On Connectedness of Cayley Graphs of Finite Transformation Semigroups

Chunya Tisklang ${ }^{\dagger, \dagger}$ and Sayan Panma ${ }^{8} \sqrt{1}$
${ }^{\dagger}$ Thai Government Scholarships in the Area of Science and Technology (Ministry of Science and Technology)
111 Thailang Science Park, Patumthani 12120, Thailand
${ }^{\ddagger}$ Ph.D. Degree Program in Mathematics, Department of Mathematics
Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : chunya.tis@gmail.com (C. Tisklang)
${ }^{\text {§ }}$ Center of Excellence in Mathematics and Applied Mathematics
Department of Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50200, Thailand
e-mail : panmayan@yahoo.com (S. Panma)

Abstract

For a fixed non-empty subset Y of X, we denote by $T(X, Y)$ the semigroup consisting of all transformations on X whose range is contained in Y. In this paper, we investigate connectedness of Cayley graphs of finite transformation semigroups with restricted range. Necessary and sufficient conditions for Cayley graph of $T(X, Y)$ to be strongly connected, unilaterally connected, and weakly connected are given.

Keywords : Cayley graph; transformation semigroup; restricted range; strongly connected.

2010 Mathematics Subject Classification : 05C25; 05C75.

[^0]
1 Introduction

Let S be a semigroup with a subset A. The Cayley $\operatorname{graph} \operatorname{Cay}(S, A)$ of S with the connection set A is defined as the digraph with vertex set S and edge set $E(\operatorname{Cay}(S, A))$ which consists of those ordered pairs (x, y) such that $y=x a$ for some $a \in A$. The various properties of Cayley graphs of semigroups have been considered by many authors, (see, (1-6). In particular, A. V. Kelarev and C. E. Praeger in [5] studied the vertex transitive Cayley graphs of semigroups and showed that, for a semigroup S with a subset A such that $\langle A\rangle$ is completely simple and $S A=S$, every connected component of $\operatorname{Cay}(S, A)$ is strongly connected. Later Y. Lue et al. in 7 described all strongly connected bipartite Cayley graphs of completely simple semigroups. Recently, T. Suksumran and S. Panma in 8 considered the connectedness of Cayley graphs of semigroups and gave necessary and sufficient conditions for a Cayley graph of semigroup to be strongly connected and weakly connected.

The full transformation semigroup $T(X)$ on a set X, the set of all functions from X into itself, is the semigroup analogue of the symmetric group. Let Y be a non-empty subset of X and the transformation semigroup with restricted range denoted by $T(X, Y)$ is defined by $T(X, Y)=\{\alpha \in T(X): X \alpha=Y\}$.

In this paper, we study the connectedness of Cayley graphs of $T(X, Y)$. We show under which conditions Cayley graphs of $T(X, Y)$ satisfy the property of being strongly connected, unilaterally connected, and weakly connected.

2 Preliminaries

Let S be a semigroup. The subsemigroup generated by A, denoted by $\langle A\rangle$, is a subsemigroup of S containing of the elements that can be expressed as a finite product of elements in A. A semigroup is said to be completely simple if it has no proper ideals and has a minimal idempotent with respect to the partial order $e \leq f \Leftrightarrow e=e f=f e$.

The monoid S^{1} is a semigroup of adding an identity to S if S does not contain an identity and $S^{1}=S$ if S contains an identity. The Green's relations on S are the equivalences $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}$ and \mathcal{D} on S. Here, we show only an \mathcal{R}-relation on S which is defined by, for any $a, b \in S$

$$
a \mathcal{R} b \text { if and only if } a S^{1}=b S^{1} .
$$

Then $a \mathcal{R} b$ if and only if $a=b x$ and $b=a y$ for some $x, y \in S^{1}$.
We assume X is a finite set throughout this paper. Here we concerned only with the case where $X=X_{n}=\{1,2, \ldots, n\}$ and $|Y|=r$, and we denote $T(X)$ by T_{n}.

For $\alpha \in T(X, Y)$ and $x \in X$, the image of x under α is written as $x \alpha$ and $Z \alpha$ denotes the set of all images of elements in Z, a subset of X, under α. The rank of α is the cardinal number of $\operatorname{im}(\alpha)$ and denoted by $\operatorname{rank}(\alpha)$. The kernel of α is
given by

$$
\operatorname{ker}(\alpha)=\{(x, y) \in X \times X: x \alpha=y \alpha\}
$$

The symbol π_{α} denotes the partition of X induced by the transformation α, namely

$$
\pi_{\alpha}=\left\{y \alpha^{-1}: y \in \operatorname{im}(\alpha)\right\}
$$

where $y \alpha^{-1}$ is the set of all $x \in X$ such that $x \alpha=y$. It is easily seen that, for all $\alpha, \beta \in T(X, Y)$,

$$
\begin{equation*}
\operatorname{ker}(\alpha)=\operatorname{ker}(\beta) \text { if and only if } \pi_{\alpha}=\pi_{\beta} \tag{2.1}
\end{equation*}
$$

A set is a transversal of partition if it intersects each class in exactly one element. For $y \in Y$, we let σ_{y} be a constant function with $\operatorname{im}\left(\sigma_{y}\right)=\{y\}$ in $T(X, Y)$. For convenience, we use the symbol $\alpha=\left[a_{1}, \ldots, a_{n}\right]$ instead of $\alpha=$ $\left(\begin{array}{lll}x_{1} & \ldots & x_{n} \\ a_{1} & \ldots & a_{n}\end{array}\right)$. In 9], all Green's relations on $T(X, Y)$ were described and an \mathcal{R}-relation is presented as follows.

Lemma 2.1 ($[9])$. Let $\alpha, \beta \in T(X, Y)$. Then $\beta=\alpha \mu$ for some $\mu \in T(X, Y)$ if and only if $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\beta)$. Consequently, $\alpha \mathcal{R} \beta$ if and only if $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$.

Given nonnegative integers n and k, the Stirling number of the second kind, denoted by $S(n, k)$, is the number of ways to partition a set of n objects into k non-empty subsets. The recurrence relation is

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1)
$$

for $n, k>0$ with initial conditions $S(0,0)=1$ and $S(0, n)=1=S(n, 0)$ and the explicit formula is

$$
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

From Lemma 2.1 and 2.1), we get for $\alpha, \beta \in T(X, Y), \alpha \mathcal{R} \beta$ if and only if $\pi_{\alpha}=\pi_{\beta}$. This means α and β are in the same \mathcal{R}-class if and only if $\pi_{\alpha}=\pi_{\beta}$. Therefore,

$$
S(n, k)=\text { the number of } \mathcal{R} \text {-classes of } T(X, Y) \text { with rank } k
$$

Let D be a digraph and u, v be distinct elements in D. A sequence W : $u=u_{0}, u_{1}, \ldots, u_{k}=v$ of vertices of D such that u_{i} is adjacent to u_{i+1} for all $i(0 \leq i \leq k-1)$ is called a (u, v)-diwalk in D. A (u, v)-semi-diwalk in D is a sequence $W: u=u_{0}, u_{1}, \ldots, u_{k}=v$ of vertices of D such that $u_{i} u_{i+1} \in E(D)$ or $u_{i+1} u_{i} \in E(D)$. A (u, v)-diwalk is a (u, v)-dipath if it has no repeated vertices. Similarly, a (u, v)-semi-diwalk is a (u, v)-semi-dipath if it has no repeated vertices.

A digraph D is strongly connected if a (u, v)-dipath exists for all distinct vertices u, v in D. A digraph D is unilaterally connected if D contains a (u, v)-dipath or a (v, u)-dipath for every pair u, v of distinct vertices of D. If, for all distinct
vertices u, v in D, a (u,v)-semi-dipath exists, then D is called weakly connected (or connected). A maximal connected subgraph of a digraph D is called component of D. A subgraph H of D is called an induced subgraph of D if whenever $u, v \in V(H)$ and $(u, v) \in E(D)$, then $(u, v) \in E(H)$. Let A be a non-empty set of vertices of a digraph D. The subgraph of D induced by A is the induced subgraph with vertex set A and denoted by $D[A]$ or simply $[A]$. For a positive integer n, the $n D$ is the disjoint union of n copies of D.

It is clear that if A is an empty set, $\operatorname{Cay}(S, A)$ is an empty graph. Therefore in the sequel we suppose that A is a non-empty set.

Some required known results are stated below.
Lemma 2.2 (5). Let S be a semigroup with a subset A, let $s \in S$ and let C_{s} be the set of all vertices v of the Cayley graph $\operatorname{Cay}(S, A)$ such that there is a dipath from s to v. Then C_{s} is equal to the left coset $s\langle A\rangle$.
Lemma 2.3 ([5]). Let S be a semigroup with a subset A such that $\langle A\rangle$ is completely simple and $S A=S$. Then every connected component of the Cayley graph $\operatorname{Cay}(S, A)$ is strongly connected and, for each $v \in S$, the component containing v is $[v\langle A\rangle]$.

Proposition $2.4(\boxed{10})$. Let $A \subseteq T(X)$. Then $\langle A\rangle$ is a completely simple if and only if for all $\alpha, \beta \in A, \operatorname{im}(\alpha)$ is a transversal of π_{β}.

It is obviously that the above proposition holds for a subset A of $T(X, Y)$.
Lemma $2.5(11)$. Let $\alpha, \beta \in T(X, Y)$. Then $X \beta \subseteq Y \alpha$ if and only if there exists $\gamma \in T(X, Y)$ such that $\gamma \alpha=\beta$.
Lemma 2.6 (12] $)$. Let $\alpha \in T(X, Y)$. If $Y \alpha=Y$, then $T(X, Y)=T(X, Y) \alpha$.

3 Main Results

In this section, we investigate connectedness of Cayley graph of $T(X, Y)$, i.e., necessary and sufficient conditions for Cayley graph of $T(X, Y)$ to be strongly connected, unilaterally connected and weakly connected. First, we give some properties to be used in following.

Lemma 3.1. Let $A \subseteq T(X, Y)$. Then

$$
T(X, Y) A=T(X, Y) \text { if and only if } Y \alpha=Y \text { for some } \alpha \in A .
$$

Proof. (\Leftarrow) Assume that $Y \alpha=Y$ for some $\alpha \in A$. By Lemma 2.6, we get $T(X, Y) \alpha=T(X, Y)$, and so $T(X, Y)=T(X, Y) \alpha \subseteq T(X, Y) A$. This means that $T(X, Y) A=T(X, Y)$.
(\Rightarrow) Suppose that $Y \alpha \neq Y$ for all $\alpha \in A$. Let $\beta \in T(X, Y)$ such that $X \beta=Y$. Then $Y \alpha \subsetneq Y=X \beta$, this implies that there exists $z \in X \beta \backslash Y \alpha$. So $X \beta \nsubseteq Y \alpha$. By Lemma 2.5, $\gamma \alpha \neq \beta$ for all $\alpha \in A$ and for all $\gamma \in T(X, Y)$. From this we conclude that $T(\overline{X, Y}) A \neq T(X, Y)$.

From Proposition 2.4 and Lemma 3.1, we get the following result.
Corollary 3.2. Let $A \subseteq T(X, Y)$. Then $\langle A\rangle$ is a completely simple semigroup and $T(X, Y) A=T(X, Y)$ if and only if $Y \alpha=Y$ for all $\alpha \in A$.

Lemma 3.3. Let $A \subseteq T(X, Y)$ and $Y \alpha=Y$ for all $\alpha \in A$. If elements β and γ are in the same component in $\operatorname{Cay}(T(X, Y), A)$, then $\beta \mathcal{R} \gamma$.

Proof. Let $\beta, \gamma \in T(X, Y)$ such that β and γ are in the same component. Since $Y \alpha=Y$ for all $\alpha \in A,\langle A\rangle$ is a completely simple semigroup and $T(X, Y) A=$ $T(X, Y)$. By Lemma 2.3, $[\alpha\langle A\rangle]$ is a strongly connected component of $\operatorname{Cay}(T(X, Y), A)$. Hence there exist dipaths from β to γ and from γ to β, i.e., $\gamma=\beta \beta_{1} \cdots \beta_{m}$ and $\beta=\gamma \gamma_{1} \cdots \gamma_{k}$ for some $\beta_{1}, \ldots, \beta_{m}, \gamma_{1}, \ldots, \gamma_{k} \in A$ which concludes that $\beta \mathcal{R} \gamma$.

Define $A_{Y}=\left\{\alpha_{\left.\right|_{Y}}: \alpha \in A\right\}$ where $A \subseteq T(X, Y)$. Now, we describe the relation of elements in each component of a Cayley graph of $T(X, Y)$ with a connection set A and $\left\langle A_{Y}\right\rangle$ is a symmetric group on Y.

Theorem 3.4. Let $A \subseteq T(X, Y)$ be such that $\left\langle A_{Y}\right\rangle$ is a symmetric group on Y and $\alpha, \beta \in T(X, Y)$. Then α and β are in the same component in $\operatorname{Cay}(T(X, Y), A)$ if and only if $\alpha \mathcal{R} \beta$.

Proof. If $\left\langle A_{Y}\right\rangle$ is a symmetric group on $Y, Y \alpha=Y$ for all $\alpha \in A$ and so $T(X, Y) A=T(X, Y)$ and $\langle A\rangle$ is a completely simple semigroup. By Lemma 2.3. $[\gamma\langle A\rangle]$ is a strongly connected component for all $\gamma \in T(X, Y)$. The if part is true by Lemma 3.3. Now, suppose that $\alpha \mathcal{R} \beta$. We show that there exists $\gamma \in\langle A\rangle$ such that $\beta \gamma=\alpha$. By assumption, $\pi_{\alpha}=\pi_{\beta}$ and it follows that $|X \alpha|=|X \beta|=m$ and so $|X \backslash X \alpha|=|X \backslash X \beta|$. From this, there exists a bijection from $X \backslash X \beta$ into $X \backslash X \alpha$, says f. For each $x \in X \beta, x=d_{x} \beta$ for some $d_{x} \in X$. Since $Y \subseteq X$, there are two possibilities.

Case 1: $Y=X$. Let $y \in Y$. Define $\tau \in T(X, Y)$ by

$$
x \tau=\left\{\begin{array}{l}
d_{x} \alpha \quad \text { if } \quad x \in X \beta \\
y \quad \text { if } x \in X \backslash X \beta
\end{array}\right.
$$

Then τ is a function in $T(X, Y)$. Moreover, $Y \tau=Y$ and $\tau_{\left.\right|_{Y}} \in\left\langle A_{Y}\right\rangle$. Hence

$$
\tau_{\left.\right|_{Y}}=\gamma_{1_{\mid}} \gamma_{2_{\left.\right|_{Y}}} \ldots \gamma_{k_{\mid}}=\left(\gamma_{1} \gamma_{2} \ldots \gamma_{k}\right)_{\left.\right|_{Y}}=\gamma_{\left.\right|_{Y}}
$$

where $\gamma_{1_{\left.\right|_{Y}}}, \gamma_{2_{\left.\right|_{Y}}}, \ldots, \gamma_{k_{\left.\right|_{Y}}} \in\left\langle A_{Y}\right\rangle$ and $\gamma=\gamma_{1} \gamma_{2} \ldots \gamma_{k}$. Therefore, $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k} \in$ A. For $x \in X, x \beta \gamma=(x \beta) \gamma=(x \beta) \tau=x \alpha$ and so $\beta \gamma=\alpha$. Thus $\alpha \in \beta\langle A\rangle$.

Case 2: $Y \subsetneq X$. We have $|X \backslash X \beta|=|X \backslash X \alpha| \geq|Y \backslash X \alpha|$. Let $l=r-$ $m, X \backslash X \beta=\left\{z_{1}, z_{2}, \ldots, z_{l}, \ldots, z_{n-m}\right\}$ and $Y \backslash X \alpha=\left\{y_{1}, y_{2}, \ldots, y_{l}\right\}$. Set h : $X \backslash X \beta \rightarrow Y \backslash X \alpha$ defined by

$$
z_{i} h= \begin{cases}y_{i} & \text { if } i=1,2, \ldots, l \\ y_{1} & \text { if } i=l+1, \ldots, n-m\end{cases}
$$

We see that h is onto. Finally, define $\tau \in T(X, Y)$ by

$$
x \tau=\left\{\begin{array}{l}
d_{x} \alpha \text { if } x \in X \beta, \\
x h \text { if } x \in X \backslash X \beta .
\end{array}\right.
$$

Then τ is a function in $T(X, Y)$ and $Y \tau=Y$. Hence there exists $\gamma \in\langle A\rangle$ such that $\gamma_{\left.\right|_{Y}}=\tau_{\mid Y}$. It implies that $\beta \tau=\alpha$. Therefore, $\alpha \in \beta\langle A\rangle$ as required.

Example 3.5. Let $Y=\{1,2,3\} \subseteq X_{4}$ and $A=\{[2,1,3,3],[2,3,1,3]\} \subseteq T(X, Y)$. Then $\left\langle A_{Y}\right\rangle$ is a symmetric group on Y. We have $6 \mathcal{R}$-classes of $T(X, Y)$ with rank $3,7 \mathcal{R}$-classes of $T(X, Y)$ with rank 2 , and $1 \mathcal{R}$-class of $T(X, Y)$ with rank 1 , and we see that all elements in each \mathcal{R}-class must be in the same component as shown in Figure 1.

Figure 1: $\quad \operatorname{Cay}(T(X, Y), A)$ where $A=\{[2,1,3,3],[2,3,1,3]\}$

From the observation in Section 2, i.e.,

$$
S(n, k)=\text { the number of } \mathcal{R} \text {-classes of } T(X, Y) \text { with rank } k,
$$

we get the characterizations of Cayley graphs of $T(X, Y)$ with some connection sets as shown below.

Theorem 3.6. Let $A \subseteq T(X, Y)$ be such that $\left\langle A_{Y}\right\rangle$ is a symmetric group on Y and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right\} \subseteq T(X, Y)$ where β_{i} is an element of rank i in $T(X, Y)$. Then

$$
\operatorname{Cay}(T(X, Y), A) \cong \bigcup_{k=1}^{r} S(n, k)\left[\beta_{k}\langle A\rangle\right]
$$

Proof. Let $\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$ be the set of all distinct \mathcal{R}-classes of $T(X, Y)$. By Theorem 3.4 $\left\{\left[R_{1}\right],\left[R_{2}\right], \ldots,\left[R_{m}\right]\right\}$ is the set of all distinct components of $\operatorname{Cay}(T(X, Y), A)$. This means that

$$
\operatorname{Cay}(T(X, Y), A)=\bigcup_{i \in I}\left[R_{i}\right]
$$

where $I=\{1,2, \ldots, m\}$. By Lemma 2.3, $\left[R_{i}\right]$ is strongly connected component of $\operatorname{Cay}(T(X, Y), A)$ and $\left[R_{i}\right]=\left[\alpha_{i}\langle A\rangle\right]$ for some $\alpha_{i} \in T(X, Y)$. Therefore, $\operatorname{Cay}(T(X, Y), A)=\bigcup_{i \in I}\left[\alpha_{i}\langle A\rangle\right]$. Let $\mu, \gamma \in T(X, Y)$. If $\operatorname{rank}(\mu)=\operatorname{rank}(\gamma)$, then the function $\phi: V([\mu\langle A\rangle]) \rightarrow V([\gamma\langle A\rangle])$ defined by, for all $\rho \in\langle A\rangle, \phi(\mu \rho)=\gamma \rho$ is an isomorphism and so $[\mu\langle A\rangle] \cong[\gamma\langle A\rangle]$. Hence $\operatorname{Cay}(T(X, Y), A)=\bigcup_{i \in I}\left[\alpha_{i}\langle A\rangle\right] \cong$ $\bigcup_{k=1}^{r} S(n, k)\left[\beta_{k}\langle A\rangle\right]$.

In Example 3.5. $\left\langle A_{Y}\right\rangle$ is a symmetric group on Y which is a subset of $T(Y)$. We see that

$$
\begin{aligned}
\operatorname{Cay}(T(X, Y), A) \cong & S(4,1)[[1,1,1,1]\langle A\rangle] \cup S(4,2)[[1,1,1,2]\langle A\rangle] \cup \\
& S(4,3)[[1,1,2,3]\langle A\rangle] \\
= & {[[1,1,1,1]\langle A\rangle] \cup 7[[1,1,1,2]\langle A\rangle] \cup 6[[1,1,2,3]\langle A\rangle] . }
\end{aligned}
$$

Next, we give necessary and sufficient conditions for each component of $\operatorname{Cay}(T(X, Y), A)$ to be strongly connected.

Theorem 3.7. Let $A \subseteq T(X, Y)$. Then each component of $\operatorname{Cay}(T(X, Y), A)$ is a strongly connected component if and only if $Y \alpha=Y$ for all $\alpha \in A$.

Proof. Assume that $Y \alpha \neq Y$ for some $\alpha \in A$. Let $\beta \in T(X, Y)$ be such that $\beta_{\left.\right|_{Y}}$ is a permutation on Y. Then there is a $(\beta, \beta \alpha)$-dipath. Since $\operatorname{im}(\beta \alpha)=$ $(\operatorname{im}(\beta) \cap \operatorname{dom}(\alpha)) \alpha=Y \alpha \subsetneq Y, \pi_{\beta \alpha} \subsetneq \pi_{\beta}$. It follows that there is no dipath from $\beta \alpha$ to β and hence the component which contains β is not strongly connected. Conversely, suppose that $Y \alpha=Y$ for all $\alpha \in A$. Then $\langle A\rangle$ is a completely simple semigroup and $T(X, Y) A=T(X, Y)$. By Lemma 2.3, every connected component of $\operatorname{Cay}(T(X, Y), A)$ is strong.

Corollary 3.8. Let $A \subseteq T(X, Y)$. Then $\operatorname{Cay}(T(X, Y), A)$ is a strongly connected digraph if and only if $r=1$.

Proof. Suppose that $\operatorname{Cay}(T(X, Y), A)$ is a strongly connected digraph. By Theorem 3.7 and Lemma 3.3. it implies that $\beta \mathcal{R} \gamma$ for all $\beta, \gamma \in T(X, Y)$. Hence $r=1$.

Theorem 3.9. Let A be a subset of $T(X, Y)$. Then $\operatorname{Cay}(T(X, Y), A)$ is weakly connected if and only if $\sigma_{z} \in\langle A\rangle$ for some $z \in Y$.

Proof. (\Leftarrow) Suppose that $\sigma_{z} \in\langle A\rangle$ for some $z \in Y$. Let $\beta \in T(X, Y)$. We get that $x\left(\beta \sigma_{z}\right)=(x \beta) \sigma_{z}=z=x \sigma_{z}$ for all $x \in X$. Thus $\beta \sigma_{z}=\sigma_{z}$. This means there is a dipath from β to σ_{z} for all $\beta \in T(X, Y)$. Then, for $\gamma, \lambda \in T(X, Y)$, there exist $\left(\gamma, \sigma_{z}\right)$-dipath and $\left(\lambda, \sigma_{z}\right)$-dipath. Hence there is a semi-dipath from γ to λ. Therefore, $\operatorname{Cay}(T(X, Y), A)$ is weakly connected.
(\Rightarrow) Suppose that $\operatorname{Cay}(T(X, Y), A)$ is weakly connected. Then $\operatorname{Cay}(T(X, Y), A)$ has only one component. We will prove that there exists $\sigma_{z} \in\langle A\rangle$ for some $z \in Y$. It clearly suffices to prove this for $r \neq 1$. By Lemma 2.1, there are at least two \mathcal{R}-classes. If $Y \alpha=Y$ for all $\alpha \in A$, by Lemma 3.3. it implies that $\operatorname{Cay}(T(X, Y), A)$ has at least two components which is a contradiction. Therefore, $Y \alpha \neq Y$ for some $\alpha \in A$. Let $\beta \in T(X, Y)$ be such that $X \beta=Y$. Thus $\beta \alpha=\mu$ where $\operatorname{ker}(\beta) \subsetneq \operatorname{ker}(\mu)$ for some $\mu \in T(X, Y)$. Since $\operatorname{Cay}(T(X, Y), A)$ is weakly connected and $\operatorname{ker}(\beta) \subseteq \operatorname{ker}\left(\sigma_{z}\right)$ but $\operatorname{ker}\left(\sigma_{z}\right) \nsubseteq \operatorname{ker}(\beta)$ for all $z \in Y$, there is a dipath from β to σ_{y} for some $\sigma_{y} \in T(X, Y)$. This means $\beta \alpha^{\prime}=\sigma_{y}$ where $\alpha^{\prime} \in\langle A\rangle$ and for $x \in X,(x \beta) \alpha^{\prime}=x\left(\beta \alpha^{\prime}\right)=x \sigma_{y}=y$. Hence we can suppose that $\alpha^{\prime}=\left(\begin{array}{cccc}Y & a_{1} & \ldots & a_{k} \\ y & y_{1} & \ldots & y_{k}\end{array}\right)$ where $X \backslash Y=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, y_{1}, y_{2}, \ldots, y_{k} \in Y$ and $Y \alpha^{\prime}=\{y\}$. Thus $\sigma_{y}=\alpha^{\prime} \alpha^{\prime} \in\langle A\rangle$ as desired.

Example 3.10. Let $Y=\{1,2,3\} \subseteq X_{4}$ and $A=\{[2,3,1,3],[1,2,2,2]\}$. So $\sigma_{2}=([2,3,1,3] \circ[1,2,2,2])^{2} \in\langle A\rangle$ and $\operatorname{Cay}(T(X, Y), A)$ is weakly connected. Moreover, we see that there is no edges between $[2,1,1,2$] and $[1,2,1,1]$. Hence $\operatorname{Cay}(T(X, Y), A)$ is not unilaterally connected (see Figure 2 .

Example 3.11. Let $A=\{[2,1],[1,1]\}$ which is a subset of T_{2}. The Cayley graph $\operatorname{Cay}\left(T_{2}, A\right)$ as shown in Figure 3 . We observe that $\operatorname{Cay}\left(T_{2}, A\right)$ is a unilaterally connected digraph.

Some properties of unilaterally connected of $\operatorname{Cay}(T(X, Y), A)$ are therefore provided.

Theorem 3.12. Let $A \subseteq T(X, Y)$. Then $\operatorname{Cay}(T(X, Y), A)$ is a unilaterally connected digraph if and only if $r=1$ or $(r=n=2,[2,1] \in A$ and $([1,1] \in A$ or $[2,2] \in A))$.

Figure 2: $\operatorname{Cay}(T(X, Y), A)$ where $A=\{[2,3,1,3],[1,2,2,2]\}$

Proof. (\Rightarrow) Suppose that $\operatorname{Cay}(T(X, Y), A)$ is a unilaterally connected digraph and $r \neq 1$. Then $r, n \geq 2$. Assume that $n \geq 3$. Since $S(3,1)=1$ and $S(3,2)=3$, the number of \mathcal{R}-classes is greater than or equal to 4 and there exist $\beta, \gamma \in T(X, Y)$ such that $\operatorname{ker}(\beta) \nsubseteq \operatorname{ker}(\gamma)$ and $\operatorname{ker}(\gamma) \nsubseteq \operatorname{ker}(\beta)$. If there is a (β, γ)-dipath, then $\gamma=\beta \alpha_{1} \alpha_{2} \ldots \alpha_{k}$ for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in A$. Thus $\operatorname{ker}(\beta) \subseteq \operatorname{ker}(\gamma)$ which is a contradiction. Similarly, there is no (γ, β)-dipath. Hence $n=2=r$ and so $T_{2}=\{[1,1],[2,2],[1,2],[2,1]\}$. If $[2,1] \notin A$, there is no dipath from $[2,1]$ to $[1,2]$, a contradiction. Consequently, $[2,1] \in A$. By assumption, we get that $\operatorname{Cay}\left(T_{2}, A\right)$ is a weakly connected digraph. Therefore, there is $\alpha \in A$ such that $Y \alpha \neq Y$. It implies that $[1,1] \in A$ or $[2,2] \in A$.
$(\Leftarrow)\left(\right.$ i) Let $r=1$. It is obviously that $\operatorname{Cay}\left(T_{1}, A\right)$ is a unilaterally connected digraph.

Figure 3: $\operatorname{Cay}\left(T_{2}, A\right)$ where $A=\{[2,1],[1,1]\}$
(ii) Assume that $r=n=2,\{[2,1],[1,1]\} \subseteq A$. According to Example 3.11, we get that $\operatorname{Cay}\left(T_{2},\{[2,1],[1,1]\}\right)$, a subdigraph of $\operatorname{Cay}\left(T_{2}, A\right)$, is a unilaterally connected digraph. Hence $\operatorname{Cay}\left(T_{2}, A\right)$ is also.
(iii) Assume that $r=n=2,\{[2,1],[2,2]\} \subseteq A$. Since $\operatorname{Cay}\left(T_{2},\{[2,1],[2,2]\}\right)$ is isomorphic to $\operatorname{Cay}\left(T_{2},\{[2,1],[1,1]\}\right)$, it is implies that $\operatorname{Cay}\left(T_{2}, A\right)$ is unilaterally connected.

4 Summary

This paper studies the connectedness of Cayley graphs of $T(X, Y)$. In the following table we collect our results and present the necessary and sufficient conditions of $T(X, Y)$ which their Cayley graphs are strongly connected, weakly connected and unilaterally connected.

Properties of $\operatorname{Cay}(T(X, Y), A)$	Necessary and Sufficient Conditions
strongly connected	$r=1$
weakly connected	$\sigma_{z} \in\langle A\rangle$ for some $z \in Y$
unilaterally connected	(i) $r=1$ or
	(ii) $r=n=2$ and $\{[2,1],[1,1]\} \subseteq A$ or
	(iii) $r=n=2$ and $\{[2,1],[2,2]\} \subseteq A$

Acknowledgement : The authors thank the referees for some useful suggestions and comments. This research was supported by Chiang Mai University.

References

[1] Sr. Arworn, U. Knauer, N. Na Chiangmai, Characterization of digraphs of right (left) zero unions of groups, Thai J. Math. 1 (1) (2003) 131-140.
[2] S. Fan, Y. Zeng, On Cayley graphs of bands, Semigroup Forum 74 (1) (2007) 99-105.
[3] A.V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002) 73-78.
[4] A.V. Kelarev, Graph Algebras and Automata, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2003.
[5] A.V. Kelarev, C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (1) (2003) 59-72.
[6] B. Khosravi, Some properties of Cayley graphs of cancellative semigroups, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 17 (1) (2016) 3-10.
[7] Y. Luo, Y. Hao, G.T. Clarke, On the Cayley graphs of completely simple semigroups, Semigroup Forum 82 (2) (2011) 288-295.
[8] T. Suksumran, S. Panma, On connected Cayley graphs of semigroups, Thai J. Math. 13 (3) (2015) 641-652.
[9] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. (2008) ID 794013.
[10] R. Gray, J.D. Mitchell, Largest subsemigroups of the full transformation monoid, Discrete Math. 308 (20) (2008) 4801-4810.
[11] K. Sangkhanan, J. Sanwong, Partial orders on semigroups of partial transformations with restricted range, Bull. Aust. Math. Soc. 86 (1) (2012) 100-118.
[12] J. Sanwong, B. Singha, R.P. Sullivan, Maximal and minimal congruences on some semigroups, Acta Math. Sin. (Engl. Ser.) 25 (3) (2009) 455-466.
(Received 18 April 2017)
(Accepted 30 June 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

