subsequence {xkm} that weakly converges x̄. This combined
with the fact that Txk is demiclosed yields x̄ ∈ Fix T. Moreover, since

‖xk+1 − xk‖ = δk‖(Tσk
(xk)− xk)‖ ≤ δkσk‖Sx

k − Txk‖+ δk‖x
k − Txk‖,

the sequence {xk} is asymptotically regular, in other words

lim
k→+∞

‖xk+1 − xk‖ = 0. (3.25)

It remains to show that x̄ solves problem (1.6). Again by (1.9), we have

xk+1 − xk = (1 − δk)
(

σk(Sx
k − xk) + (1− σk)(Tx

k − xk)
)

,

that is
1

(1− δk)σk
(xk − xk+1) =

(

(I − S) +
1− σk

σk
(I − T )

)

xk. (3.26)

Lemma 2.6(i) assures that the operator sequence { 1−σk

σk
(I − T )} graph converges

to NΩ which in the light of Lemma 2.6(ii) allows us to deduce that the operator
(I − S) + 1−σk

σk
(I − T ) graph converges to (I − S) +NΩ.

Now, by replacing k by kj and passing to the limit in (3.26), as j → ∞ and
by taking into account the fact that 1

(1−δk)σk
‖xk+1 − xk‖ → 0 and that the graph

of (I − S) +NΩ is weakly-strongly closed, we finally obtain 0 ∈ (I − S)x̄+NΩx̄,

in other words x̄ solves problem (1.6).
Step 5. Finally, we prove that

lim
k→∞

xk = lim
k→∞

wk = lim
k→∞

PΩ(x
k) = x. (3.27)

It follows from (3.11) that, for all x∗ ∈ Ω,

∥

∥xk+1 − x∗
∥

∥

2
≤

∥

∥xk − x∗
∥

∥

2
+ µk, (3.28)
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where µk = 2(1− δk)αkεk + 2(1− δk)β2
k > 0 for all k ≥ 0 and Σ∞

k=0µk < +∞.

Now, using property (2.4) of the metric projection, we have

∥

∥xk+1 − PΩ(x
k+1)

∥

∥

2
=

∥

∥δkx
k + (1− δk)

(

σkSw
k + (1− σk)Tw

k
)

− PΩ(x
k+1)

∥

∥

2

≤ δk
∥

∥xk − PΩ(x
k)
∥

∥

2

+ (1− δ)
∥

∥(σkSw
k + (1− σk)Tw

k)− PΩ(x
k)
∥

∥

2

≤ δk
∥

∥xk − PΩ(x
k)
∥

∥

2

+ (1− δk)
∥

∥(σkSw
k + (1 − σk)Tw

k)− xk
∥

∥

2

− (1− δk)
∥

∥xk − PΩ(x
k)
∥

∥

2

= (2δk − 1)
∥

∥xk − PΩ(x
k)
∥

∥

2

+ (1− δk)
∥

∥σk(Sw
k − Twk) + (Twk − xk)

∥

∥

2

= (2δk − 1)
∥

∥xk − PΩ(x
k)
∥

∥

2
+ (1 − δk)

∥

∥wk − xk
∥

∥

2
. (3.29)

Since δk → 1
2 and (3.7), ‖wk − xk‖ → 0 as k → ∞, it follows from (3.29) that

‖xk+1 − PΩ(x
k+1)‖ → 0 as k → ∞. (3.30)

For the simplicity of notation, let zk := PΩ(x
k) for each k ≥ 1. Then, for all

m > k, since Ω is convex, we have
1

2
(zm + zk) ∈ Ω, and therefore

∥

∥zm − zk
∥

∥

2
= 2

∥

∥xm − zm
∥

∥

2
+ 2

∥

∥xm − zk
∥

∥

2
− 4

∥

∥

∥
xm −

1

2
(zm + zk)

∥

∥

∥

2

≤ 2
∥

∥xm − zm
∥

∥

2
+ 2

∥

∥xm − zk
∥

∥

2
− 4

∥

∥xm − zm
∥

∥

2

= 2
∥

∥xm − zk
∥

∥

2
− 2

∥

∥xm − zm
∥

∥

2
. (3.31)

Replacing x∗ with zk in (3.28), we can obtain the following:

∥

∥xm − zk
∥

∥

2
≤ ‖xm−1 − zk

∥

∥

2
+ µm−1

≤
∥

∥xm−2 − zk
∥

∥

2
+ µm−1 + µm−2

≤ · · ·

≤
∥

∥xk − zk
∥

∥

2
+

m−1
∑

j=k

µj . (3.32)

Combining this inequality with (3.31), we have

∥

∥zm − zk
∥

∥

2
≤ 2

∥

∥xk − zk
∥

∥

2
+ 2

m−1
∑

j=k

µj − 2
∥

∥xm − zm
∥

∥

2
, (3.33)

which gives that
lim

m→∞,→k→∞

∥

∥zm − zk
∥

∥ = 0, (3.34)
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which implies that {zk} is a Cauchy sequence. Hence, {zk} strongly converges to
some point z ∈ Ω. However, since zki := PΩ(x

ki ), letting i→ ∞, we obtain in the
limit that

z = lim
i→∞

PΩ(x
ki = PΩ(x) = x ∈ Ω. (3.35)

Therefore, zk := PΩ(x
k) → z = x ∈ Ω. Then, from (3.30), we can conclude that

xk → x. Finally, since limk→∞ ‖xk − wk‖ = 0, we have limk→∞ wk = x.

If S ≡ I, the identity mapping, then we obtain the new algorithm for finding
a common point in the solution set of a class of pseudomonotone equilibrium
problems and the set of fixed points of a nonexpansive mappings in a real Hilbert
space.

Corollary 3.2. Suppose that Step 1. in Algorithm 1.1 is satisfied. Let T be a non-
expansive mapping of C into itself such that Ω := Fix(T )∩Sol(C, f) 6= ∅. Suppose
that the sequences {λk}, {βk}, {εk}, {δk} and {σk} of nonnegative numbers satisfy
the following conditions:

1. 0 < λk < λ̄, 0 < a < δk < b < 1, δk → 1
2 , 0 < a′ < σk < b′ < 1, σk → 1

2 ;

2. βk > 0,
∑

∞

k=0 βk = +∞ and
∑

∞

k=0 β
2
k < +∞;

3.
∑

∞

k=0 βkεk < +∞.

Then, the sequences {xk} and {wk} are generated by























x0 ∈ C;
yk ∈ ∂εkf(x

k, ·)(xk);

γk := max{λk, ‖yk‖} and αk := βk

γk
;

wk = PC(x
k − αky

k);
xk+1 = δkx

k + (1 − δk)(σkw
k + (1− σk)Tw

k), for each k = 0, 1, . . .

(3.36)

converge strongly to the same point x̄ ∈ Ω and x̄ = limk→∞ PΩ(x
k).

By setting S = I − γF in (1.8), where F is η-Lipschitzian and κ-strongly

monotone with γ ∈
(

0,
2κ

η2

]

, the problem (1.6) reduces to the following variational

inequality studied in Yamada [12]:

find x̃ ∈ Ω := Fix(T )∩Sol(C, f) such that 〈x− x̃,F(x̃)〉 ≥ 0, ∀x ∈ Fix(T ). (3.37)

The solution set of this problem is denoted by Γ1.

Corollary 3.3. Suppose that Step 1. in Algorithm 1.1 is satisfied. Let T be a non-
expansive mapping of C into itself and F be η-Lipschitzian and κ-strongly mono-

tone with γ ∈
(

0,
2κ

η2

]

such that Γ1 6= ∅. Suppose that the sequences {λk}, {βk},

{εk}, {δk} and {σk} of nonnegative numbers satisfy the following conditions

1. 0 < λk < λ̄, 0 < a < δk < b < 1, δk → 1
2 , 0 < a′ < σk < b′ < 1, σk → 1

2 ;
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2. βk > 0,
∑

∞

k=0 βk = +∞ and
∑

∞

k=0 β
2
k < +∞;

3.
∑

∞

k=0 βkεk < +∞.

Then, the sequences {xk} and {wk} are generated by























x0 ∈ C;
yk ∈ ∂εkf(x

k, ·)(xk);

γk := max{λk, ‖yk‖} and αk := βk

γk
;

wk = PC(x
k − αky

k);
xk+1 = δkx

k + (1− δk)(σk(I − γF)wk + (1− σk)Tw
k), for each k = 0, 1, . . .

(3.38)
converge strongly to the same point x̄ ∈ Γ1 and x̄ = limk→∞ PΓ1

(xk).

If f ≡ 0, then the problem (1.6) is reduced to the problem of finding hierarchi-
cally a fixed-point of a nonexpansive mapping T with respect to a nonexpansive
mapping S, namely

Find x̃ ∈ Fix(T ) such that 〈x̃− S(x̃), x̃− x〉 ≤ 0, ∀x ∈ Fix(T ). (3.39)

The solution set of (3.39) is denoted by Γ2. Applying Theorem 3.1, we have the
following strong convergence theorem.

Corollary 3.4. Let C be a nonempty convex subset of a real Hilbert space H. Let
T and S be two nonexpansive mappings of C into itself such that Γ2 6= ∅. Suppose
that the sequences {δk} and {σk} of nonnegative numbers satisfy the following
conditions 0 < a < δk < b < 1, δk → 1

2 , 0 < a′ < σk < b′ < 1, σk → 1
2 . Then,

the sequences {xk} generated by

{

x0 ∈ C;
xk+1 = δkx

k + (1 − δk)(σkSx
k + (1− σk)Tx

k), for each k = 0, 1, . . .
(3.40)

converge strongly to a point x̄ ∈ Γ2.

Acknowledgement(s) : This research was supported by Naresuan University,
Thailand.

References

[1] E. Blum, W. Oettli, From optimization and variational inequality to equilib-
rium problems, Math. Student 63 (1994) 127-149.

[2] P. Daniele, F. Giannessi, A. Maugeri, Equilibrium Problems and Variational
Models, Kluwer Academic Publisher, Dordrecht, 2003.

[3] I.V. Konnov, Combined Relaxation Methods for Variational Inequalities,
Springer-Verlag, Berlin, 2000.



76 Thai J. Math. 16 (2018)/ R. Wangkeeree et al.

[4] P.N. Anh, J.K. Kim, The interior proximal cutting hyperplane method for
multivalued variational inequalities, J. Nonlinear Convex Anal. 11 (3) (2010)
491-502.

[5] P.N. Anh, A logarithmic quadratic regularization method for solving pseudo-
monotone equilibrium problems, Acta Math. Vietnam. 34 (2009) 183-200.

[6] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory
Appl. 116 (2003) 659-678.

[7] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium
problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl.
331 (1) (2007) 506-515.

[8] P.N. Anh, A hybrid extragradient method extended to fixed point problems
and equilibrium problems, Optimization 62 (2013) 271-283.

[9] A.Tada, W. Takahashi, Weak and strong convergence theorems for a nonex-
pansive mapping and an equilibrium problem, J. Optim. Theory Apply. 133
(2007) 359-370.

[10] P.N. Anh, L.D. Muu, A hybrid subgradient algorithm for nonexpansive map-
pings and equilibrium problems, Optim Lett. 8 (2014) 727-738.

[11] A. Moudafi, Krasnoselski-Mann iteration for hierarchical fixed-point prob-
lems, Inverse Problems 23 (4) (2007) 1635.

[12] I. Yamada, N. Ogura, Hybrid steepest descent method for the over the fixed
point set of certain quasi-nonexpansive mappings, Num. Funct. Anal. Optim.
25 (7-8) (2004) 619-655.

[13] Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs with Equilibrium
Constraints, Cambridge University Press, 1996.

[14] A. Cabot, Proximal point algorithm controlled by a slowly vanishing term:
Applications to hierarchical minimization, SIAM J. Optim. 15 (2) (2005) 555-
572.

[15] M. Solodov, An explicit descent method for bilevel convex optimization, J.
Convex Anal. 14 (2007) 227-238.

[16] T. Jitpeera, P. Kumam, A new explicit triple hierarchical problem over the set
of fixed point and generalized mixed equilibrium problem, J. Inequal. Appl.
2012:82 (2012) doi:10.1186/1029-242X-2012-82.

[17] N. Wairojjana, P. Kumam, General iterative algorithms for hierarchical fixed
points approach to variational inequalities, J. Appl. Math. 2012:174318 (2012)
doi:10.1155/2012/174318.

[18] T. Chamnarnpan, N. Wairojjana, P. Kumam, Hierarchical fixed points
for strictly pseudo contractive mappings of variational inequality problems,
SpringerPlus 2:540 (2013) doi:10.1186/2193-1801-2-540.



A Hybrid Subgradient Algorithm for Finding a Common Solution ... 77

[19] P. Kumam, T. Jitpeera, Strong convergence of an iterative algo-
rithm for hierarchical problems, Abstr. Appl. Anal. 2014:678147 (2014)
doi:10.1155/2014/678147.

[20] N. Wairojjana, P. Kumam, Existence and algorithm for the system of hierar-
chical variational inclusion problems, Abstr. Appl. Anal. 2014:589679 (2014)
doi:10.1155/2014/589679.

[21] N. Wirojana, T. Jitpeera, P. Kumam, The hybrid steepest descent method
for solving variational inequality over triple hierarchical problems, J. Inequal.
Appl. 2012:280 (2012)

[22] T. Jitpeera, P. Kumam, Algorithms for solving thevariational inequality prob-
lem over the triple hierarchical problem, Abstr. Appl. Anal. 2012:827156
(2012) doi:10.1155/2012/827156.

[23] N. Wairojjana, P. Kumam, General iterative method for convex feasibility
problem via the hierarchical generalized variational inequality problems, Pro-
ceedings of The International MultiConference of Engineers and Computer
Scientists 2013 (IMECS 2013), Hong Kong, Vol II (2013) 1129-1134.

[24] N. Wairojjana, K. Sombut, P. Kumam, Existence and algorithm for hierar-
chical optimization problems, Proceedings of the 15th International Confer-
ence on Computational and Mathematical Methodsin Science and Engineer-
ing 2015 (CMMSE 2015), Costa Ballena, Rota, Cdiz (Spain), Vol I II-III and
IV, Page 1122 of 1268.

[25] H.K. Xu, Viscosity approximation methods for nonexpansive mappings,
Math. Anal. Appl. 298 (2004) 279-291.

[26] J. Schu, Weak and strong convergence to fixed points of asymtotically non-
expansive mappings, Bull. Australian Math. Soc. 43 (1991) 153-159.

[27] A. Brφndsted, R.T. Rockafellar. On the subdifferentiability of convex func-
tions, Proc. Am. Math. Soc. 16 (1965) 605-611.

[28] J.-B. Hiriart-Urruty. ε-Subdifferential calculus, in Convex Analysis and Op-
timization, Eds. J.P. Aubin and R. Vinter, Pitman, London (1982) 43-92.

[29] A. Dhara, J. Dutt, Optimality Conditions in Convex Optimization: A Finite
Dimensional View, Taylor & Francis Group, LLC, 2012.

(Received 12 August 2015)
(Accepted 14 July 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Main Results

