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Abstract : A mapping T form a nonempty closed convex subset C of a uniformly
Banach space into itself is called a Berinde nonexpansive mapping if there is L ≥ 0
such that ‖Tx− Ty‖ ≤ ‖x− y‖+ L ‖y − Tx‖ for any x, y ∈ C. In this paper, we
prove weak and strong convergence theorems of an iterative method for approxi-
mating common fixed points of two Berinde nonexpansive mappings under some
suitable control conditions in a Banach space. Moreover, we apply our results to
equilibrium problems and fixed point problems in a Hilbert space.
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1 Introduction

Let X be a Banach space and C a nonempty closed convex subset of X. A
map T form C into itself is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any
x, y ∈ C. A map T is called k-contraction if there exists k ∈ [0, 1) such that
‖Tx− Ty‖ ≤ k ‖x− y‖ for any x, y ∈ C. A point x in C is called a fixed point of
T if x = Tx, the set of all fixed points of T is denoted by F (T ). If T1 and T2 are
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self-mappings on C, a point x ∈ C is called a common fixed point of Ti (i = 1, 2)
if x is a fixied point of Ti for each i ∈ {1, 2}.

To find a solution of the common fixed point problems, several iterative ap-
proximation methods were introduced and studied. This problem can be applied
in solving solutions of various problems in science and applied science, see [1–3]
for instance. In many researches, the iterative approximation methods for finding
a fixed point of nonlinear mappings have been studied extensively such as the
following schemes:

The Mann iteration process [4] is defined by the sequence {xn}{
x1 ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,
(1.1)

where {αn} is a sequence in [0, 1]. In case of αn = 1 for all n ≥ 1, this iteration
process reduces to the Picard iteration process.

The Ishikawa iteration process [5] is defined by the sequence {xn}
x1 ∈ C,
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1,

(1.2)

where {αn} and {βn} are sequences in [0, 1]. This iteration process reduces to the
Mann iteration process when βn = 0 for all n ≥ 1.

The S-iteration process [6] is defined by the sequence {xn}
x1 ∈ C,
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, n ≥ 1,

(1.3)

where {αn} and {βn} are sequences in [0, 1]. In 2007, Agqrwal, O’Regan and
Sahu [6] proved that this iteration process is independent of Mann and Ishikawa
iteration process and more converge faster than both of them.

In 2003, Berinde [7] introduced a new type of contractive mappings. A map
T of a metric space X into itself is called weak contraction or (δ, L)-contraction if
there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx),

for all x, y ∈ X. He proved an existence and uniqueness theorem for this mapping.
A few years later, Berinde [8, 9] proved convergence theorems for approximating
fixed points by Picard iteration process.

In 2009, Chumpungam [10] studied (1, L)-contraction mappings, or simply
Berinde nonexpansive mappings, and proved existence theorems of their fixed
points. Moreover, she proved strong convergence theorems for some proposed
iteration processes such as Mann, Noor, Ishikawa iterations etc. and also studied
stability and rate of convergence of these iteration processes.
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Recently, Kosol [3] proved weak and strong convergence theorems for a com-
mon fixed point of three Berinde nonexpansive mappings in unuformly convex
Banach space by iteration process which is defined as follows:

x1 ∈ C,
zn = (1− γn)xn + γnT1xn,

yn = (1− βn)xn + βnT2zn,

xn+1 = (1− αn)T3zn + αnT3yn, n ≥ 1,

(1.4)

where {αn}, {βn} and {γn} are some suitable sequences in [0, 1].
In this paper, we prove weak and strong convergence theorems for a common

fixed point of two Berinde nonexpansive mappings which satisfying some condition
in Banach space {xn} with iteration process defined by

x1 ∈ C,
yn = (1− βn)xn + βnT1xn,

xn+1 = (1− αn)T2xn + αnT2yn, n ≥ 1,

(1.5)

where {αn} and {βn} are some suitable sequences in [0, 1]. Note that the iteration
process in (1.4) can not to reduce iteration process in (1.5) under the control
conditions studied in [10]. Finally, we apply our result to the equilibrium problems
in Hilbert spaces.

2 Preliminaries

In this section, the definitions and fundamental theorems that will be used in
our work will be given. For a sequence {xn} ⊂ X, the strong and weak convergence
of {xn} to x is denoted by xn → x and xn ⇀ x, respectively.

Definition 2.1. Let X be a Banach space and C a nonempty closed convex subset
of X. A mapping T of C into itself is said to be

• nonexpansive if for any x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖ .

• quasi-nonexpansive if F (T ) 6= ∅ and for any x ∈ C, p ∈ F (T ),

‖Tx− p‖ ≤ ‖x− p‖ .

• Berinde nonexpansive or (1, L)-contraction if there exists L ≥ 0 such that
for any x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖+ L ‖y − Tx‖ .
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• demicompact if for any sequence {xn} ⊂ X such that ‖xn − Txn‖ → 0, then
there is a subsequence {xnk

} of {xn} such that xnk
→ x for some x ∈ C.

A class of nonexpansive, quasi-nonexpansive, Berinde nonexpansive mappings
are denoted by CN ,CQN ,CBN , respectively. It is clear that CN ⊂ CQN and
CN ⊂ CBN . The following examples show that CQN and CBN dose not belong to
each other.

Example 2.2.

(a) Let X = l∞, C = {x ∈ l∞ : ‖x‖∞ ≤ 1} and T : C → C a mapping defined
by

Tx = (0, x21, x
2
2, x

2
3, . . .),

for x = (x1, x2, x3, . . .) ∈ C. In [11], the authors proved that the mapping T
is quasi-nonexpansive but not nonexpansive. It is note that T is not Berinde
nonexpansive. To see this, let L ≥ 0 for arbitrary. Put x = (0, 12 ,

1
2 ,

1
2 , . . .)

and y = (0, 0, 14 ,
1
4 , . . .). Then, we see that

‖Tx− Ty‖ =
7

16
>

1

4
= ‖x− y‖+ L ‖y − Tx‖ .

Thus, T is not Berinde nonexpansive.

(b) Let X = R, C = [0, 1] and a map T : C → C defined by

Tx =


x2, if x ∈ [0,

1

2
),

1, if x ∈ [
1

2
, 1].

In [10], the author showed that the mapping T is Berinde nonexpansive with
L = 4 but not nonexpansive. We observe that the set of fixed points F (T ) is
{0, 1}. By choosing ( 1

3 , 1) ∈ C × F (T ), we have
∥∥T ( 1

3 − 1)
∥∥ = 8

9 >
∣∣ 1
3 − 1

∣∣,
so the map T is not quasi-nonexpansive mapping.

The following condition forces a mapping to be quasi-nonexpansive. It is called
condition (∗).

Definition 2.3 (condition (∗)). A map T of a set C into itself is called satisfying
the condition (∗) if there exists L ≥ 0 such that for any x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖+ L ‖x− Tx‖ .

Remark 2.4. A map T : C → C satisfying condition (∗) with F (T ) 6= ∅ is
quasi-nonexpansive.

Proof. Suppose that T satisfies the condition (∗). For p ∈ F (T ) and x ∈ C, there
exists L ≥ 0 such that

‖Tx− p‖ = ‖Tx− Tp‖ ≤ ‖x− p‖+ L ‖p− Tp‖ = ‖x− p‖ .
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Lemma 2.5. [12] Let X be a uniformly convex Banach space and Br(0) be a closed
ball of X. Then there exists a continuous strictly increasing convex function
g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ µy + γz‖2 ≤ λ ‖x‖2 + µ ‖y‖2 + γ ‖z‖2 − λµg(‖x− y‖),

for all x, y ∈ Br(0) = {x ∈ X : ‖x‖ ≤ r} and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.

Definition 2.6. A Banach space X is said to satisfy Opial’s condition if for any
sequence {xn} ⊂ C, xn ⇀ x for some x ∈ C, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for any y ∈ C, y 6= x.

Lemma 2.7. [3] Let X be a Banach space such that Opial’s condition holds, C
a nonempty closed convex subset of X and T a mapping on C. If T satisfies the
condition (∗), then I − T is demiclosed at 0, i.e. for any {xn} ⊂ C, xn ⇀ x for
some x ∈ C and ‖xn − Txn‖ → 0, then x ∈ F (T ).

3 Main Results

In this section, we prove weak and strong convergence of an interation (1.5).
Throughout this section, we assume that X is a uniformly convex Banach space
and C is a nonempty closed convex subset of X. To obtain our results, some useful
lemmas are needed.

Lemma 3.1. Let Ti : C → C, i = 1, 2, be quasi-nonexpansive mappings. Suppose
that F (T1) ∩ F (T2) 6= ∅, a sequence {xn} defined by (1.5) and {αn}, {βn} ⊂ [0, 1].
Then,

(1) ‖xn+1 − p‖ ≤ ‖xn − p‖ for any n ≥ 1 and p ∈ F (T1) ∩ F (T2),

(2) limn→∞ ‖xn − p‖ exists.

Proof. Let p ∈ F (T1) ∩ F (T2). By using (1.5), we obtain that

‖yn − p‖ = ‖(1− βn)xn + βnT1xn − p‖
= ‖(1− βn)(xn − p) + βn(T1xn − p)‖
≤ (1− βn) ‖xn − p‖+ βn ‖T1xn − p‖
≤ ‖xn − p‖ .

Thus,

‖xn+1 − p‖ = ‖(1− αn)T2xn + αnT2yn − p‖
= ‖(1− αn)(T2xn − p) + αn(T2yn − p)‖
≤ (1− αn) ‖T2xn − p‖+ αn ‖T2yn − p‖
≤ (1− αn) ‖xn − p‖+ αn ‖yn − p‖
≤ (1− αn) ‖xn − p‖+ αn ‖xn − p‖
= ‖xn − p‖ .
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By using (1) and {‖xn − p‖} bounded below, limn→∞ ‖xn − p‖ exists.

Lemma 3.2. Let Ti : C → C, i = 1, 2, be quasi-nonexpansive mappings such
that F (T1) ∩ F (T2) 6= ∅ and let a sequence {xn} be generated by (1.5) where
{αn}, {βn} ⊂ [0, 1] satisfying

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {‖xn−T1xn‖}, {‖T2xn−T2yn‖}, {‖yn−xn‖}, {‖xn+1−T2xn‖} converse to 0.

Proof. Let p ∈ F (T1) ∩ F (T2). It is easily to see by Lemma 3.1 that a sequence
{xn−p} is bounded, i.e. there exists a real number M > 0 such that ‖xn − p‖ ≤M
for all n ≥ 1. Replacing yn and using quasi-nonexpansiveness of T1, we get

‖yn − p‖ ≤ (1− βn) ‖xn − p‖+ βn ‖T1xn − p‖ ≤M,

for any n ≥ 1. Again with quasi-nonexpansiveness of Ti, we finally obtain that
{xn − p}, {yn − p}, {Tixn − p}, {Tiyn − p}, i = 1, 2, are subsets of BM (0). By
lemma 2.5, there is a continuous strictly convex function g from [0,∞) into [0,∞)
with g(0) = 0 such that

‖yn − p‖2 = ‖(1− βn)xn + βnT1xn − p‖2

= ‖(1− βn)(xn − p) + βn(T1xn − p)‖2

≤(1− βn) ‖xn − p‖2 + βn ‖T1xn − p‖2 − (1− βn)βng(‖xn − T1xn‖),

and then,

‖xn+1 − p‖2 = ‖(1− αn)T2xn + αnT2yn − p‖2

= ‖(1− αn)(T2xn − p) + αn(T2yn − p)‖2

≤(1−αn) ‖T2xn−p‖2+αn ‖T2yn−p‖2−(1− αn)αng(‖T2xn−T2yn‖)

≤(1−αn) ‖xn − p‖2 + αn ‖yn − p‖2 − (1− αn)αng(‖T2xn − T2yn‖)

≤(1−αn) ‖xn − p‖2 + αn(1− βn) ‖xn − p‖2 + αnβn ‖T1xn − p‖2

− αn(1− βn)βng(‖xn − T1xn‖)− (1− αn)αng(‖T2xn − T2yn‖).

So, we have

αn(1− βn)βng(‖xn − T1xn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 .

Taking n→∞, we obtain that g(‖xn − T1xn‖)→ 0. In fact, ‖xn − T1xn‖ → 0 by
continuity of g and g(0) = 0. Similarly, we also obtain ‖T2xn − T2yn‖ → 0. Thus,

‖yn − xn‖ ≤ βn ‖xn − T1xn‖ → 0,

and
‖xn+1 − T2xn‖ ≤ αn ‖T2xn − T2yn‖ → 0.
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Theorem 3.3. Let Ti : C → C, i = 1, 2, be Berinde nonexpansive mappings
which are satisfying the condition (∗) and F (T1) ∩ F (T2) 6= ∅. Let {xn} be a
sequence generated by (1.5) where {αn} and {βn} are sequences in [0, 1] satisfying
conditions (i), (ii) in Lemma 3.2. If T1 is demicompact, then a sequence {xn}
converges strongly to some element of F (T1) ∩ F (T2).

Proof. Suppose that T1 is demicompact. Since ‖xn − T1xn‖ → 0, there exists a
subsequence {xnk

} of xn converges strongly to some element p in C. We claim
that p ∈ F (T1) ∩ F (T2). Indeed, for each k ≥ 1,

‖T1xnk
− T1p‖ ≤ ‖xnk

− p‖+ L ‖p− T1xnk
‖ for some L ≥ 0

≤ ‖xnk
− p‖+ L ‖p− xnk

‖+ L ‖xnk
− T1xnk

‖ → 0.

Then,

‖p− T1p‖ ≤ ‖p− xnk
‖+ ‖xnk

− T1xnk
‖+ ‖T1xnk

− T1p‖ → 0.

Hence, p ∈ F (T1). Next, we show that p ∈ F (T2). Since

‖p− T2xnk
‖ ≤

∥∥p− xnk+1

∥∥+
∥∥xnk+1

− T2xnk

∥∥→ 0,

we have

‖p− T2ynk
‖ ≤ ‖p− T2xnk

‖+ ‖T2xnk
− T2ynk

‖ → 0.

Then,

‖T2p− T2xnk
‖ ≤‖T2p− T2ynk

‖+ ‖T2ynk
− T2xnk

‖
≤‖p− ynk

‖+ L′ ‖p− T2ynk
‖+ ‖T2ynk

− T2xnk
‖ for some L′ ≥ 0

≤‖p− xnk
‖+‖xnk

− ynk
‖+L′ ‖p− T2ynk

‖+‖T2ynk
− T2xnk

‖→0.

Hence,

‖p− T2p‖ ≤
∥∥p− xnk+1

∥∥+
∥∥xnk+1

− T2xnk

∥∥+ ‖T2xnk
− T2p‖ → 0.

Thus, p ∈ F (T1) ∩ F (T2). By existence of limit of ‖xn − p‖ in Lemma 3.1, we
conclude that a sequence {xn} converges strongly to p ∈ F (T1) ∩ F (T2).

Definition 3.4. A mapping T : C → C is said to be weakly continuous if for each
x0 ∈ C, Tx ⇀ Tx0 as x→ x0.

Theorem 3.5. Let X be a uniformly convex Banach space which satisfies Opial’s
condition and C a nonempty closed convex subset of X and let Ti : C → C, i = 1, 2,
be Berinde nonexpansive mappings which satisfy the condition (∗) and T2 is weakly
continuous. Assume that F (T1)∩F (T2) 6= ∅. Let {xn} be a sequence generated by
(1.5) where {αn}, {βn} are sequences in [0, 1] with the following restrictions:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
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(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(iii) limn→∞ αn = α for some α ∈ (0, 1).

Then {xn} converges weakly to some element x in F (T1) ∩ F (T2).

Proof. By using lemma 3.2, we have {‖xn − T1xn‖},{‖T2xn − T2yn‖},{‖yn − xn‖},
{‖xn+1 − T2xn‖} converge to 0. Since {xn} is bounded, there is a weakly conver-
gence subsequence {xnk

} ⊂ {xn}. Without loss of generality, we may assume that
xn ⇀ x ∈ C. Also, yn ⇀ x since ‖yn − xn‖ → 0. By using Lemma 2.7 with {xn}
and ‖xn − T1xn‖ → 0, we get x ∈ F (T1). From xn+1 = (1 − αn)T2xn + αnT2yn
and T2 is weakly continuous, we obtain

xn+1 = (1− αn)T2xn + αnT2yn ⇀ (1− α)T2x+ αT2x = T2x,

which implies that x ∈ F (T2). Therefore, xn ⇀ x ∈ F (T1) ∩ F (T2).

4 Applications

Let C be a nonempty subset of a real Hilbert space X and F a bifinction of
C ×C into R. The equilibrium problem for F : C ×C → R is to find an element
x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (4.1)

The set of all solutions in (4.1) is denoted by EP (F ). If an element x belongs to
EP (F ), we called x an equilibrium point of F . In many researches, the equilibrium
problem has been studied extensively, see [13–15] for instance. In this paper, we
apply our results to find a common fixed point of Berinde nonexpansive mapping
T and equilibrium point of bifunction F .

For solving the equilibrium problem for a bifunction F , we assume that F
satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

The following lemmas are crucial for our main results.

Lemma 4.1. [13] Let C be a closed convex subset of a real Hilbert space X, let F
be a bifunction from C ×C to R satisfying (A1)− (A4), and let r > 0 and x ∈ X.
Then, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0,

for all y ∈ C.
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Lemma 4.2. [14] Let C be a closed convex subset of a real Hilbert space X and
let F be a bifunction from C × C to R satisfying (A1)− (A4). For all r > 0 and
x ∈ X, define a mapping Tr : X → C by

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C}.

Then the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e. for all x, y ∈ X,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

By using two above lemmas and our main result (Theorem 3.3), we obtain the
following result.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert X.
Let F : C × C → R be a bifunction satisfying (A1) − (A4) and S a Berinde
nonexpansive mapping satisfying condition (∗). Suppose F (S) ∩ EP (F ) 6= ∅.
Let r > 0 and {xn} be a sequence generated by

x1 ∈ C,

F (un, y) +
1

r
〈y − un, un − xn〉 ≥ 0 for all y ∈ C

yn = (1− βn)xn + βnun,

xn+1 = (1− αn)Sxn + αnSyn, n ≥ 1,

(4.2)

where {αn} and {βn} are sequences in [0, 1] satisfying the conditions:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

If Tr is demicompact, then a sequence {xn} converges strongly to x∈F (S)∩EP (F ).

Proof. By Lemma 4.2, we know that Tr is a firmly nonexpansive-type mapping,
so it is nonexpansive, hence it is Berinde nonexpansive. Thus, we apply Theorem
3.3 to obtain the result.

Example 4.4. Let X = R and C = [0, 1]. A map S : [0, 1]→ [0, 1] is defined by

Sx =


x2, if x ∈ [0,

1

2
),

0.3, if x ∈ [
1

2
, 1].
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i xn yn
1 1 0.8125
2 0.3 0.23076923076923075
3 0.07530177514792899 0.057148668639053254
4 0.004639905763337993 0.0035036023110919545
5 1.7416060453382352e− 05 1.3119335012580785e− 05
6 2.4368179328698657e− 10 1.8332024816085228e− 10
7 4.748489192088233e− 20 3.5693879906744314e− 20
8 1.7971260750321737e− 39 1.3501724397910112e− 39
9 2.5676873002008594e− 78 1.9283963023024897e− 78
10 5.231504810775423e− 156 3.9279737117450024e− 156
11 2.168308777326e− 311 1.627720806056e− 311
12 0.0 0.0
13 0.0 0.0
14 0.0 0.0

Table 1: Numerical experiment of the iteration process 4.2

Then, we observe that S is Berinde nonexpansive satisfying condition (∗) and
F (S) = {0}. Let F : C × C → R be a bifunction defined by

F (x, y) = y2 + xy − 2x2,

for any x, y ∈ C. Let r > 0 and a sequence {xn} generated by iteration process
(4.2). From [16] [Example 4.1], we can compute that Trx = x

3r+1 for all x ∈ C.
Let {αn}, {βn} be sequences in [0, 1] given by

αn =
n

2n+ 1
, βn =

n2

3n2 + 1
, n ≥ 1.

Setting r = 1 and x1 = 1 ∈ C. Then the iteration process (4.2) becomes:
x1 ∈ C,

yn = (1− n2

3n2 + 1
)xn +

n2

3n2 + 1
· xn

4
,

xn+1 = (1− n

2n+ 1
)Sxn +

n

2n+ 1
Syn, n ≥ 1.

(4.3)

From the Table 1, we see that the sequence {xn} converges to a point
0 ∈ F (S) ∩ F (Tr) = F (S) ∩ EP (F ) which are garunteed by Theorem 4.3.
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