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1 Introduction

Let S be a semigroup with a subset A. The Cayley graph Cay(S,A) of S
with the connection set A is defined as the digraph with vertex set S and edge set
E(Cay(S,A)) which consists of those ordered pairs (x, y) such that y = xa for some
a ∈ A. The various properties of Cayley graphs of semigroups have been considered
by many authors, (see, [1–6]). In particular, A. V. Kelarev and C. E. Praeger in [5]
studied the vertex transitive Cayley graphs of semigroups and showed that, for a
semigroup S with a subset A such that 〈A〉 is completely simple and SA = S,
every connected component of Cay(S,A) is strongly connected. Later Y. Lue et
al. in [7] described all strongly connected bipartite Cayley graphs of completely
simple semigroups. Recently, T. Suksumran and S. Panma in [8] considered the
connectedness of Cayley graphs of semigroups and gave necessary and sufficient
conditions for a Cayley graph of semigroup to be strongly connected and weakly
connected.

The full transformation semigroup T (X) on a set X, the set of all functions
from X into itself, is the semigroup analogue of the symmetric group. Let Y be
a non-empty subset of X and the transformation semigroup with restricted range
denoted by T (X,Y ) is defined by T (X,Y ) = {α ∈ T (X) : Xα = Y }.

In this paper, we study the connectedness of Cayley graphs of T (X,Y ). We
show under which conditions Cayley graphs of T (X,Y ) satisfy the property of
being strongly connected, unilaterally connected, and weakly connected.

2 Preliminaries

Let S be a semigroup. The subsemigroup generated by A, denoted by 〈A〉, is
a subsemigroup of S containing of the elements that can be expressed as a finite
product of elements in A. A semigroup is said to be completely simple if it has
no proper ideals and has a minimal idempotent with respect to the partial order
e ≤ f ⇔ e = ef = fe.

The monoid S1 is a semigroup of adding an identity to S if S does not contain
an identity and S1 = S if S contains an identity. The Green’s relations on S are
the equivalences L,R,J ,H and D on S. Here, we show only an R-relation on S
which is defined by, for any a, b ∈ S

aRb if and only if aS1 = bS1.

Then aRb if and only if a = bx and b = ay for some x, y ∈ S1.

We assume X is a finite set throughout this paper. Here we concerned only
with the case where X = Xn = {1, 2, . . . , n} and |Y | = r, and we denote T (X) by
Tn.

For α ∈ T (X,Y ) and x ∈ X, the image of x under α is written as xα and Zα
denotes the set of all images of elements in Z, a subset of X, under α. The rank
of α is the cardinal number of im(α) and denoted by rank(α). The kernel of α is
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given by
ker(α) = {(x, y) ∈ X ×X : xα = yα}.

The symbol πα denotes the partition of X induced by the transformation α,
namely

πα = {yα−1 : y ∈ im(α)}

where yα−1 is the set of all x ∈ X such that xα = y. It is easily seen that, for all
α, β ∈ T (X,Y ),

ker(α) = ker(β) if and only if πα = πβ . (2.1)

A set is a transversal of partition if it intersects each class in exactly one
element. For y ∈ Y , we let σy be a constant function with im(σy) = {y} in
T (X,Y ). For convenience, we use the symbol α = [a1, . . . , an] instead of α =(
x1 . . . xn
a1 . . . an

)
. In [9], all Green’s relations on T (X,Y ) were described and an

R-relation is presented as follows.

Lemma 2.1 ([9]). Let α, β ∈ T (X,Y ). Then β = αµ for some µ ∈ T (X,Y ) if
and only if ker(α) ⊆ ker(β). Consequently, αRβ if and only if ker(α) = ker(β).

Given nonnegative integers n and k, the Stirling number of the second kind,
denoted by S(n, k), is the number of ways to partition a set of n objects into k
non-empty subsets. The recurrence relation is

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1)

for n, k > 0 with initial conditions S(0, 0) = 1 and S(0, n) = 1 = S(n, 0) and the
explicit formula is

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k
i

)
(k − i)n.

From Lemma 2.1 and (2.1), we get for α, β ∈ T (X,Y ), αRβ if and only if πα = πβ .
This means α and β are in the same R-class if and only if πα = πβ . Therefore,

S(n, k) = the number of R-classes of T (X,Y ) with rank k.

Let D be a digraph and u, v be distinct elements in D. A sequence W :
u = u0, u1, . . . , uk = v of vertices of D such that ui is adjacent to ui+1 for all
i(0 ≤ i ≤ k − 1) is called a (u, v)-diwalk in D. A (u, v)-semi-diwalk in D is a
sequence W : u = u0, u1, . . . , uk = v of vertices of D such that uiui+1 ∈ E(D) or
ui+1ui ∈ E(D). A (u, v)-diwalk is a (u, v)-dipath if it has no repeated vertices.
Similarly, a (u, v)-semi-diwalk is a (u, v)-semi-dipath if it has no repeated vertices.

A digraph D is strongly connected if a (u, v)-dipath exists for all distinct ver-
tices u, v in D. A digraph D is unilaterally connected if D contains a (u, v)-dipath
or a (v, u)-dipath for every pair u, v of distinct vertices of D. If, for all distinct
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vertices u, v in D, a (u, v)-semi-dipath exists, then D is called weakly connected (or
connected). A maximal connected subgraph of a digraph D is called component of
D. A subgraph H of D is called an induced subgraph of D if whenever u, v ∈ V (H)
and (u, v) ∈ E(D), then (u, v) ∈ E(H). Let A be a non-empty set of vertices of a
digraph D. The subgraph of D induced by A is the induced subgraph with vertex
set A and denoted by D[A] or simply [A]. For a positive integer n, the nD is the
disjoint union of n copies of D.

It is clear that if A is an empty set, Cay(S,A) is an empty graph. Therefore
in the sequel we suppose that A is a non-empty set.

Some required known results are stated below.

Lemma 2.2 ([5]). Let S be a semigroup with a subset A, let s ∈ S and let Cs be
the set of all vertices v of the Cayley graph Cay(S,A) such that there is a dipath
from s to v. Then Cs is equal to the left coset s〈A〉.

Lemma 2.3 ([5]). Let S be a semigroup with a subset A such that 〈A〉 is com-
pletely simple and SA = S. Then every connected component of the Cayley graph
Cay(S,A) is strongly connected and, for each v ∈ S, the component containing v
is [v〈A〉].

Proposition 2.4 ([10]). Let A ⊆ T (X). Then 〈A〉 is a completely simple if and
only if for all α, β ∈ A, im(α) is a transversal of πβ.

It is obviously that the above proposition holds for a subset A of T (X,Y ).

Lemma 2.5 ([11]). Let α, β ∈ T (X,Y ). Then Xβ ⊆ Y α if and only if there exists
γ ∈ T (X,Y ) such that γα = β.

Lemma 2.6 ([12]). Let α ∈ T (X,Y ). If Y α = Y , then T (X,Y ) = T (X,Y )α.

3 Main Results

In this section, we investigate connectedness of Cayley graph of T (X,Y ), i.e.,
necessary and sufficient conditions for Cayley graph of T (X,Y ) to be strongly con-
nected, unilaterally connected and weakly connected. First, we give some proper-
ties to be used in following.

Lemma 3.1. Let A ⊆ T (X,Y ). Then

T (X,Y )A = T (X,Y ) if and only if Y α = Y for some α ∈ A.

Proof. (⇐) Assume that Y α = Y for some α ∈ A. By Lemma 2.6, we get
T (X,Y )α = T (X,Y ), and so T (X,Y ) = T (X,Y )α ⊆ T (X,Y )A. This means that
T (X,Y )A = T (X,Y ).

(⇒) Suppose that Y α 6= Y for all α ∈ A. Let β ∈ T (X,Y ) such that Xβ = Y .
Then Y α ( Y = Xβ, this implies that there exists z ∈ Xβ\Y α. So Xβ * Y α. By
Lemma 2.5, γα 6= β for all α ∈ A and for all γ ∈ T (X,Y ). From this we conclude
that T (X,Y )A 6= T (X,Y ).
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From Proposition 2.4 and Lemma 3.1, we get the following result.

Corollary 3.2. Let A ⊆ T (X,Y ). Then 〈A〉 is a completely simple semigroup
and T (X,Y )A = T (X,Y ) if and only if Y α = Y for all α ∈ A.

Lemma 3.3. Let A ⊆ T (X,Y ) and Y α = Y for all α ∈ A. If elements β and γ
are in the same component in Cay(T (X,Y ), A), then βRγ.

Proof. Let β, γ ∈ T (X,Y ) such that β and γ are in the same component. Since
Y α = Y for all α ∈ A, 〈A〉 is a completely simple semigroup and T (X,Y )A =
T (X,Y ). By Lemma 2.3, [α〈A〉] is a strongly connected component of
Cay(T (X,Y ), A). Hence there exist dipaths from β to γ and from γ to β, i.e.,
γ = ββ1 · · ·βm and β = γγ1 · · · γk for some β1, . . . , βm, γ1, . . . , γk ∈ A which
concludes that βRγ.

Define AY = {α|Y : α ∈ A} where A ⊆ T (X,Y ). Now, we describe the relation
of elements in each component of a Cayley graph of T (X,Y ) with a connection
set A and 〈AY 〉 is a symmetric group on Y .

Theorem 3.4. Let A ⊆ T (X,Y ) be such that 〈AY 〉 is a symmetric group on Y
and α, β ∈ T (X,Y ). Then α and β are in the same component in Cay(T (X,Y ), A)
if and only if αRβ.

Proof. If 〈AY 〉 is a symmetric group on Y , Y α = Y for all α ∈ A and so
T (X,Y )A = T (X,Y ) and 〈A〉 is a completely simple semigroup. By Lemma
2.3, [γ〈A〉] is a strongly connected component for all γ ∈ T (X,Y ). The if part is
true by Lemma 3.3. Now, suppose that αRβ. We show that there exists γ ∈ 〈A〉
such that βγ = α. By assumption, πα = πβ and it follows that |Xα| = |Xβ| = m
and so |X\Xα| = |X\Xβ|. From this, there exists a bijection from X\Xβ into
X\Xα, says f . For each x ∈ Xβ, x = dxβ for some dx ∈ X. Since Y ⊆ X, there
are two possibilities.

Case 1: Y = X. Let y ∈ Y . Define τ ∈ T (X,Y ) by

xτ =

{
dxα if x ∈ Xβ,
y if x ∈ X\Xβ.

Then τ is a function in T (X,Y ). Moreover, Y τ = Y and τ|Y ∈ 〈AY 〉. Hence

τ|Y = γ1|Y γ2|Y . . . γk|Y = (γ1γ2 . . . γk)|Y = γ|Y

where γ1|Y , γ2|Y , . . . , γk|Y ∈ 〈AY 〉 and γ = γ1γ2 . . . γk. Therefore, γ1, γ2, . . . , γk ∈
A. For x ∈ X, xβγ = (xβ)γ = (xβ)τ = xα and so βγ = α. Thus α ∈ β〈A〉.

Case 2: Y ( X. We have |X\Xβ| = |X\Xα| ≥ |Y \Xα|. Let l = r −
m, X\Xβ = {z1, z2, . . . , zl, . . . , zn−m} and Y \Xα = {y1, y2, . . . , yl}. Set h :
X\Xβ → Y \Xα defined by

zih =

{
yi if i = 1, 2, . . . , l,

y1 if i = l + 1, . . . , n−m.
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We see that h is onto. Finally, define τ ∈ T (X,Y ) by

xτ =

{
dxα if x ∈ Xβ,
xh if x ∈ X\Xβ.

Then τ is a function in T (X,Y ) and Y τ = Y . Hence there exists γ ∈ 〈A〉 such
that γ|Y = τ|Y . It implies that βτ = α. Therefore, α ∈ β〈A〉 as required.

Example 3.5. Let Y = {1, 2, 3} ⊆ X4 and A = {[2, 1, 3, 3], [2, 3, 1, 3]} ⊆ T (X,Y ).
Then 〈AY 〉 is a symmetric group on Y . We have 6 R-classes of T (X,Y ) with rank
3, 7 R-classes of T (X,Y ) with rank 2, and 1 R-class of T (X,Y ) with rank 1, and
we see that all elements in each R-class must be in the same component as shown
in Figure 1.
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Figure 1: Cay(T (X,Y ), A) where A = {[2, 1, 3, 3], [2, 3, 1, 3]}
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From the observation in Section 2, i.e.,

S(n, k) = the number of R-classes of T (X,Y ) with rank k,

we get the characterizations of Cayley graphs of T (X,Y ) with some connection
sets as shown below.

Theorem 3.6. Let A ⊆ T (X,Y ) be such that 〈AY 〉 is a symmetric group on Y
and {β1, β2, . . . , βr} ⊆ T (X,Y ) where βi is an element of rank i in T (X,Y ). Then

Cay(T (X,Y ), A) ∼=
r⋃

k=1

S(n, k)[βk〈A〉].

Proof. Let {R1, R2, . . . , Rm} be the set of all distinct R-classes of T (X,Y ). By
Theorem 3.4, {[R1], [R2], . . . , [Rm]} is the set of all distinct components of
Cay(T (X,Y ), A). This means that

Cay(T (X,Y ), A) =
⋃
i∈I

[Ri]

where I = {1, 2, . . . ,m}. By Lemma 2.3, [Ri] is strongly connected compo-
nent of Cay(T (X,Y ), A) and [Ri] = [αi〈A〉] for some αi ∈ T (X,Y ). Therefore,
Cay(T (X,Y ), A) =

⋃
i∈I [αi〈A〉]. Let µ, γ ∈ T (X,Y ). If rank(µ) = rank(γ), then

the function φ : V ([µ〈A〉]) → V ([γ〈A〉]) defined by, for all ρ ∈ 〈A〉, φ(µρ) = γρ is
an isomorphism and so [µ〈A〉] ∼= [γ〈A〉]. Hence Cay(T (X,Y ), A) =

⋃
i∈I [αi〈A〉] ∼=⋃r

k=1 S(n, k)[βk〈A〉].

In Example 3.5, 〈AY 〉 is a symmetric group on Y which is a subset of T (Y ).
We see that

Cay(T (X,Y ), A) ∼= S(4, 1)
[
[1, 1, 1, 1]〈A〉

]
∪ S(4, 2)

[
[1, 1, 1, 2]〈A〉

]
∪

S(4, 3)
[
[1, 1, 2, 3]〈A〉

]
=
[
[1, 1, 1, 1]〈A〉

]
∪ 7
[
[1, 1, 1, 2]〈A〉

]
∪ 6
[
[1, 1, 2, 3]〈A〉

]
.

Next, we give necessary and sufficient conditions for each component of
Cay(T (X,Y ), A) to be strongly connected.

Theorem 3.7. Let A ⊆ T (X,Y ). Then each component of Cay(T (X,Y ), A) is a
strongly connected component if and only if Y α = Y for all α ∈ A.

Proof. Assume that Y α 6= Y for some α ∈ A. Let β ∈ T (X,Y ) be such that
β|Y is a permutation on Y . Then there is a (β, βα)-dipath. Since im(βα) =
(im(β) ∩ dom(α))α = Y α ( Y , πβα ( πβ . It follows that there is no dipath from
βα to β and hence the component which contains β is not strongly connected.
Conversely, suppose that Y α = Y for all α ∈ A. Then 〈A〉 is a completely simple
semigroup and T (X,Y )A = T (X,Y ). By Lemma 2.3, every connected component
of Cay(T (X,Y ), A) is strong.
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Corollary 3.8. Let A ⊆ T (X,Y ). Then Cay(T (X,Y ), A) is a strongly connected
digraph if and only if r = 1.

Proof. Suppose that Cay(T (X,Y ), A) is a strongly connected digraph. By The-
orem 3.7 and Lemma 3.3, it implies that βRγ for all β, γ ∈ T (X,Y ). Hence
r = 1.

Theorem 3.9. Let A be a subset of T (X,Y ). Then Cay(T (X,Y ), A) is weakly
connected if and only if σz ∈ 〈A〉 for some z ∈ Y .

Proof. (⇐) Suppose that σz ∈ 〈A〉 for some z ∈ Y . Let β ∈ T (X,Y ). We get
that x(βσz) = (xβ)σz = z = xσz for all x ∈ X. Thus βσz = σz. This means there
is a dipath from β to σz for all β ∈ T (X,Y ). Then, for γ, λ ∈ T (X,Y ), there
exist (γ, σz)-dipath and (λ, σz)-dipath. Hence there is a semi-dipath from γ to λ.
Therefore, Cay(T (X,Y ), A) is weakly connected.

(⇒) Suppose that Cay(T (X,Y ), A) is weakly connected. Then Cay(T (X,Y ), A)
has only one component. We will prove that there exists σz ∈ 〈A〉 for some
z ∈ Y . It clearly suffices to prove this for r 6= 1. By Lemma 2.1, there are at
least two R-classes. If Y α = Y for all α ∈ A, by Lemma 3.3, it implies that
Cay(T (X,Y ), A) has at least two components which is a contradiction. There-
fore, Y α 6= Y for some α ∈ A. Let β ∈ T (X,Y ) be such that Xβ = Y . Thus
βα = µ where ker(β) ( ker(µ) for some µ ∈ T (X,Y ). Since Cay(T (X,Y ), A) is
weakly connected and ker(β) ⊆ ker(σz) but ker(σz) * ker(β) for all z ∈ Y , there
is a dipath from β to σy for some σy ∈ T (X,Y ). This means βα′ = σy where
α′ ∈ 〈A〉 and for x ∈ X, (xβ)α′ = x(βα′) = xσy = y. Hence we can suppose that

α′ =

(
Y a1 . . . ak
y y1 . . . yk

)
where X\Y = {a1, a2, . . . , ak}, y1, y2, . . . , yk ∈ Y and

Y α′ = {y}. Thus σy = α′α′ ∈ 〈A〉 as desired.

Example 3.10. Let Y = {1, 2, 3} ⊆ X4 and A = {[2, 3, 1, 3], [1, 2, 2, 2]}. So
σ2 = ([2, 3, 1, 3] ◦ [1, 2, 2, 2])2 ∈ 〈A〉 and Cay(T (X,Y ), A) is weakly connected.
Moreover, we see that there is no edges between [2, 1, 1, 2] and [1, 2, 1, 1]. Hence
Cay(T (X,Y ), A) is not unilaterally connected (see Figure 2).

Example 3.11. Let A = {[2, 1], [1, 1]} which is a subset of T2. The Cayley graph
Cay(T2, A) as shown in Figure 3. We observe that Cay(T2, A) is a unilaterally
connected digraph.

Some properties of unilaterally connected of Cay(T (X,Y ), A) are therefore
provided.

Theorem 3.12. Let A ⊆ T (X,Y ). Then Cay(T (X,Y ), A) is a unilaterally con-
nected digraph if and only if r = 1 or (r = n = 2, [2, 1] ∈ A and ([1, 1] ∈ A or
[2, 2] ∈ A)).
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Figure 2: Cay(T (X,Y ), A) where A = {[2, 3, 1, 3], [1, 2, 2, 2]}

Proof. (⇒) Suppose that Cay(T (X,Y ), A) is a unilaterally connected digraph and
r 6= 1. Then r, n ≥ 2. Assume that n ≥ 3. Since S(3, 1) = 1 and S(3, 2) = 3, the
number of R-classes is greater than or equal to 4 and there exist β, γ ∈ T (X,Y )
such that ker(β) * ker(γ) and ker(γ) * ker(β). If there is a (β, γ)-dipath, then
γ = βα1α2 . . . αk for some α1, α2, . . . , αk ∈ A. Thus ker(β) ⊆ ker(γ) which is
a contradiction. Similarly, there is no (γ, β)-dipath. Hence n = 2 = r and so
T2 = {[1, 1], [2, 2], [1, 2], [2, 1]}. If [2, 1] /∈ A, there is no dipath from [2, 1] to [1, 2],
a contradiction. Consequently, [2, 1] ∈ A. By assumption, we get that Cay(T2, A)
is a weakly connected digraph. Therefore, there is α ∈ A such that Y α 6= Y . It
implies that [1, 1] ∈ A or [2, 2] ∈ A.

(⇐) (i) Let r = 1. It is obviously that Cay(T1, A) is a unilaterally connected
digraph.
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b b

b b

[1, 1] [2, 2]

[1, 2] [2, 1]

Figure 3: Cay(T2, A) where A = {[2, 1], [1, 1]}

(ii) Assume that r = n = 2, {[2, 1], [1, 1]} ⊆ A. According to Example 3.11,
we get that Cay(T2, {[2, 1], [1, 1]}), a subdigraph of Cay(T2, A), is a unilaterally
connected digraph. Hence Cay(T2, A) is also.

(iii) Assume that r = n = 2, {[2, 1], [2, 2]} ⊆ A. Since Cay(T2, {[2, 1], [2, 2]})
is isomorphic to Cay(T2, {[2, 1], [1, 1]}), it is implies that Cay(T2, A) is unilaterally
connected.

4 Summary

This paper studies the connectedness of Cayley graphs of T (X,Y ). In the
following table we collect our results and present the necessary and sufficient con-
ditions of T (X,Y ) which their Cayley graphs are strongly connected, weakly con-
nected and unilaterally connected.

Properties of Cay(T (X,Y ), A) Necessary and Sufficient Conditions
strongly connected r = 1
weakly connected σz ∈ 〈A〉 for some z ∈ Y
unilaterally connected (i) r = 1 or

(ii) r = n = 2 and {[2, 1], [1, 1]} ⊆ A or
(iii) r = n = 2 and {[2, 1], [2, 2]} ⊆ A
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