
Thai Journal of Mathematics : 239–259
Special Issue: Annual Meeting in Mathematics 2017

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Andronov-Hopf and Neimark-Sacker

Bifurcations in Time-Delay Models

of HIV Transmission

Rachadawan Darlai†,1, Elvin J. Moore‡,§ and Sanoe Koonprasert‡

†Faculty of Science, Energy and Environment
King Mongkut’s University of Technology North Bangkok

(Rayong Campus), Rayong 21120, Thailand
e-mail : rachadawan.d@sciee.kmutnb.ac.th (R. Darlai)
‡Department of Mathematics, Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok

Bangkok 10800, Thailand
sanoe.k@sci.kmutnb.ac.th (S. Koonprasert)

§Centre of Excellence in Mathematics
CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand

e-mail : elvin.j@sci.kmutnb.ac.th (E.J. Moore)

Abstract : In this paper, we study the bifurcation properties of one-dimensional,
time-delayed disease models for HIV. The models include the effects of vertical
HIV transmission from mother to baby, the effects of births and deaths and of
treatment by antivirals. We first investigate the properties of differential equation
models and establish conditions for the existence and stability of equilibrium points
and for the existence of Andronov-Hopf bifurcations at critical values of the time
delays. We then investigate the properties of discretized versions of the models and
establish conditions for the existence and stability of equilibrium points and for
the existence of Neimark-Sacker bifurcations at critical values of the time delays.

This research was supported by Faculty of Science, Energy and Environment, King
Mongkut’s University of Technology North Bangkok (Rayong Campus), Contract number
SCIEE 003 and by the Centre of Excellence in Mathematics, the Commission on Higher
Education, Thailand.

1 Corresponding author.

Copyright c© 2018 by the Mathematical Association of Thailand.
All rights reserved.



240 Thai J. Math. (Special Issue, 2018)/ R. Darlai et al.

We show that the critical delay times for Neimark-Sacker bifurcations are less
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1 Introduction

Many researchers have developed mathematical models in an attempt to de-
velop an understanding of HIV transmission at either the cell level (see, e.g. [1–10])
or the population level (see, e.g. [11, 12]).

In the present paper, we consider a generalization of a model at the population
level originally proposed by Roberts and Saha [12]. The model is a nonlinear
differential equation model for the fraction of a population infected with HIV.

dx(t)

dt
= (p− 1)Bx(t) + (βC − α)x(t)(1− x(t)), (1.1)

where x(t) is the proportion of the total population that is infected at time t,
p(0 < p < 1) is the vertical transmission probability (the fraction of babies born
with HIV infection), B is the birth rate for the population, β is the transmission
rate on contact between an infected and an uninfected individual, C is the contact
rate between infected and uninfected individuals, and α is the increase of the death
rate due to the HIV infection.

Although current treatment of HIV patients with antiretroviral therapy can
slow the progression of the disease and reduce the level of the virus below detectable
levels, it cannot cure the infected patients (see, e.g., [4]–[6], [13]). Antiretroviral
therapy can reduce both disability and mortality. There is also recent evidence
(see, e.g., [14–16]) that antiretroviral theraphy can depress the HIV level in an
HIV+ person sufficiently to effectively stop transmission of HIV from an HIV+
person to an uninfected person. However, in many countries antiretroviral therapy
is not available. A further difficulty is that, in the early stages, infection by HIV
is asymptomatic. As a result, these asymptomatic infected people may interact
normally with people and pass on the disease to uninfected people.

Several authors have studied the effects of time delays in mathematical mod-
els of HIV transmission (see, e.g., [8,17–20]). For example, they separate the HIV
populations into susceptible, latently infected, and actively infected populations
and then assume a time delay for transition from the latently infected to the ac-
tively infected stage. An important property of many time-delay models is that
they have bifurcations. Common types of bifurcation for differential equations
are the Andronov-Hopf (or Hopf) bifurcations and common types of bifurcation
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for difference equations are the Neimark-Sacker bifurcations (see, e.g., [21]). In
this paper, we are interested in comparing the Andronov–Hopf bifurcations in dif-
ferential equation models with the Neimark-Sacker bifurcations in approximating
difference equation models.

2 Differential Equation Models

In this paper, we extend the model in equation (1.1) by introducing time delays
into the model and by including the effect of treatment by antiretrovirals.

We divide the population into a susceptible (uninfected group) S(t) and an
infected group I(t) and consider a basic model of the following form

dS

dt
= BS(t) + (1− p)BI(t)− βCS(t)I(t)− µS(t),

dI

dt
= pBI(t) + βCS(t)I(t)− (µ+ α)I(t), (2.1)

where B is the birth rate, p is the probability that an infected mother gives birth to
an infected baby (the vertical transmission probability), β is the rate of infection
on contact between a susceptible and an infected person, C is the contact rate
of a susceptible and an infected person, µ is the natural death rate and α is the
increase in death rate of an infected person. We assume that this extra death
rate of an infected person includes a possible transition to AIDS as well as actual
death.

Two commonly used antivirals are the reverse transcriptase inhibitors (RTI)
and the protease inhibitors (PI) (see, e.g., [22–24]). The main effect of the RTI
appears to be to reduce the rate of transmission from latent infection to active
infectiousness and the main effect of the PI appears to be to reduce the level of
active free virus in the blood (see, e.g., [2, 4–6, 10]). In the present model, we
assume that the effects of both the RTI and the PI can be included in the model
in (2.1) as factors reducing the value of β (the rate of infection on contact) and p
(the vertical transmission probability). We assume that

β = (1− nav)β0, p = (1− nav)p0, (2.2)

where nav is an antiretroviral therapy factor (0 ≤ nav < 1) and β0 and p0 are,
respectively, the infection rate of a susceptible person and the vertical transmission
probability in the absence of antiretroviral therapy.

We transform the 2-population model in (2.1) into a single equation model by

letting x(t) = I(t)
S(t)+I(t) be the fraction of the total population that is infected (see,

e.g., [12]). For the rate of change of the total population, we obtain an equation
of the form (N = S + I)

dN

dt
=
d(S + I)

dt
= (B − µ)N − αI,

and then
dx

dt
=

1

N

dI

dt
− x

N

dN

dt
= −δx(t) + εx(t)(1− x(t)), (2.3)
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where δ = (1− p)B and ε = βC − α. We can assume that δ > 0 and ε > 0.

As there are 3 different positions to include a single time delay τ into model (2.3),
there are a total of 7 different time delay versions of the model. We have stud-
ied the behaviour of these 7 versions and found that their bifurcation properties
can be very different, with 5 of the versions having bifurcations under certain
conditions on the parameter values and 2 of the versions not having bifurcations.
In this paper, we will discuss only two of these versions that have bifurcations,
namely, the two versions shown in (2.4). It is interesting to compare the different
bifurcation properties of these HIV models for the differential equation models,
which have Andronov-Hopf bifurcations, and equivalent difference equation mod-
els, which have Neimark-Sacker bifurcations.

HIV1
dx(t)

dt
= −δx(t) + εx(t)[1− x(t− τ)],

HIV2
dx(t)

dt
= −δx(t− τ) + εx(t− τ)[1− x(t− τ)]. (2.4)

3 Difference Equation Models

As the growth rate of diseases (such as HIV/AIDS) or other kinds of pop-
ulations (such as fish) can be a slow process or the collection of data can often
only be carried out at regular intervals such as a month or a year, it is often only
possible to construct difference equation models. One method that is often used
to construct a difference equation model is to use a first-order Euler method to ap-
proximate the differential equation model (see, e.g., [19,25,26]) This method is also
often used to solve Itó stochastic differential equations (see, e.g., Euler-Mayurama
method [27]).

For time-delay models it is useful to rescale the time variable in units of the
time delay, i.e., we define T = t/τ (see, e.g., [11]) and then make the substitutions

x(t) = x(Tτ) = w(T ),
dx(t)

dt
=

1

τ

dw(T )

dT
, w(T − 1) = x(Tτ − τ). (3.1)

Applying the rescaling in (3.1) to (2.4), we obtain the 2 equations in (3.2).

HIV1
dw(T )

dT
= −δτw(T ) + ετw(T )[1− w(T − 1)],

HIV2
dw(T )

dT
= −δτw(T − 1) + ετw(T − 1)[1− w(T − 1)]. (3.2)

Next, we transform the equations into difference equations by using the forward
Euler scheme with step size given by h = 1

m , where m is the number of time steps
in the delay time. Then, we let

Tn = nh, w(Tn) = wn, w(Tn − 1) = w(nh−mh) = wn−m, (3.3)
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and use the finite difference approximation

dw(Tn)

dTn
=

1

h
(w(Tn+1)− w(Tn)) =

1

h
(wn+1 − wn). (3.4)

and obtain the two Euler difference equations in (3.5).

HIV1 wn+1 = wn − δhτwn + εhτwn(1− wn−m),

HIV2 wn+1 = wn − δhτwn−m + εhτwn−m(1− wn−m). (3.5)

It can be seen that each of these Euler approximation equations are difference
equations of order m+ 1.

4 Equilibrium Points, Stability and Andronov-
Hopf Bifurcations of Differential Equation
Models

4.1 Equilibrium Points and Basic Reproduction Numbers

The equilibrium points x∗ for the differential equation models are obtained by
setting dx

dt = 0 in the differential equation (2.4). We obtain a trivial equilibrium
point x∗ = 0 and an endemic equilibrium point which exists only if x∗ > 0. The
two equilibrium points are:

Disease-free x∗ = 0, Endemic x∗ = 1− δ

ε
. (4.1)

The endemic equilbrium exists only if ε > δ. Using a standard approach, such as
the next-generation method [28], or by checking the eigenvalues of the linearized
system at the disease-free equilibrium (see section 4.2), we can show that the
basic reproduction number R0 for the HIV model is R0 = ε

δ for both differential
and difference equation models. Therefore, the disease-free equilibrium points are
stable for R0 < 1 and the endemic equilibrium points exist only if R0 > 1.

4.2 Conditions for Stability and Andronov-Hopf Bifurca-
tions

Using the standard methods, we derive the conditions for local asympotic
stability (see, e.g., [29, 30]) and Andronov-Hopf bifurcations (see, e.g., [21]) by
linearizing the nonlinear equations about equilibrium points.

We can obtain the linearized time-delayed versions of the nonlinear equations
by defining perturbations y(t) = x(t)− x∗ and y(t− τ) = x(t− τ)− x∗. Then the
linearized versions for the two HIV model delay equations in (2.4) are:

Disease-free
dy

dt
= (ε− δ)y(t− τ), Endemic

dy

dt
= (δ − ε)y(t− τ). (4.2)
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As usual, we assume a trial solution y(t) = eλt. The characteristic equations from
the trial solution are then:

Disease-free λ = (ε− δ)e−λτ , Endemic λ = (δ − ε)e−λτ . (4.3)

Then, the general solution y(t) → 0 as t → ∞ and the equilibrium point x∗

is locally asymptotically stable if the real parts of all eigenvalues λ of (4.3) are
negative.

For the disease-free equilibrium and zero time delay, the characteristic equation
has negative eigenvalues for ε − δ < 0. Therefore the disease-free equilibrium is
locally stable if R0 = ε

δ < 1 and unstable if R0 > 1. These values for R0 agree
with the values obtained in section (4.1) from the condition for existence of the
endemic equilibrium points.

For R0 > 1, the possibilities are that the endemic equilibrium is locally stable
or that a bifurcation, for example, an Andronov–Hopf (or Hopf) bifurcation, might
occur. From bifurcation theory (see, e.g., [21]), Andronov–Hopf bifurcations exist
in an equilibrium solution if the eigenvalues λ of the linearized equation about this
equilibrium solution have the following properties:

1. There exists a critical value of τ = τc for which an eigenvalue λc = iωc is
purely imaginary.

2. At the critical value, all other eigenvalues have negative real parts.

3. The derivative
d(Real(λ))

dτ

∣∣∣∣
τ=τc

6= 0.

We first look for possible bifurcation points for the endemic equilbrium ε > δ by
looking for a purely imaginary solution λc = iωc of (4.3) for ωc ∈ (−π, π), ωc 6= 0.

Theorem 4.1. A necessary condition for existence of purely imaginary solutions
λ = iω of the characteristic equation λ = (δ − ε)e−λτ for τ > 0 and ω ∈ (−π, π),
ω 6= 0 is ε − δ > 0. Then, a possible critical delay time for an Andronov-Hopf
bifurcation is

τc =
π

2ωc
, where ωc = ε− δ. (4.4)

Proof. Substituting λc = iωc into (4.3) and separating real and imaginary parts,
we obtain

ωc = (ε− δ) sin(ωcτc), 0 = (ε− δ) cos(ωcτc). (4.5)

Therefore, if ε − δ > 0, the critical omega value ωc and delay time τc in (4.4)
satisfies condition 1 for the existence of an Andronov-Hopf bifurcation point. Note
that this value of τc is also the minimum value of τ for which purely imaginary
eigenvalues of (4.3) exist.

Lemma 4.2. If the necessary condition ε − δ > 0 is satisfied and τ ≥ 0, then
all real eigenvalues of (4.3) are negative. Therefore, the endemic equilibrium can
only become unstable if a complex conjugate pair of solutions of (4.3) with zero or
positive real parts exist.
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Proof. If λ = µ is real, then the characteristic equation is µ = −(ε− δ)e−µτ . For
ε− δ > 0 and τ ≥ 0, all solutions are negative.

We can now prove condition 2.

Theorem 4.3. For 0 ≤ τ < τc all eigenvalues of (4.3) have negative real parts.

Proof. For τ = 0, the solution of the characteristic equation (4.3) is λ = µ =
−(ε − δ) and ω = 0. From Lemma 4.2, if eigenvalues of (4.3) exist with zero or
positive real parts then they must be a complex conjugate pair. Then, since the
solutions of (4.3) are continuous functions of τ and µ < 0 for τ = 0, solutions can
only have positive real parts if there exists a critical value of τ at which µ = 0. As
shown in Theorem 4.1 the minimum value of τ for a zero real part is τc.

We now prove that condition 3 for the existence of an Andronov-Hopf bifur-
cation point is satisfied by τc.

Theorem 4.4. If the necessary condition of Theorem 4.1 is satisfied, then the
critical delay time τc > 0 in (4.4) also satisfies condition 3 for the existence of an
Andronov-Hopf bifurcation.

Proof. Let λ = µ+ iω. Then differentiating the characteristic equation (4.3) with
respect to τ and separating real and imaginary parts, we obtain

dµ

dτ
=

1

∆
(ε− δ)e−µτ [µ cos(ωτ) + ω sin(ωτ)− µτ(ε− δ)e−µτ ], (4.6)

where
∆ = (1− τ(ε− δ)e−µτ )2 + 2τ(µ+ (ε− δ)e−µτ ). (4.7)

Then substituting µ = 0, ω = ωc and τ = τc into (4.6) and (4.7), we obtain

dµ

dτ

∣∣∣∣
τ=τc

=
1

∆c
(ε− δ)ωc sin(ωcτc) =

ω2
c

(1− τc(ε− δ))2 + 2τc(ε− δ)
. (4.8)

Since ε − δ > 0, the denominator is always positive and therefore condition 3 is

satisfied. Also, since dµ
dτ

∣∣∣
τ=τc

> 0, the bifurcation occurs as τ increases to τc.

5 Equilibrium Points, Stability and Neimack-
Sacker Bifurcations of Difference Equation
Models

5.1 Equilibrium Points and Basic Reproductive Numbers

The equilibrium points w∗ for the difference equation models are obtained by
setting wn+1 = wn = wn−m = w∗ in the difference equations (3.5). For each
model, we obtain a trivial equilibrium point w∗ = 0 and an endemic equilibrium
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point which exists only if w∗ > 0. The two equilibrium points for each model are
the same as for the differential equation models, i.e.,

Disease-free w∗ = 0, Endemic w∗ = 1− δ

ε
. (5.1)

The endemic equilbrium exists only if ε > δ. As for the differential equation case,
this condition can be written as R0 = ε

δ > 1, where R0 is the basic reproduction
number for the model.

5.2 Stability and Conditions for Neimark-Sacker Bifurca-
tions

The local stability of the difference equation models (3.5) can be obtained by
looking at the linearized equations about the equilibrium points. Setting yn =
wn−w∗, where yn is a perturbation, the linearized versions of the two models are:

Disease-free yn+1 = yn + (ε− δ)hτyn−m,
Endemic yn+1 = yn + (δ − ε)hτyn−m. (5.2)

Assuming a trial solution of the form yn = λn for (5.2) gives the characteristic
equations:

Disease-free P0(λ) = λm(λ− 1)− (ε− δ)hτ = 0,

Endemic P1(λ) = λm(λ− 1)− (δ − ε)hτ = 0. (5.3)

For the disease-free equilibrium, we have |λ| ≤ 1 for ε ≤ δ, and therefore it is
locally stable for R0 = ε

δ ≤ 1 and unstable for R0 > 1.
For R0 > 1, the possibilities are that the endemic equilibrium is locally stable

or that a bifurcation, for example, a Neimark-Sacker bifurcation, might occur.
We now consider the conditions for Neimarker-Sacker bifurcations, which are as
follows (see, e.g., [21]):

Theorem 5.1. A Neimark-Sacker bifurcation point occurs if there exists a com-
plex conjugate pair of eigenvalues λ1,2 = r (τc) e

±iω(τc) of a linearized system of
nonlinear difference equations and if the following four conditions are satisfied
(C1) λ (τc) = r (τc) e

iω(τc), where r (τc) = 1, r′ (τc) 6= 0 and ω (τc) = ωc;
(C2) All other eigenvalues are inside the unit circle;
(C3) eikωc 6= 1, for k = 1, 2, 3, 4;
(C4) Re

[
e−iωcc1 (τc)

]
6= 0, where c1 (τc) is a critical function for determining the

direction and stability of Neimark-Sacker bifurcations.
If the condition (C4) of the Neimark-Sacker theorem is satisfied, then an in-

variant closed curve, topologically equivalent to a circle, will occur for τ in a
one sided neighborhood of τc. The radius of the invariant curve will grow like

O
(√∣∣τ − τc∣∣). One of the four cases below applies:

(1) r′ (τc) > 0, Re
[
e−iωcc1 (τc)

]
< 0. The origin is asymptotically stable for
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τ < τc and unstable for τ > τc. An attracting invariant closed curve exists for
τ > τc.
(2) r′ (τc) > 0, Re

[
e−iωcc1 (τc)

]
> 0. The origin is asymptotically stable for

τ < τc and unstable for τ > τc. A repelling invariant closed curve exists for
τ < τc.
(3) r′ (τc) < 0, Re

[
e−iωcc1 (τc)

]
< 0. The origin is asymptotically stable for

τ > τc and unstable for τ < τc. An attracting invariant closed curve exists for
τ < τc.
(4) r′ (τc) > 0, Re

[
e−iωcc1 (τc)

]
> 0. The origin is asymptotically stable for

τ > τc and unstable for τ < τc. A repelling invariant closed curve exists for
τ > τc.

From condition (C1), we know that a Neimark-Sacker bifurcation might occur
if there exists a complex conjugate pair of eigenvalues of (5.3) on the unit circle.
We now check if there are critical values of ω = ωc and τ = τc such that a solution
of (5.3) is of the form λ = e±iωc , ωc ∈ (0, π).

Theorem 5.2. A necessary condition for the existence of a complex conjugate pair
of eigenvalues λ = e±iωc of the characteristic equation λm(λ− 1) + (ε− δ)hτc = 0
for τ > 0 and 0 < ω < π is ε− δ > 0. Then, possible critical values of ω = ωc and
delay time τ = τc for a Neimark-Sacker bifurcation are:

ωc =
π

2m+ 1
, τc =

2

(ε− δ)h
sin(

π

4m+ 2
). (5.4)

Proof. We note that ε−δ > 0 for the endemic equilibrium and that an alternative
form of (5.3) is

λm+ 1
2 (λ

1
2 − λ− 1

2 ) = −(ε− δ)hτ. (5.5)

Substituting λ = eiω into equation (5.5) and separating real and imaginary parts,
we obtain

− 2 sin((m+
1

2
)ω) sin(

1

2
ω) = −(ε− δ)hτ, 2 cos((m+

1

2
)ω) sin(

1

2
ω) = 0. (5.6)

Then, a real nonzero solution exists for ω = ωc and τ = τc in (5.6) if and only if
ε− δ > 0 and cos((m+ 1

2 )ωc) = 0. Then possible solutions are:

ωc =
(2j + 1)π

2m+ 1
, τc =

2

(ε− δ)h
sin(

1

2
ωc) for j = 0, 1, 2, . . . . (5.7)

The minimum values for τc are for j = 0, and then ωc and τc are as given in (5.4).

We now prove the second part of condition (C1).

Theorem 5.3. For the critical values ωc and τc defined in Theorem 5.2, we have
dr(τ)
dτ

∣∣∣
τ=τc

6= 0, where λ(τ) = r(τ)eiω(τ) is the eigenvalue of maximum modulus of

the endemic characteristic equation (5.3).
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Proof. Since λ(τ) = r(τ)eiω(τ), we have

1

r

dr

dτ
+ i

dω

dτ
=

1

λ

dλ

dτ
= − (ε− δ)h

λm((m+ 1)λ−m)
. (5.8)

After some straightforward algebra, we obtain

dr

dτ
= − (ε− δ)hrm+1 ((m+ 1) cos((m+ 1)ω)−m cos(mω))

r2m ((m+ 1)2r2 − 2m(m+ 1)r cos(ω) +m2)
. (5.9)

Then, on substituting r(τc) = 1, ω = ωc, τ = τc into (5.9), we have

dr

dτ

∣∣∣∣
τ=τc

=
τc(ε− δ)2h2(m+ 1

2 )

1 +m(m+ 1)(ε− δ)2h2τ2c
> 0. (5.10)

In Theorem 5.4, we prove that a real solution of the characteristic equation
cannot be the cause of the endemic equilibrium point becoming unstable.

Theorem 5.4.

1. If λ is a real positive solution of the characteristic equation λm(λ − 1) =
−(ε− δ)hτ then λ < 1, i.e., it is inside the unit circle.

2. If a real negative solution of the characteristic equation exists on the unit
circle for a time delay τ−1, then a Neimark-Sacker bifurcation has occurred
for τ = τc < τ−1.

Proof. 1. Since ε− δ > 0, condition 1 is obviously true for τ > 0.

2. For λ = reiω, we have on taking the absolute value of the characteristic
equation λm(λ− 1) = −(ε− δ)hτ that

|λ|m|1− λ| = (ε− δ)hτ, rm
√

1− 2r cos(ω) + r2 = (ε− δ)hτ. (5.11)

Then, for λ = −1, (5.11) gives 2 = (ε− δ)hτ, τ−1 =
2

(ε− δ)h
.

However, τc =
2

(ε− δ)h
sin(

π

4m+ 2
) <

2

(ε− δ)h
= τ−1.

Theorem 5.5. If ε−δ > 0, then the endemic equilibrium can only become unstable
for a complex conjugate pair of solutions of the characteristic equation (5.3) and
the minimum values of τ and ω giving solutions on the unit circle are the critical
values τc and ωc given in Theorem 5.2.
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Proof. In Theorem 5.4, we proved that the endemic equilibrium cannot become
unstable due to a real solution of the characteristic equation (5.3) crossing the unit
circle, i.e., instability can only be caused by a complex conjugate pair of solutions
crossing the unit circle. In Theorem 5.2, we showed that the τc and ωc give a
complex conjugate pair of solutions on the unit circle and that τc is the minimum
value of τ at which the solution crosses the unit circle. The proof of condition
(C2) of the Neimark-Sacker theorem is complete.

We now prove condition (C3).

Theorem 5.6. For ωc defined in Theorem 5.2, eikωc 6= 1, for k = 1, 2, 3, 4.

Proof. From Theorem 5.2, we have ωc = π
2m+1 . Clearly, for m ≥ 1,

kωc =
kπ

2m+ 1
6= 2π, for k = 1, 2, 3, 4 (5.12)

and therefore condition (C3) is satisfied.

6 Direction and Stability of the Neimark-Sacker
Bifurcations

In the previous section, we obtained a complex conjugate pair of solutions of
the characteristic equation (5.3) that satisfied conditions (C1), (C2) and (C3) of
the Neimark-Sacker theorem 5.1. In this section, we consider condition (C4) and
find the direction, stability and the period of the solution of the nonlinear system
(3.5) near the critical time delay τc.

We use a method given in Kuznetsov [21] and Li [26]. We first convert the
two difference equations (3.5) into the systems for the perturbations yn = wn−w∗
given in equations (6.1).

HIV1 yn+1 = yn − (ε− δ)hτyn−m − εhτynyn−m,
HIV2 yn+1 = yn − (ε− δ)hτyn−m − εhτy2n−m. (6.1)

Then following [21] and [26], we convert the two equations in (6.1) into the
systems of first-order equations given in (6.2).

Yn+1 = AYn +
1

2
B(Xn, Yn) +

1

6
C(Xn, Yn, Zn), (6.2)

where Yn+1 = (yn+1, yn, yn−1, . . . , yn−m+1)T , Yn = (yn, yn−1, yn−2, . . . , yn−m)T

and for both the HIV1 and HIV2 models, we have

A =


1 0 · · · 0 −hτ(ε− δ)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (6.3)
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The values of B in (6.2) for the two models are

B (Xn, Yn) = (b0 (Xn, Yn) , 0, . . . , 0)
T
,

HIV1 b0 (Xn, Yn) = −hτε (xnyn−m + yn−mxn) ,

HIV2 b0 (Xn, Yn) = −2hτεxn−myn−m. (6.4)

Also, for both models C = 0. The matrix A corresponds to the companion ma-
trix (see, for example, [31]) of the characteristic polynomial P1(λ) in (5.3) and
therefore the eigenvalues of A and the solutions of (5.3) are the same.

Let q = q (τc) ∈ Cm+1 be an eigenvector of A corresponding to the critical
eigenvalue solution λ = eiωc of the characteristic equation (5.3). Then q is a
solution of: 

1 0 · · · 0 −hτc(ε− δ)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




q0
q1
q2
...
qm

 =


eiωcq0
eiωcq1
eiωcq2

...
eiωcqm

 . (6.5)

The solution from rows 2 to m of (6.5) is q0 = eiωcq1 = ei2ωcq2 = . . . = eimωcqm.
Then, substituting q0 = eimωcqm into the first row, we obtain the equation for qm
as (

ei(m+1)ωc − ei(m)ωc + hτc(ε− δ)
)
qm = 0. (6.6)

Since eiωc is a solution of the characteristic equation (5.3), we have that P1(eiωc) =
ei(m+1)ωc − eimωc + hτc(ε − δ) = 0. Therefore, we can choose qm 6= 0 and then
q = q (τc) ∈ Cm+1 is an eigenvector of A. If we choose qm = 1 the eigenvector can
be written in the form

q = q
(
eiωc

)
=
(
eimωc , ei(m−1)ωc , . . . , eiωc , 1

)T
. (6.7)

We also introduce an eigenvector r = r (τc) ∈ Cm+1 of the adjoint matrix ĀT

corresponding to the eigenvalue e−iωc . Note that e−iωc is also a solution of the
characteristic equation (5.3). Then, following the same procedure as above, we
find that the eigenvector of ĀT can be written in the form

r = r
(
eiωc

)
=
(

1, γeimωc , γei(m−1)ωc , . . . , γei2ωc , γeiωc

)T
, where γ = −hτc(ε−δ).

(6.8)
If we define an inner product by 〈u, v〉 =

∑m
i=0 uivi, then the inner product

of the adjoint eigenvector r in (6.8) and the eigenvector q of A in (6.7) is 〈r, q〉 =

eimωc + mγe−iωc . If we define D =
(
e−imωc +mγeiωc

)−1
and let q∗ = Dr, then

q∗ is an adjoint eigenvector with the normalization 〈q∗, q〉 = 1. In the following,
we use the notation λc = eiωc and λc = e−iωc for the eigenvalues of A and note
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that the polynomial P1(λ) in (5.3) is the characteristic polynomial of A. Then,
following the algorithms in Kuznetsov [21] and Li [26], we consider the following
expression for the critical coefficient c1 (τc) in condition (C4) of the Neimark–
Sacker theorem 5.1.

c1 (τc) =
g20g11 (1− 2λc)

2 (λ2c − λc)
+

∣∣g11∣∣2
1− λc

+

∣∣g02∣∣2
2
(
λ2c − λc

) +
g21
2
, (6.9)

where

g02 = 〈q∗, B (q, q)〉, g11 = 〈q∗, B (q, q)〉, g20 = 〈q∗, B (q, q)〉,
g21 = 〈q∗, B (q, ω20)〉+ 2〈g∗, B (q, ω11)〉+ 〈q∗, C (q, q, q)〉,

ω11 =
b0 (q, q)

P1 (1)
p (1)− 〈q

∗, B (q, q)〉
1− λc

q − 〈q
∗, B (q, q)〉
1− λc

q,

ω20 =
b0 (q, q)

P1 (λ2c)
p
(
λ2c
)
− 〈q

∗, B (q, q)〉
λ2c − λc

q − 〈q
∗, B (q, q)〉
λ2c − λc

q, (6.10)

and where

p(λ) = (λm, λm−1, . . . , λ, 1)T . (6.11)

The formulas for the b0 and inner products required to compute the terms in (6.10)
are shown in Table 1. The values of the characteristic polynomial required in (6.10)
are P1 (1) = hτc(ε − δ) and P1

(
ei2mωc

)
= ei2(m+1)ωc − ei2mωc + hτc(ε − δ). The

values of p(1) and p(λ2c) can be obtained from (6.11).

HIV 1 HIV 2
b0(q, q) −2hτcεe

imωc −2hτcε

b0(q, q) −hτcε
(
eimωc + e−imωc

)
−2hτcε

〈q∗, B (q, q)〉 = g02 −2hτcεDe
−imωc −2hτcεD

〈q∗, B (q, q)〉 = g11 −hτcεD
(
eimωc + e−imωc

)
−2hτcεD

〈q∗, B (q, q)〉 = g20 −2hτcεDe
imωc −2hτcεD

〈q∗, B (q, q)〉 −2hτcεDe
imωc −2hτcεD

〈q∗, B (q, q)〉 −hτcεD
(
eimωc + e−imωc

)
−2hτcεD

Table 1: Formulas for the b0 and inner products in the terms of the critical
constant c1(τc)

On substituting the expressions in Table 1 into (6.9), we can obtain a formula
for c1 (τc). Unfortunately, it is difficult to prove analytically that c1 (τc) 6= 0, and
therefore that condition (C4) is satisfied. However, as shown in section 7, the value
of Re

[
e−iωcc1 (τc)

]
can easily be computed numerically for any given parameter

values.
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7 Numerical Results

In this section, we present results of numerical simulations to illustrate the
analytical results obtained in previous sections. For the numerical simulations we
use the set of parameter values shown in Table 2. These values have been adapted
from parameter values published by Cai et al. [32].

Parameter name B α p β C δ ε
Used Values 0.05 0.05 0.01 0.5 0.5 0.0495 0.2

Table 2: Values of parameters used for numerical simulation [32]

We first compute the values of the disease-free and endemic points for the
differential equation and difference equations and compare the stability. We then
compute and compare the critical values for the time delays for the Andronov-
Hopf and Neimark-Sacker bifurcations. We also check numerically that condition
(C4) of the Neimark-Sacker theorem is satisfied. Finally, we analyze the effect of
antiretroviral therapy and give conditions for the antiretroviral therapy to reduce
the value of R0 to less than 1.

7.1 Equilibrium Points and Stability

From sections 4.1 and 5.1, we have that the equilibrium populations and values
of R0 for the differential equation and difference equation models are the same and
are given by

Disease free x∗0 = w∗0 = 0, Endemic x∗1 = w∗1 = 1− δ

ε
= 0.7525,

and R0 =
ε

δ
= 4.0404 > 1. (7.1)

7.2 Andronov-Hopf Bifurcations

For the parameter values in Table 2, the Andronov-Hopf bifurcation occurs at
the critical time delay τc = π

2ωc
= 10.4372 and angle ωc = ε − δ = 0.1505. From

equation (4.8), we have for condition 3 of the Andronov-Hopf conditions that the
value for derivative of the real part of the eigenvalue at the critical point is:

dµ

dτ
= 0.0065 > 0. (7.2)

Therefore, the bifurcation will occur as τ increases through τc.
Examples of plots of the time dependence and phase plane plots of the solutions

of the differential equations (2.4) are shown in Figures 1 and 2 for time delays below
and above the critical value, respectively. The figures show plots for model HIV2.
The plots for model HIV1 are qualitatively similar but slightly different in detail.
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Figure 1: Time dependence and phase plane plots for differential equation model
for delay less than critical point (τ = 9.91532 < τc = 10.43718).
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Figure 2: Time dependence and phase plane plots for differential equation model
for delay greater than critical point (τ = 10.54156 > τc = 10.43718).

7.3 Neimark-Sacker Bifurcations

For the parameter values in Table 2, the Neimark-Sacker bifurcation occurs at
the critical time delay τc = 2

(ε−δ)h sin( π
4m+2 ) = 10.3355 and angle ωc = π

2m+1 =

0.0305. From equation (5.10), we have for condition (C1) part 2 of the Neimark-
Sacker conditions that the value for derivative of the modulus (r) of the eigenvalue
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at the critical point is:
dr

dτ
= 0.0013369 > 0. (7.3)

For condition (C4), we compute the values of Re(e−iωcc1(τc)) from the formulas
in section 6 and obtain the value

Re(e−iωcc1(τc)) = −0.09494 < 0. (7.4)

Therefore, the parameters in Table 2 correspond to case 1 for condition (C4).
The bifurcation should occur as τ increases through τc and an attracting invariant
closed curve should exist for τ > τc.

Examples of plots of the time dependence and phase plane plots of the solutions
of the difference equations (3.5) are shown in Figures 3 and 4 for time delays below
and above the critical value, respectively. The figures show plots for model HIV2.
The plots for model HIV1 are qualitatively similar but slightly different in detail.
These figures show that the endemic equilibrium is stable for τ < τc and passes
through a Neimark-Sacker bifurcation point as τ increases through τc. The plots
in Figure 4 show the convergence to a stable limit cycle as time increases.
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Figure 3: Time dependence and phase plane plots for difference equation model
for delay less than critical point (m = 51, τ = 9.8187 < τc = 10.33545).

7.4 Comparison of Critical Values for Andronov-Hopf and
Neimark-Sacker Bifurcations

A comparison of the critical delay values τc for the Andronov-Hopf and Neimark-
Sacker bifurcations are shown in Figure 5. It can be seen that the Neimark-Sacker
values tend to the Andronov-Hopf values as the value of m increases, i.e., as the
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Figure 4: Time dependence and phase plane plots for difference equation model
for delay greater than critical point (m = 51, τ = 10.542 > τc = 10.33545).

step size h = 1/m in the Euler difference equation approximation for the differ-
ential equation is reduced. These results suggest that difference equation models
based on the Euler approximation can be used to obtain good estimates for critical
delay values for models of the type studied in this paper.
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Figure 5: Comparison of critical values τc for difference equation and differential
equation models.
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7.5 Effect of Antiviral Therapy

The effects of increasing the antiretroviral therapy factor nav in (2.2) are shown
in Figure 6. Figure 6(a) shows the reduction in the basic reproduction number and
Figure 6(b) shows the effect on the equilibrium infected population. In practise,
as stated in the introduction, it is known (see, e.g., [4]– [6], [13]) that antiretrovi-
ral therapy cannot completely eliminate the virus. However, recent studies (see,
e.g., [14–16]) have suggested that the therapy can reduce the virus sufficiently that
HIV transmission from an HIV+ to an uninfected person will not occur.
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Figure 6: Effect of antiretroviral therapy on R0 and endemic equilibrium popu-
lation.

8 Conclusions

The bifurcation properties of time-delayed one-dimensional differential equa-
tion and approximating difference equation models for HIV transmission have been
studied. The models include the effects of vertical HIV transmission from mother
to baby, the effects of births and deaths and of treatment by antivirals. For the dif-
ferential equation models, the existence of Andronov-Hopf bifurcations at critical
values of the time delays has been proved analytically. For the difference equa-
tion models, the existence of Neimark–Sacker bifurcations has also been proved
analytically. The direction and stability of the Neimark-Sacker bifurcations has
been analyzed, and it has been shown that stable limit cycles exist for time delays
greater than the critical value. Numerical simulations have been presented for a
set of reasonable parameter values to illustrate the analytical results. The numer-
ical results verify the analytical results. The numerical results also show that the
critical delay times for Neimark-Sacker bifurcations of approximating difference
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equation models are less than the critical times for Andronov-Hopf bifurcations in
a differential equation model but converge to them in the limit as the time step
of the discretization in the difference equation model tends to zero. The effect of
antiretroviral treatment in the model has been shown by plotting the reduction
in the basic reproductive number R0 and the equilibrium fraction of the infected
population as the antiretroviral treatment is increased.
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