
Thai Journal of Mathematics
Volume 16 (2018) Number 1 : 1–23

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

An Incremental Approach to Share-Frequent

Itemsets Mining

Chayanan Nawapornanan†,1, Sarun Intakosum† and Veera Boonjing‡

†Department of Computer Science, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

e-mail : 56605008@kmitl.ac.th (C. Nawapornanan)

kisarun@kmitl.ac.th (S. Intakosum)
‡International College King Mongkut’s Institute of Technology Ladkrabang

Bangkok, Thailand
e-mail : kbveera@kmitl.ac.th (V. Boonjing)

Abstract : The share-frequent itemsets mining becomes an important topic in
the mining of association rules because it can provide useful knowledge such as
total quantity of items sold and total profit. In the past, the efficient MCShFI
algorithm was successfully proposed to discover complete share-frequent itemsets
on a database. When the database is updated, the algorithm can obtain current
complete share-frequent itemsets by using the batch approach-mining the whole
updated database. To improve mining execution time, we propose a new incre-
mental approach to the problem with the Fast Update (FUP) concept. It obtains
the current result by mining only new transactions and updating the previous
existing result with this mined result.

Keywords : data mining; share-frequent itemsets mining; incremental mining.
2010 Mathematics Subject Classification : 68T20; 68W01.

1 Introduction

Mining frequent itemsets is the essential process and most expensive in asso-
ciation rule mining [1]. Many algorithms of mining frequent itemsets have been

1Corresponding author.

Copyright c© 2018 by the Mathematical Association of Thailand.
All rights reserved.

2 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

proposed to find frequent patterns such as level-wise approaches [2, 3, 4, 5, 6] and
pattern-growth algorithms [7, 8, 9, 10]. The frequent itemsets mining has some
limitations, that is, in each transaction, each item will appear in a binary frequency
(either absent or present). Moreover, it only considers whether an item is bought
in to a transaction or not [11]. Therefore, mining share-frequent itemsets [12]
was proposed to accommodate the quantity of each item. Its share measure can
provide useful knowledge about the numerical values that are typically associated
with the transaction items, such as the total quantity of items sold or the total
profit. [13] proposed an efficient algorithm for mining complete share-frequent
itemsets, named MCShFI, for efficiently extracting complete share-frequent item-
sets based on a level-wise generating property. It can reduce the runtimes by
using transaction measure value as an effective upper bound of each item to gen-
erate only the promising candidate itemsets in each iteration. To obtain a current
mining result from an updated database, however, this algorithm has to rescan
the whole database. This paper proposes an incremental algorithm called IS-FUP
which eliminates the rescanning by mining frequent itemsets only from new trans-
actions and using this result to efficiently update the previous discovered frequent
itemsets. It adopts the Fast Update (FUP) Algorithm [14] as an efficient update
concept.

The remaining of this paper is organized as follows. Background and related
work are given in Section 2. The share-frequent itemsets mining problem is de-
scribed in Section 3. In Section 4, the proposed algorithm is described and some
examples are given. The efficiency of IS-FUP is shown in Section 5 and conclusions
are drawn in Section 6.

2 Related Work

2.1 Mining Share-Frequent Itemsets

In 1997, Carter et al. introduced the share-confidence model to discover useful
knowledge about numerical attributes associated with items in a transaction [12].
This numerical attribute reflects all the profit, the cost of items, and associates
to the transaction items. Several mining techniques have been proposed for effi-
ciently discovering share-frequent itemsets. [15] and [11] proposed method named
Zero pruning (ZP) and Zero subset pruning (ZSP) respectively that can extract
the complete set of share-frequent itemsets from the transaction database using
heuristic search method. However, they take an exponential increase of runtime as
a minimum share threshold decreased. Some techniques were presented to mine all
share-frequent itemsets, however, these methods cannot extract the complete set
of share-frequent itemsets since their models do not satisfy the downward closure
property. These include SIP [15], CAC [16] and IAB [11].

Later, the Fast Share Measure approach (ShFSM) was proposed to improve
the previous approaches by using a property of level closure. However, this model
does not hold the property of downward closure, therefore, the set of share-frequent

An Incremental Approach to Share-Frequent Itemsets Mining 3

itemsets cannot be discovered completely. After that, [17] proposed the Direct
Candidates Generation(DCG) that relies on the downward-closure-property by us-
ing the transaction measure value of a pattern (definition 4) to decrease the number
of useless candidates. This method adopts the level-wise candidate generation-and-
test methodology that directly generates candidates without joining and pruning
steps in each pass. Moreover, this method extracts the complete set of share-
frequent pattern. However, the DCG requires more execution time to generate
and test a large number of unwanted candidates in the mining process since it
treats all 1 -items from the transaction database as 1 -candidate (C1) for gener-
ating all 2 -candidates. That is, all 1 -candidates contain frequent itemsets and
infrequent itemsets. For later round, the method produces the k-candidates (Ck)
by joining the previous candidate (Ck−1) which has their transaction measure
value beyond a certain threshold with a single pattern in C1.

As can be seen in the problem mentioned above, reducing the computation
time is an important issue of mining share-frequents patterns. [13], therefore, in-
troduced an efficient method for Mining Complete Share-frequent Itemsets (MC-
ShFI) to solve the weakness of the DCG solution. The MCShFI uses transaction
measure value (definition 4) as an effective upper bound of each item to reduce
the computation time by moving out a number of unwanted candidate at the first
round. Furthermore, the generated candidate itemsets of MCShFI are created
from the combination of only itemsets with their transaction measure value be-
yond a certain threshold. As a result, the MCShFI approach is more efficient than
the DCG method in terms of execution time.

2.2 The Fast Update Concept

The number of transactions in a database is increasingly growing up; therefore,
the evaluation of derived association rules must be reproduced. In fact, some
association rules are newly generated while some other rules become obsolete [18].
Every time the new inserted transaction occurs in the database, in the traditional
batch mining algorithms, it has to re-process the whole updated database. This
process; therefore, consumes lots of execution time and additionally waste existing
mined knowledge.

Figure 1: Four cases when new transactions are added into existing database

4 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

To reduce computation time, Cheung et al. [14] had introduced the Fast
Update (FUP) algorithm. The FUP takes into account only mining results of an
original database and new transactions. There are four cases under consideration
as shown in Figure 1.

Case 1: An itemset is large both in an original database and in new transactions.
Case 2: An itemset is large in an original database but small in new transactions.
Case 3: An itemset is small in an original database but large in new transactions.
Case 4: An itemset is small both in an original database and in new transactions.

For Case 1, both the original database and the new transactions are large
(frequent). Thus, the weighted average of the counts will be large. Identically,
for Case 4, both small (infrequent) original database and small (infrequent) newly
inserted transactions yield small weighted average of the counts. This implies that,
both Case 1 and Case 4 will not influence the final frequent itemsets. Nevertheless,
for Case 2 and Case 3, the weighted average of the counts can be small (infrequent),
thus, affects the final frequent itemsets. Hence, to achieve the correct solution,
the existing large (frequent) itemsets may be removed for Case 2 while it must be
inserted for Case 3.

3 Problem Statement

In this section, the notation for the IS-FUP algorithm is described. Then the
basic definitions which similar to the previous works [19, 17, 20, 13] are presented.

3.1 Notation

I a set of m items, I = {i1, i2, . . . , ij , . . . , im} be a set of literals
with counting attributes, where i1, i2, . . . , ij , . . . , im are called
item.

X an itemset, where X ⊆ I.
DB a transaction database, DB = {T1, T2, . . . , Tn} be a set of tran-

sactions, where n is the number of transactions in DB and each
transaction Tq ∈ DB and also Tq ⊆ I, (1 ≤ q ≤ n). The type of
DB can be divided into two groups: O and db+.

O an original transaction database.
db+ a set of the newly inserted transactions.
U an entire updated database, O ∪ db+
Ck a candidate share-frequent itemsets of size k
minLMV db+ The minimum local measure value in new transactions db+
minLMV U The minimum local measure value in the entire updated data-

base U

An Incremental Approach to Share-Frequent Itemsets Mining 5

TMV O The total measure value of the original transaction database O
TMV db+ The total measure value of the newly inserted transactions db+
TMV U The total measure value of the entire updated database U
HtmvO a set of high transaction measure value itemsets in the original

transaction database O
HtmvU a set of high transaction measure value itemsets in the entire

updated database U
HtmvOk a set of high transaction measure value k-itemsets in the origi-

nal transaction database O

Htmvdb+k a set of high transaction measure value k-itemsets in the newly
inserted transactions db+

HtmvUk a set of high transaction measure value k-itemsets in the entire
updated transactions U

tmvO(X) a transaction measure value of an itemset X of all transactions
in the original transaction database O

tmvdb+(X) a transaction measure value of an itemset X of all transactions
in the newly inserted transactions db+

tmvU (X) a transaction measure value of an itemset X of all transactions
in the entire updated transactions U

lmvO(X) a local measure value of all transactions in the original transac-
tion database O that containing X

lmvdb+(X) a local measure value of all transactions in the newly inserted
transactions db+ that containing X

lmvU (X) a local measure value of all transactions in the entire updated
transactions U that containing X

Table 1: Example of a transaction database with counting

TID Transaction Count

Original Database T1 {A,B,F,G,H} {2,1,2,1,2}
(O) T2 {A,C,E} {5,3,3}

T3 {B,C,H} {3,2,2}
T4 {C} {5}
T5 {C,E,F,G} {3,1,2,1}

The newly inserted T6 {A,C,D,E,F} {4,2,1,1,5}
transactions (db+) T7 {A,D} {1,2}

T8 {B,C,H} {4,3,2}
T9 {A,C,E} {2,1,1}

6 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

3.2 Basic Definitions

Definition 3.1. The measure value of item ip in transaction Tq represents a
numerical value associated with item ip in Tq denoted by,

mv(ip, Tq). (3.1)

For example, in Table 1, mv({C}, T2) =3.

Definition 3.2. The itemset measure value imv(X,Tq) is the total measure value
of itemset X in transaction Tq defined as follow,

imv(X,Tq) =
∑
ip∈X

mv(ip, Tq). (3.2)

For instance in Table 1, imv({AC}, T2) = mv({A}, T2) + mv({C}, T2) = 5+3 =
8.

Definition 3.3. A transaction measure value of transaction Tq, tmv(Tq) is defined
by,

tmv(Tq) =
∑
ip∈Tq

mv(ip, Tq). (3.3)

For example in Table 1, tmv(T2) = mv({A}, T2) + mv({C}, T2) + mv({E}, T2) =
5+3+3 =11.

Definition 3.4. A transaction measure value of itemset X denoted by tmv(X)
describes a total value of all transactions containing X. It is defined by,

tmv(X) =
∑

X⊆Tq∈DBX

tmv(Tq) (3.4)

where DBX is a set of transaction that contains itemset X.

For example, tmv({AC}) = tmv(T2) + tmv(T6) + tmv(T9) = 11 + 13 + 4 = 28,
in Table 1.

Definition 3.5. A local measure value of itemset X is given by,

lmv(X) =
∑

Tq∈DBX

∑
ip∈X

imv(ip, Tq). (3.5)

For example in Table 1, lmv({AC}) = imv({AC}, T2) + imv({AC}, T6)
+ imv({AC}, T9) = 8 + 6 + 3 = 17.

An Incremental Approach to Share-Frequent Itemsets Mining 7

Definition 3.6. A total measure value of the entire updated transaction, TMV (U),
represents the summation of all the transaction measure values which is given by,

TMV (DB) =
∑

Tq∈DB

∑
ip∈Tq

mv(ip, Tq). (3.6)

For example in Table 1, TMV (O ∪ db+) = 67.

Definition 3.7. A share value of itemset X, denoted by SH(X), is a ratio of the
local measure value of X to the total measure value of DB, as calculated by,

SH(X) =
lmv(x)

TMV (U)
. (3.7)

For example, SH({AC}) = = 17/67 = 0.2537.

Definition 3.8. Given that a minimum share (minShare) is a minimum share
threshold, if the share value of itemset X, SH(X), is greater than minShare then
we can conclude that itemset X is a share-frequent itemset.

For the example database, if minShare is 0.25, {AC} is a share-frequent itemset,
as SH({AC}) = 0.2537.

Definition 3.9. A minimum local measure value (minLMV) can be defined by,

minLMV = ceiling(minShare× TMV (O ∪ db+)) (3.8)

Therefore, in Table 1, minLMV = ceiling(0.25× 67) = 17. For any itemset X, if
lmv(X) ≥ minLMV , then itemset X is a share-frequent itemset.

From the property of the downward closure (also called anti-monotonicity) of
the support measure, it can be seen that this property can maintain in the share-
frequent patterns mining by using the tmv value of itemset X (Definition 4). For
any itemset X, if tmv(X) is less than minLMV , all supersets of X can be pruned
(including X) immediately without further consideration. For example, let mini-
mum share threshold is 0.25, then tmv({D}) = 16 < minLMV = 17. According
to the property of downward closure, all supersets of {D} are not generated as a
candidate patterns. Therefore, we can prune {D} at the early step.

4 A Proposed Incremental Algorithm

We propose an efficient algorithm for incremental share-frequent itemsets min-
ing based on a Patternset Table Knowledge (PSTable knowledge). The proposed
algorithm includes two processes: maintenance a PSTable knowledge, and the
IS-FUP algorithm.

8 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

4.1 Maintenance a PSTable Knowledge

A PSTable knowledge is a set of itemsets with their count information and
it is im-proved by the concept of a bittable structure [21, 22, 23, 20, 13]. This
structure can avoid candidate generation by aggregate the transactions that have
similar itemsets. In addition, the PSTable knowledge will be constructed once
and it accommodates modified data in the future (do not need to rebuild). The
following describes operation of this algorithm.

For creating a PSTable knowledge and inserting new transactions, the algo-
rithm reads the data from each incoming transaction. After that, it checks the
itemsets of the transaction whether the itemset is already available in the PSTable
or not. If it exists, the quantity of the transaction (total count) is summed with the
new entries to gain new value of total count, and the itemset count is incremented
by 1. If the itemset is new, it will be inserted into the PSTable with the quantity
of the transaction and set the itemset count to be 1. This process is repeated for
all transactions.

For maintenance the PSTable knowledge (removing transactions), the algo-
rithm reads the itemset from each removing transaction. After that, the itemset
is searched from the PSTable knowledge, then the quantity of each item of the
itemset and the quantity of the transaction (total count) are updated and also
decrease the itemset count by 1. For the modified existing transactions case, the
algorithm starts with ascendant sorting items in the PSTable knowledge. Next, the
algorithm discovers the modified transaction and then the quantity of each item of
the itemset and the quantity of the transaction (total count) are updated. All the
mentioned steps are repeated for all of the transactions in database. For instance,
the original transaction database in Table 1 was performed and the results shown
in Table 2.

Table 2: The PSTable after the algorithm executed all transactions

PID A B C D E F G H Total Count Itemset Count

1 2 1 0 0 0 2 1 2 8 1
2 7 0 4 0 4 0 0 0 15 2
3 0 7 5 0 0 0 0 4 16 2
4 0 0 5 0 0 0 0 0 5 1
5 0 0 3 0 1 2 1 0 7 1
6 4 0 2 1 1 5 0 0 13 1
7 1 0 0 2 0 0 0 0 3 1

An Incremental Approach to Share-Frequent Itemsets Mining 9

4.2 Incremental Share-Frequent Itemset Mining

4.2.1 The Concept of the IS-FUP Algorithm

We propose an efficient algorithm that handles insertion of transactions (named
IS-FUP algorithm). It is extended from the MCShFI algorithm [13] in a batch way
for discovering complete share-frequent itemsets from a PSTable knowledge based
on the FUP concept [14]. Assuming that a PSTable knowledge is built in advance
from the original database before the new transactions come and the large/frequent
itemsets have been already derived from the initial database. In IS-FUP algorithm,
itemsets are separated into four scenarios according to whether they are large (fre-
quent) or small (infrequent) itemsets for both in the original database and in the
new transactions. To determine whether the itemset is large or small, the value of
tmv is calculated (by definition 3.4). As mentioned earlier, this value contains the
properties of downward closure. If the value of tmv of any itemset is larger than
or equal to the minimum local measure value (minLMV), it is in the set of high
transaction measure value itemsets and in the group of large itemsets. Otherwise,
it is in small itemsets.

Considering an original database and a new transaction that will be inserted,
the following four cases and their results in given in Table 3.

Table 3: Example of a transaction database with counting

Cases : Original-New transactions Results
Case 1: Large itemset - Large itemset Always large itemset
Case 2: Large itemset - Small itemset Determined by rescanning the

newly added transactions
Case 3: Small itemset - Large itemset Determined by rescanning the

PSTable
Case 4: Small itemset - Small itemset Always small itemset

For the newly inserted transactions, when some new records are inserted into
the original database: In Case 1 and 4, itemsets do not change the final share-
frequent itemsets and thus these two cases are extreme. In Case 2, itemsets may
be removed from existing large itemsets, and itemsets in Case 3 may add new large
itemsets. For the extreme cases 1 and 4, the proposed approach in share-frequent
itemset mining can be mathematically proved and given below whereas the other
two cases 2 and 3 can be shown by experiments using the IS-FUP algorithm. Also,
a numerical example is later provided in the next sections illustrating all the four
cases.

Theorem 4.1. If an itemset X is large in both the original database and the newly
inserted transactions then the itemset X is large in the entire updated database
(Case 1).

Proof. Assume, by contradiction, that itemset X is not large in the entire updated

10 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

database, i.e.,

tmv(X)O + tmv(X)db+ < minShare× (TMV O + TMV db+) (4.1)

and so

tmv(X)O + tmv(X)db+ −minShare× TMV db+ < minShare× TMV O (4.2)

By hypothesis, an itemset X is large in both the original database and the newly
inserted transactions

it is obtained that

tmv(X)O ≥ minLMV O(= minShare× TMV O) (4.3)

and
tmv(X)db+ ≥ minLMV db+(= minShare× TMV db+). (4.4)

Since
tmv(X)O < tmv(X)O + tmv(X)db+ −minShare× TMV db+. (4.5)

From (4.2) and (4.5), we can conclude that

tmv(X)O < minShare× TMV O (4.6)

(4.6) contradicts (4.3), hence the proof is complete.

Theorem 4.2. If an itemset X is small in both the original database and the newly
inserted transactions then the itemset X is small in the entire updated database
(Case 4).

Proof. Assume, by contradiction, that itemset X is not small in the entire updated
database, i.e.,

tmv(X)O + tmv(X)db+ ≥ minShare× (TMV O + TMV db+) (4.7)

and so

tmv(X)O + tmv(X)db+ −minShare× TMV db+ ≥ minShare× TMV O. (4.8)

By hypothesis, an itemset X is small in both the original database and the newly
inserted transactions

it is obtained that

tmv(X)O < minLMV O(= minShare× TMV O) (4.9)

and
tmv(X)db+ < minLMV db+(= minShare× TMV db+). (4.10)

An Incremental Approach to Share-Frequent Itemsets Mining 11

Since

tmv(X)O > tmv(X)O + tmv(X)db+ −minshare× TMV db+. (4.11)

From (4.8) and (4.11), we can conclude that

tmv(X)O ≥ minShare× TMV O (4.12)

(4.9) contradicts (4.12), hence the proof is complete.

4.2.2 The IS-FUP Algorithm

The detail of the proposed algorithm are described step by step below.

Input: 1) A PSTable knowledge (O) 2) The newly inserted transactions (db+) in
which each transaction includes items and their quantities 3) A HtmvO,
which is stored a set of high transaction measure value of the original
transaction database 4) The total measure value of the original transaction
database, TMV O 5) The minimum share threshold, minShare

Output: A HtmvU , that is a set of high transaction measure value of the entire
updated database.

Step 1: Calculate the total measure value of newly inserted transactions us-
ing Definition 3.6 denoted by TMV db+. After that, TMV U is calcu-
lated (TMV U = TMV O + TMV db+). Next, the algorithm computes
minLMV U using Definition 3.9 and set k = 1, where k is used for record-
ing the number of items in the itemsets currently being processed.

Step 2: The algorithm generates the candidated k-itemsets then computes their
transaction measure value tmvdb+(X) and local measure value lmvdb+(X)
from the new transactions using Definition 3.4 and 3.5 respectively. Checks
whether the tmvdb+(X) of each k-itemset X is larger than or equal to
minLMV db+. If tmvdb+(X) satisfies the above condition, put X in the
set of high transaction measure value k-itemset in the newly inserted
transactions, Htmvdb+k .

Step 3: For each k-itemset X, if it is in the set of high transaction measure value
in the new transactions and it also appears in the set of high transaction
measure value in the original database , do the following substeps (Case
1):

Step 3.1: The algorithm will keep the itemset X into both the HtmvUk
and Ck and also removes it from the HtmvOk .

Step 4: For each k-itemset X, if it is in the set of high transaction measure value
in the new transactions (Htmvdb+k) but it does not appear in the set of
high transaction measure value in the original database HtmvOk , do the
following substeps (Case 3):

12 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

Step 4.1: Rescans the original database to determine the tmvO(X) and
lmvO(X) of k-itemset X. After that, set both tmvU (X)
(= tmvO(X) + tmvdb+(X)) and lmvU (X) (= lmvO(X) +
lmvdb+(X)).

Step 4.2: Checks whether the tmvU (X) is greater than or equal to
minLMV U . If tmvU (X) satisfies the above condition, stores
it to the Ck and also adds into the (HtmvUk).

Step 5: For each k-itemset X, if it appears in the set of high transaction measure
value in the original database (HtmvOk) but does not appear in the set of
high share-frequent itemsets from the new transactions (Htmvdb+k), do
the following substeps (Case 2):

Step 5.1: The algorithm reads all k-itemsets in the HtmvOk . After
that, compute the tmvdb+ and the lmvdb+ from the PSTable
knowledge and then calculates both tmvU (X) (= tmvO(X)+
tmvdb+(X)) and lmvU (X) (= lmvO(X) + lmvdb+(X)).

Step 5.2: If the tmvU (X) is larger than or equal to minLMV U , stores
X to the Ck and inserts to the HtmvUk and also removes it
from the HtmvOk .

Step 6: Increase k by one and then the algorithm generates the candidate k-
itemsets from the variable Ck−1.

Step 7: Repeat Steps 2 - 6 until no new candidate itemsets is generated and the
HtmvO is empty.

4.2.3 A Numerical Example

This subsection shows how the IS-FUP algorithm can be used for finding out
the share-frequent itemsets from the new transactions. Assume that the transac-
tions T1−T5 shown in Table 1 are the initial database and the transaction T6 - T9

are newly inserted transactions. Also assume that the minimum share threshold
(minShare) is set at 0.25 which is 25% of total quantity. The set of high trans-
action measure value is built in advance from the original database as shown in
Table 4.

Step 1: : The IS-FUP algorithm calculates the initial variables at first i.e. TMV db+,
minLMV db+, TMV U and minLMV U respectively, as shown in Table
5. Then, k is set at 1.

Step 2: The k-itemsets in the newly inserted transactions for {A}, {B}, {C}, {D},
{E}, {F}and{H} are read into the algorithm and then calculate their
transaction measure value (tmvdb+) and the local measure value (lmvdb+)
from the new transactions. Take k-itemset {A} as an example to illus-
trate the process. The k-itemset {A} appears in the new transactions

An Incremental Approach to Share-Frequent Itemsets Mining 13

Table 4: The HtmvO

Itemset X tmvO(X) lmvO(X)

{A} 19 7
{B} 15 4
{C} 30 13
{E} 18 4
{F} 15 4
{G} 15 2
{H} 15 4
{A,C} 11 8
{A,E} 11 8
{B,H} 15 8
{C,E} 18 10
{F,G} 15 6
{A,C,E} 11 11

T6, T7 and T9 and then the algorithm calculates the tmvdb+({A}) as
(13+3+4), which is 20 and computes the lmvdb+({A}) as (4+1+2), which
is 7 respectively. The other k-itemsets are calculated in the same way and
the result is shown in Table 6. After that, checks whether the tmvdb+(X)
of each k-itemset is larger than or equal to minLMV db+. In this example,
all k-itemsets satisfy the condition and then put them in the set of high
transaction measure value k-itemsets in the new transaction, (Htmvdb+k).

Table 5: The initial variables for the algorithm

TMV minLMV

O 38 10
db+ 29 7
U 67 17

Step 3: For each k-itemset X, it is in both the set of high transaction measure
value in the new transactions (Htmvdb+k) and the set of high transac-
tion measure value in the original database (HtmvOk), do the following
substeps (Case 1):

Step 3.1: The k-itemsets are in the HtmvOk and the Htmvdb+k which are
as follows {A}, {B}, {C}, {E}, {F}and{H}. These itemsets
are recorded to the HtmvUk and are removed from the HtmvOk
and also kept as candidate share-frequent itemsets, Ck. The
result is shown in Table 7 and 8.

14 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

Table 6: all k-itemsets are calculated from the new transactions

k-itemset X tmvdb+(X) lmvdb+(X)

{A} 20 7
{B} 9 4
{C} 26 6
{D} 16 3
{E} 17 2
{F} 13 5
{H} 9 2

Table 7: After k-itemsets (Case 1) are added in the HtmvU

k-itemset X tmvU (X) lmvU (X)

{A} 39 14
{B} 24 8
{C} 56 19
{E} 35 6
{F} 28 9
{H} 24 6

Table 8: After k-itemsets (Case 1) are deleted from the HtmvO

k-itemset X tmvO(X) lmvO(X)

{G} 15 2
{A,C} 11 8
{A,E} 11 8
{B,H} 15 8
{C,E} 18 10
{F,G} 15 6
{A,C,E} 11 11

Step 4: For each k-itemset X, it is in the set of high transaction measure value
in the newly inserted transactions, Htmvdb+k , but it does not in the set
of high transaction measure value in the original database, HtmvOk , do
the following substeps (Case 3):

Step 4.1: The k-itemset X appears in the Htmvdb+k but it does not ap-
pear in the HtmvOk which is {D}. The IS-FUP algorithm
rescans to calculate the tmvO(X) and the lmvO(X) from

An Incremental Approach to Share-Frequent Itemsets Mining 15

the PSTable knowledge. Then, the algorithm computes the
tmvU (X) and the lmvU (X) respectively. Let takes the k-
itemset {D} as an example to illustrate the process. The
tmvdb+ of {D} and the lmvdb+ of {D} in the new transac-
tions are 16 and 3 respectively as shown in Table 6. The
tmvO of {D} and the lmvO of {D} in the original database
are both 0, which are shown in Table 9. The updated transac-
tion measure value and The updated local measure value for
the updated database of {D} are calculated as tmvU ({D})
(=0+16), which is 16 and lmvU ({D}) (=0+3), which is 3
respectively.

Step 4.2: Check whether the tmvU of k-itemset X is larger than or
equal to the minLMV U . If it satisfies the condition, inserts
X into Ck and also stores it to the HtmvUk . For instance, the
k-itemset {D} does not satisfy the both of above conditions.

Step 5: For each k-itemset X, it does not in the set of high transaction measure
value in the new transactions (Htmvdb+k), but it appears in the set of
high transaction measure value in the original database (HtmvOk), do
the following substeps (Case 2):

Step 5.1: The IS-FUP algorithm reads all k-itemsets from the HtmvOk
in Table 8, which is {G}. The tmvdb+ and the lmvdb+ of
k-itemset {G} in the new transactions are calculated, which
are both 0. Then, the updated transaction measure value and
the updated local measure value for the updated database of
{G} are computed as tmvU ({G}) (=0+15), which is 15 and
lmvU ({G}) (=0+2), which is 2 respectively. The result is
shown in Table 10.

Step 5.2: Check whether the tmvU of {G} is larger than or equal to the
minLMV U . If it satisfies the condition, stores it into both
Ck and the HtmvUk and also removes it from the HtmvOk .
For instance, the k-itemset {G} does not satisfy both of the
above condition.

Table 9: After all k-itemsets in case 3 are re-calculated.

k-Itemset X tmvO(X) lmvO(X) tmvU (X) lmvU (X)

{D} 0 0 16 3

Step 6: Set k = 2 (k + 1). The candidate k-itemsets are generated from Ck−1,
which are {A,B}, {A,C}, {A,E}, {A,F}, {A,H}, {B,C}, {B,E},
{B,F}, {B,H}, {C,E}, {C,F}, {C,H}, {E,F}, {E,H}, {F,G} and
{F,H}.

16 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

Table 10: After all k-itemsets in case 2 are re-calculated.

k-Itemset X tmvdb+(X) lmvdb+(X) tmvU (X) lmvU (X)

{G} 0 0 15 2

Step 7: Steps 2 - 6 are then repeated until no candidate itemset is generated
and the HtmvO is empty as shown in Table 12. The IS-FUP algorithm
returns a set of high transaction measure value in the entire updated
database, HtmvU , that contains 3 share-frequent itemsets i.e., {C},
{A,C} and {A,C,E} that shown in Table 11.

Table 11: The HtmvU after the IS-FUP completed

Itemset X tmvU (X) lmvU (X) SH(X)

{A} 39 14 0.2090
{B} 24 8 0.1194
{C} 56 19 0.2836
{E} 35 6 0.0896
{F} 28 9 0.1343
{H} 24 6 0.0896

{A,C} 28 17 0.2537
{A,E} 28 16 0.2388
{A,F} 21 13 0.1940
{B,H} 24 14 0.2090
{C,E} 35 15 0.2239
{C,F} 20 12 0.1791
{E,F} 20 9 0.1343

{A,C,E} 28 22 0.3284
{C,E, F} 20 14 0.2090

Table 12: The HtmvO after the proposed algorithm completed

Itemset X tmvO(X) lmvO(X)

– Empty –

An Incremental Approach to Share-Frequent Itemsets Mining 17

5 Algorithm Efficiency

In this section, we demonstrate the efficiency of the algorithm by applying
the IS-FUP to two IBM synthetic datasets (T10I4D100K and T40I10D100K) and
a real-life dataset (pumsb*). They are acquired from frequent itemset mining
dataset repository page (http://fimi.ua.ac.be/data/). As like the performance
evaluation of the previous share-frequent itemset mining algorithm [17, 13], we
modified these datasets by creating random numbers for the quantity of each item
in each transaction, ranging from 1 to 10. The characteristics of the datasets
are shown in Table 13, |D| is the total number of transaction in a dataset, |N |
is the number of distinct pattern in the dataset and Tavg is the average size of
transaction. Our algorithms were written in Microsoft C++ 2010 and carried out
on a PC with 1.40 GHz CPU with 4 GB main memory. The algorithm efficiency
is determined by the processing time and compared to MCShFI [13] in the batch
way.

Table 13: Characteristics of the experiment datasets
Dataset Size (MB) |D| |N | Tavg

T10I4D100K 3.83 100,000 870 10.1
T40I10D100K 14.7 100,000 942 40.5
pumsb* 10.7 49,046 2,088 50.5

5.1 The IS-FUP Algorithm on Synthetic Datasets

In the first experiment, we have tested the effectiveness of the IS-FUP al-
gorithm in incremental mining and the batch MCShFI with T10I4D100K. The
minimum share threshold was set at 0.01% and 0.03% respectively. A number
of 70,000 transactions were created to initially mine the share-frequent itemsets
with their quantities. Next, the numbers of inserted transactions were varied from
2,000 to 10,000 and the results are shown in Figures 2 (a)-(b). For T40I10D100K,
experiments were conducted in similar to the previous experiment but the min-
imum share threshold was set at 0.1% and 0.3% respectively. The experimental
results are illustrated in Figures 3 (a)-(b).

It can be easily observed from these figures that the both algorithms required
more execution time when the certain threshold lowers. This is reasonable because
when the minimum share value becomes minor, the algorithms have to generate
more candidates in the mining process. Moreover, the runtime of the new solution
is smaller than the MCShFI method in a batch way. This is because the MCShFI
needs to update information on its data structure to meet updated transactions.
After that, it has to mine the last updated database to get the final share-frequent
itemsets. Therefore, this process must be performed every time whenever trans-
actions are inserted. For the new solution, it takes advantages of the earlier result
of share-frequent itemsets and does not re-mine the whole updated database. The

18 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

(a) (b)

Figure 2: Effects of numbers of inserted transactions on runtime for the
T10I4D100K dataset

(a) (b)

Figure 3: Effects of numbers of inserted transactions on runtime for the
T40I10D100K dataset

proposed method mines only the newly inserted transactions and rescans as nec-
essary to re-calculate itemsets from the original database only if it is in Case 3 as
mentioned in Section 4.2.1.

In the next experiments, the first 90,000 transactions were discovered from
the T10I4D100K dataset to construct initial share-frequent itemsets with their
quantities. The minimum share threshold was set at 0.01% and 0.03% respectively.
After that, each 2,000 transactions, which were used as new inserted transactions,
were performed again with the same thresholds. The results are shown in Figures
4 (a)-(b). Similar to above experiments for T40I10D100K, the minimum share
threshold was set at 0.1% and 0.3% respectively. The experimental results are
illustrated in Figures 5 (a)-(b).

Figure 6 (a) is then made to show the runtimes of the two algorithms on
the T10I4D100K dataset for different minimum share threshold. The thresholds
range of 0.005 to 0.05 percent were used here. The first 90,000 transactions were
mined from the T10I4D100K dataset to create initial share-frequent itemsets with
their quantities. After that, the next 10,000 transactions, which were used as new
inserted transactions, were generated with the same thresholds. In the similar way

An Incremental Approach to Share-Frequent Itemsets Mining 19

(a) (b)

Figure 4: Effects of numbers of inserted transactions on runtime for the
T10I4D100K dataset

for T40I10D100K, the minimum share thresholds were set from 0.03% to 0.3%.
The experimental results illustrated in Figure 6 (b).

(a) (b)

Figure 5: Effects of numbers of inserted transactions on runtime for the
T40I10D100K dataset

(a) (b)

Figure 6: Effects of different minimum share thresholds on runtime for the
T10I4D100K and the T40I10D100K datasets

20 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

5.2 The IS-FUP Algorithm on Real-Life Dataset

At first, we constructed to initially mine the share-frequent itemsets with their
quantities from the pumsb* dataset for 34,046 transactions with three different
minimum share thresholds. The thresholds were set at 0.5% and 0.6% respectively.
In addition, various number of transactions of 1,000, 2,000, 3,000, 4,000 and 5,000
were added and the results are shown in Figures 7 (a)-(b). As shown in these
figures, the batch MCShFI algorithm wasted a lot of time to mine all of the whole
updated transactions whenever transactions were inserted. The new solution does
not re-mine the last updated database and hence takes advantages of the previous
results of share-frequent itemsets.

(a) (b)

Figure 7: Effects of numbers of inserted transactions on runtime for the
pumsb* dataset

In the next experiments, the first 44,046 transactions were searched from the
pumsb* to create initial share-frequent itemsets with their quantities. The min-
imum share threshold was set at 0.5% and 0.6% respectively. After that, each
1,000 transactions, which were used as new inserted transactions were generated
again with the same threshold. The results are shown in Figures 8 (a)-(b).

The last experiment was then conducted to compare the runtimes of both al-
gorithms on the pumsb* real-life dataset for different numbers of minimum share
threshold. Additionally, the minimum share threshold was considered to be varied
from 0.45% to 0.6%. A number of 44,046 transactions were extracted to construct
initial share-frequent itemsets with their quantities. After that, the next 5,000
transactions were added and, with the same threshold value, the runtime was
measured. The result is as shown in Figure 9. The computation time of the new
solution is lower than the MCShFI in batch mode for handling transaction inser-
tion. The reason is as same as already mentioned in the previous experiment. In
conclusion, our proposed algorithm in incremental share-frequent itemset mining
(the IS-FUP algorithm) outperforms the batch MCShFI method to maintain the
updated database.

An Incremental Approach to Share-Frequent Itemsets Mining 21

(a) (b)

Figure 8: Effects of numbers of inserted transactions on runtime for the
pumsb* dataset

Figure 9: Effects of different minimum share thresholds on runtime for the
pumsb* dataset

6 Conclusions

In the past, the efficient algorithm for mining complete share-frequent itemsets
(called MCShFI) was proposed to discover complete share-frequent itemsets based
on a batch approach. In this paper, an incremental approach to the problem is
proposed with the fast update concept to improve mining execution time. Among
the four updated cases under consideration of the fast update concept, we mathe-
matically show that two of them do not affect mining result. This even more helps
in improving execution time of the proposed algorithm. Extensive performance
analyses show that execution time of the incremental algorithm outperforms of
the batch one on both synthetic datasets and real-life datasets.

References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rule between sets of
items in large database, In Proceedings of ACM SIGMOD on Management

22 Thai J. Math. 16 (2018)/ C. Nawapornanan et al.

of Data (1993), 207-216.

[2] R. Agarwal, R. Srikant, Fast algorithms for mining association rules in large
databases, In Proceedings of 20th International Conference on Very Large
Data Bases (1994), 487-499.

[3] J.S. Park, M.S. Chen, P.S. Yu, Using a Hash-Based method with transaction
trimming for mining association rules, IEEE Transactions on Knowledge and
Data Engineering 9 (1997), 813-825.

[4] S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and im-
plication rules for market basket data, In Proceedings of the ACM SIGMOD
on Management of Data (1997), 255-264.

[5] E. Houda, E.F. Mohamed, E.M. Mohammed, A novel approach for mining
frequent itemsets: AprioriMin, In Proceedings of 4th IEEE International Col-
loquium on Information Science and Technology (2016), 286-289.

[6] D.P. Shubhangi, R.D. Ratnadeep, K.D. Kirange, Adaptive Apriori Algorithm
for frequent itemset mining, In Proceedings of International Conference Sys-
tem Modeling & Advancement in Research Trends (2016), 7-13.

[7] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
In Proceedings of the ACM SIGMOD on Management of Data (2000), 1-12.

[8] J. Pei, J. Han, H. Lu, Hmine: Hyper-structure mining of frequent patterns in
large database, In Proceedings of International Conference on Data Mining
(2001), 441-448.

[9] R. Agarwal, C. Aggarwal, V.V.V. Prasad, A tree projection algorithm for
generation of frequent itemsets, Journal of Parallel and Distributed 61 (2001)
350-371.

[10] M. El-Hajj, O.R. Zaiane, COFI approach for mining frequent itemsets revis-
ited, In Proceeding of the ACM SIGMOD on Data Mining and Knowledge
Discovery (2004), 70-75.

[11] B. Barber, H.J. Hamilton, Extracting share frequent itemset with infrequent
subsets, Data mining and Knowledge Discovery 7 (2003) 153-185.

[12] C.L. Carter, H.J. Hamilton, N. Cercone, Share based measures for itemsets,
In Proceedings of the 1st European Symposium on Principles of Data Mining
and Knowledge Discovery (1997), 14-24.

[13] C. Nawapornanan, V. Boonjing, An efficient algorithm for mining complete
share-frequent itemsets using BitTable and heuristics, In Proceedings of In-
ternational Conference on Machine Learning and Cybernetics (2012), 96-101.

[14] D.W. Cheung, J. Han, V. Ng, C.Y. Wong, Maintenance of discovered associa-
tion rules in large databases: An incremental updating technique, In Proceed-
ings of International Conference on Data Engineering (1996), 106-114.

An Incremental Approach to Share-Frequent Itemsets Mining 23

[15] B. Barber, H.J. Hamilton, Algorithms for mining share frequent itemsets
containing infrequent subsets, In Proceedings of Fourth European Conference
on Principles of Knowledge Discovery in Database (2000), 316-324.

[16] B. Barber, H.J. Hamilton, Parametric algorithm for mining share frequent
itemsets, Journal of Intelligent Information Systems 16 (2001) 277-293.

[17] Y.-C. Li, J.-S. Yeh, C.-C. Chang, Direct candidates generation: a novel al-
gorithm for discovering complete share-frequent itemsets, In Proceedings of
International Conference of Fuzzy Systems and Knowledge Discovery (2005),
551-560.

[18] T.P. Hong, C.W. Lin, Y.L. Wu, Incrementally fast updated frequent pattern
trees, Expert Systems with Applications 34 (2008) 2424-2435.

[19] Y.-C. Li, J.-S. Yeh, C.-C. Chang, A fast algorithm for mining share-frequent
itemsets, In Proceedings of International Conference on Asia-Pacific Web
(2005), 417-428.

[20] C. Nawapornanan, V. Boonjing, A new share frequent itemsets mining using
incremental BitTable knowledge, In Proceedings of 5th International Confer-
ence on Computer Sciences and Convergence Information Technology (2011),
358-362.

[21] J. Dong, M. Han, An efficient mining frequent itemsets algorithm, Knowledge-
Based Systems. 20 (2007) 329-335.

[22] H. Jin, A counting mining algorithm of maximum frequent itemset based on
matrix, In Proceedings of the 7th International Conference on Fuzzy Systems
and Knowledge Discovery (2010), 1418-1422.

[23] N. Khare, N. Adlakha, K.R. Paradasani, An algorithm for mining multidi-
mensional association rules using boolean matrix, in Proceedings of Interna-
tional Conference on Recent Trends In Information, Telecommunication and
Computing (2010), 95-99.

(Received 28 September 2017)
(Accepted 26 April 2018)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Related Work
	Mining Share-Frequent Itemsets
	The Fast Update Concept

	Problem Statement
	Notation
	Basic Definitions

	A Proposed Incremental Algorithm
	Maintenance a PSTable Knowledge
	Incremental Share-Frequent Itemset Mining
	The Concept of the IS-FUP Algorithm
	The IS-FUP Algorithm
	A Numerical Example

	Algorithm Efficiency
	The IS-FUP Algorithm on Synthetic Datasets
	The IS-FUP Algorithm on Real-Life Dataset

	Conclusions

