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Abstract : In this paper, we forecast volatility of gold prices using ARIMA-
GARCH models. All models are estimated under three distributional assumptions
which are Normal, Student-t and GED. The gold price log returns are stationary.
We found that the ARIMA(2,0,2) gave the best performance model for forecasting
the return of gold. Serial correlation in the squared returns suggests conditional
heteroskedasticity. This empirical part adopts GARCH models to estimate the
volatility of the gold price. To account for fat-tailed features of financial returns,
we consider three different distributions for the innovations. The trading details
we have used describe forecasts of a closed price of gold price and trading in the
gold future contract (GF10J16). We found that the cumulative of return with
ARIMA(2,0,2)-GARCH-N model and the ARIMA(2,0,2)- GARCH-GED model
give cumulative of return more than the ARIMA(2,0,2)-GARCH-t models.
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1 Introduction

The characteristic that all financial markets have in common is uncertainty,
which is related to their short and long-term price state. This feature is undesir-
able for the investor but it is also unavoidable whenever the financial market is
selected as the investment tool. The best that one can do is to try to reduce this
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uncertainty. Financial market forecasting (or Prediction) is one of the instruments
in this process.

The financial market forecasting task divides researchers and academics into
two groups: those who believe that we can devise mechanisms to predict the market
and those who believe that the market is efficient and whenever new information
comes up the market absorbs it by correcting itself, thus there is no space for
prediction. Furthermore, they believe that the financial market follows a random
walk, which implies that the best prediction you can have about tomorrow’s value
is today’s value.

In time series, a financial price transformed to log return series for the station-
ary process which looks like white noise. Mehmet [1] said financial returns have
three characteristics. First is volatility clustering that means large changes tend
to be followed by large changes and small changes tend to be followed by small
changes. Second is fat-tailedness (excess kurtosis) which means that financial re-
turns often display a fatter tail than a standard normal distribution and the third
is leverage effect which means that negative returns result in higher volatility than
positive returns of the same size.

The generalised autoregressive conditional heteroskedasticity (GARCH) mod-
els mainly capture three characteristics of financial returns. The development of
GARCH type models was started by Engle [2]. Engle introduced ARCH to model
the heteroskedasticity by relating the conditional variance of the disturbance term
to the linear combination of the squared disturbances in the recent past. Bollerslev
[3] generalised the ARCH (GARCH) model by modelling the conditional variance
to depend on its lagged values as well as squared lagged values of disturbance.

Among these models, the Autoregressive Conditional Heteroskedasticity (ARCH)
model proposed by Engle [2] and its extension; Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) model by Bollerslev [3] , and Taylor [4] were
found to be the first models introduced into the literature and have become very
popular in that they enable the analysts to estimate the variance of a series at a
particular point in time Enders [5]. Since then, there have been a great number
of empirical applications of modelling the conditional variance of a financial time
series (See for example, Nelson [6], Bollerslev et al. [7] , Engle and Patton [8],
Shin [9], Alberg et al. [10], Shamiri and Isa [11] and Kalu [12]. These types of
models were designed to explicitly model and forecast the time-varying conditional
second order moment (variance) of a series by using past unpredictable changes
in the returns of that series, and have been applied successfully in economics and
finance, but more predominantly in financial market research.

Gold is a precious metal which is also classed as a commodity and a monetary
asset. Gold has acted as a multifaceted metal through the centuries, possessing
similar characteristics to money in that it acts as a store of wealth, a medium
of exchange and a unit of value. Gold has also played an important role as a
precious metal with significant portfolio diversification properties. Gold is used
in industrial components, jewellery and as an investment asset. The quantity of
gold required is determined by the quantity demanded industry investment and
jewellery use. Therefore an increase in the quantity demanded by the industry
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will lead to an increase in the price of the metal.

The changing price of gold can also be the result of a change in the Central
Banks holding of these precious metals. In addition, changes in the rate of inflation,
currency markets, political harmony, equity markets, and producer and supplier
hedging, all affect the price equilibrium.

Gold Futures is an alternative investment tool which relies on the gold price
movement. The investors can benefit from the gold futures investment by making
the profit from both directions, either up or down, which is like Stock Index Futures
trading. In addition, Gold Futures can also hedge against gold price fluctuations
or stock market volatility due to the negative correlation to the stock market. This
will provide a greater opportunity to make a profit when the stock market declines
during an economic downturn.

Gold Futures in Thailand are futures contracts which rely on gold bullion with
a purity of 96.5 percent due to its popularity among buyers nationwide for gold
physical trading. Gold Futures trade in implement cash settlement method with
no need of physical delivery.

In this paper, we use ARIMA-GARCH models to forecast the volatility of gold
prices. Moreover, we shall use this estimated volatility to forecast the closing price
of gold. Finally, we apply the forecasting price to the gold price for trading in gold
future contracts with a maturity date of April 2016 (GF10J16).

In the next section, we present the ARIMA-GARCH model. Estimation and
in-sample evaluation results are given in section 3. In section 4, we apply the
forecasting price to the gold price for trading in future contracts. The conclusion
is given in section 5.

2 ARIMA-GARCH Model.

Let Pt denoted the series of the financial price at time t and {rt}t>0 be a
sequence of random variables on a probability space (Ω, F, P ). For index t denotes
the daily closing observations and t = −R+1, ..., n. The sample period consists of
an estimation (or in-sample) period with R observations (t = −R + 1, ..., 0), and
an evolution (or out-of-sample) period with n observations (t = 1, ..., n), let rt be
the logarithmic return (in percent) on the financial price at time t i.e.

rt = 100 · ln(
Pt

Pt−1
)

2.1 ARMA Models

We can have combinations of the two processes to give a new series of mod-
els called ARMA(p, q) models. The general form of the ARMA(p, q) models is
following (Tsay, [13]):

rt = ϕ1rt−1 + ϕ2rt−2 + ...+ ϕprt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q
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which can be rewritten, using the summations as:

rt =

p∑
i=1

ϕirt−i+εt +

q∑
i=1

θjεt−j

or, using the lag operator:

rt(1− ϕ1L− ϕ2L
2 − ...− ϕpL

p) = (1− θ1L− θ2L2 − ...− θpLq)εt

Φ(L)rt = Θ(L)εt

In the ARMA(p, q) model the condition for stationarity has to deal with the
AR(p) part of the specification only.

2.2 Integrated Processes and the ARIMA Models : ARIMA
Models

An integrated series the ARMA(p, q) model can only be made on time series rt
that stationary. In order to avoid this problem, and in order to induce stationarity,
we need to detrend the raw data through a process called differencing

∆rt = rt − rt−1.

As most economic and financial time series show trends to some degree, we
nearly always end up taking first differences of the input series. If, after first
differencing, a series is stationary then the series is also called integrated to order
one, and denoted I(1).

If a process rt has an ARIMA(p, d, q) representation, the has an ARMA(p,q)
representation as presented by the equation below:

∆drt(1− ϕ1L− ϕ2L
2 − ...− ϕpL

p) = (1− θ1L− θ2L2 − ...− θpLq)εt

In general Box-Jenkins popularised a three-stage method aimed at selecting
an appropriate (parsimonious) ARIMA model for the purpose of estimating and
forecasting a univariate time series. Three stages are:

• Identification: A comparison of the sample ACF and PACF to those of
various theoretical ARIMA processes may suggest several plausible models.
If the series is non-stationary the ACF of the series will not die down or
show signs of decay at all. A common stationarity-inducing transformation
is to take logarithms and then first differences of the series. Once we have
achieved stationarity, the next step is to identify the p and q orders of the
ARIMA model.

• Estimation: In this second stage, the estimated model are compared using
AIC and SBC.

• Diagnostic checking: In the diagnostic checking stage we examine the good-
ness of fit of the model. We must be careful here to avoid overfitting (the
procedure of adding another coefficient in appropriate). The special statis-
tics that we use here is the Box-Piece statistic (BP) and the Ljung-Box (LB)
Q-statistic, which serve to test for autocorrelations of the residual.
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3 GARCH Model

The generalised autoregressive conditional heteroskedasticity (GARCH) model,
developed by Engle [2] and Bolleslev [3], has been proven to be a useful tool to em-
pirically capture the momentum in conditional variance. Under GARCH, shocks
to variance persist according to an autoregressive moving average (ARMA) struc-
ture of the squared residuals of the process. The GARCH(p,q) model allows the
conditional variance of the random disturbance to depend linearly on the past be-
haviour of the squared errors. Moreover, the GARCH(1,1) specification has proven
to be an adequate representation for most financial time series. The GARCH (1,1)
model for the series of the returns rt can be written as (Marcucci, [14])

rt = µt + εt = µt + ηt
√
ht; ht = α0 + α1ε

2
t−1 + β1ht−1

where µt is ARIMA process of rt, α0 > 0, α1 ≥ 0 and β1 ≥ 0 are assumed to be
non-negative real constants to ensure that ht ≥ 0. We assume ηt is an i.i.d. process
with zero mean and unit variance.

4 Forecasting the Gold Price and Volatility

We forecast financial price at k-step-ahead with ARIMA-GARCH models. De-
note r̂t,t+k as k-step-ahead forecasting logarithm return of financial price at time
t depend on Ft−1 . We compute as: The general form of the ARMA(p, q) models
is following:

rt = ϕ1rt−1 + ϕ2rt−2 + ...+ ϕprt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

r̂t,t+k = Et−1[rt+k] = ϕ1r̂t+k−1 + ϕ2r̂t+k−2 + ...+ ϕpr̂t+k−p

Forecasting financial price one-step-ahead, we combine in log-return of financial
price is

P̂t+1 = Pt · exp

[
ϕ1r̂t+k−1 + ϕ2r̂t+k−2 + ...+ ϕpr̂t+k−p

100

]
.

Forecasting financial price one-step-ahead, we use combine in log-return of financial
volatility of GARCH(1,1) is ĥt+1 = E(ht) = α0 + α1E(ε2t−1) + β1E(ht−1).
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5 Empirical Methodology and Model Estimation
Results

5.1 Data

The data set used in this study is the daily closed prices of Gold price(Pt) over
the period 2/01/2015 through 31/03/2016 (t =1,,313 observations). The data set
is obtained from the basis of the London Gold Market Fixing Limited on a day
and the foreign exchange rate for Baht to US dollars announced by TFEX (The
Thailand Futures Exchange) on a day, after conversion for weight and fineness.
The data set is divided into in-sample (R =291 observations) and out-of-sample
(n =23 observations). The plot of Pt and log returns series(rt) are given in Figure
1. Plot Pt and rt displays usual properties of financial data series. As expected,
volatility is not constant over time and exhibits volatility clustering with large
changes in the indices often followed by large changes, and small changes often
followed by small changes.

Figure 1: Graph of Gold price closed prices and returns series for the period
2/01/2015 through 31/03/2016.

Descriptive statistics of rt are represented in Table 2. As Table 2 shows, rt has
a positive average return of 0.0143. The daily standard deviation is 0.99257. The
series also displays a negative skewness of 0.328 and an excess kurtosis of 1.507.
These values indicate that the returns are not normally distributed, namely it has
fatter tails because skewness does not equal zero and kurtosis is less than 3. Also,
the Jarque-Bera test statistic of 30.48 confirms the non-normality of rt. And the
Augmented Dickey-Fuller test of -6.0134 indicates that rt is stationary.
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5.2 ARIMA Model

Since the data is for the return of gold, Figure 1, shows that the series is
stationary. The ACF and PACF of the original data, as shown in Figure 2, show
that the return data is stationary. Therefore, an ARIMA (p, 0, q) model could be
identified.

After the ARIMA model was identified above, the p and q parameters need
to be identified for our model. In Figure 2, we have one autoregressive (p) and
moving average (q) parameter and the ACF has exponential decay starting at lag
3 and 5.. Since we have identified for the return data our tentative model will be
ARIMA (1, 0, 1) and ARIMA (2, 0, 2).

Figure 2: ACF and PACF of Gold price closed prices and returns series.
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After we fitted ARIMA (1, 0, 1) and ARIMA (2, 0, 2) for our data. We need
to estimate the parameters values for our model. As a rule of thumb, in ARIMA
modelling we need to minimize the sum squared of the residuals which need to be
minimized between the forecasted and existing values. We found the sum squared
of the residuals for the model ARIMA (2, 0, 2) was 277.1189 and the values of the
parameters are shown in Table 3 as follows:

The ARIMA(2,0,2) gives the best performance for forecasting return of gold.
The model as:

(1 + 0.27521262B − .80497967B2)rt = (1− 0.37828030B + 0.84936001B2)εt

Figure 3 shows the time series plot of actual return according to ARIMAs forecast
of return.

Figure 3: Graph of Gold price returns series and forecast with ARIMA(2,0,2).
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The autocorrelation functions (ACF) test the significance level of autocorre-
lation in Table 4, when we apply Ljung Box and Q-test. The null hypothesis of
the test is that there is no serial correlation in the return series up to the specified
lag. Serial correlation in the Pt is confirmed as non-stationary but rtis station-
ary. Because the serial correlation in the squared returns is non-stationary this
suggests conditional heteroskedasticity. Therefore, we analyse the significance of
autocorrelation in the squared mean adjusted return (rt − δ)2series by Ljung-Box
Q-test. And apply Engles ARCH test.

5.3 GARCH Models

This empirical part adopts GARCH models to estimate the volatility of the
Pt. In order to account for the fat tails feature of financial returns, we consider
three different distributions for the innovations: Normal (N), Student-t (t) and
Generalised Error Distributions (GED).

Table 5 presents an estimation of the results for GARCH models. It is clear
from the table that almost all parameter estimates in GARCH type are highly
significant at 5 percent.
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6 Trading Future Contract with Forecast
Volatility and Forecast Price

The aim of this study is to evaluate the profitability of applying different
models to the volatility of gold prices. We assumed the market is a perfect market
and the positions in our strategy are not longer than one day as described below.
We applied the Bollinger band indicator and we used samples of 23 days from 1 to
31 March 2016 (We trade one contract in GF10J16 series is future contract in gold
price with maturity date at April 2016) to trade in one contract with day by day
and we did not include settlement, return do not include cost price i.e. margin,
fee charged. The strategy, firstly we forecast close price in the trading day (Ĉt+1)
if forecast close price greater than open price (Ot+1), we will long position. The
net daily rate of return for long position is computed as follows (N. Sopipan et al.,
[15]):

Rt+1 = Ct+1 − (Ot+1 −m ·
√
ĥt+1)

whereRt+1, Ct+1, Ot+1 are the return, forecast close, open price, ĥt+1 is forecasting

volatility at next day (t+1) and m ∈ Z+ is constants. If forecast close price (Ĉt+1)
less than open price (Ot+1), we will short position The net daily rate of return on
a short position is computed as follows:

Rt+1 = (Ot+1 +m ·
√
ĥt+1)− Ct+1

Table 6 shows that the cumulative of return with ARIMA(2,0,2)-GARCH-N model
and the ARIMA(2,0,2)-GARCH-GED model give cumulative of return more than
the ARIMA(2,0,2)-GARCH-t models when we use m=35.

7 Conclusion

In this paper, we forecast volatility of gold prices using ARIMA-GARCH mod-
els. All models are estimated under three distributional assumptions which are
Normal, Student-t and GED.

We first analyse in-sample performance of various volatility models to deter-
mine the best form of the volatility model over the period 2/01/2015 through
31/03/2016. As expected, volatility is not constant over time.

Descriptive statistics of return series are represented by returns with fatter
tails. The Augmented Dickey-Fuller test indicates gold price log returns are sta-
tionary. Serial correlation in the gold price confirms it is non-stationary but serial
log returns of gold price are stationary.

We found that the ARIMA(2,0,2) gives the best performance for forecast-
ing return of gold. Serial correlation in the squared returns suggests conditional
heteroskedasticity. This empirical part adopts GARCH models to estimate the
volatility of the gold price. In order to account for fat-tailed features of financial
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returns, we consider three different distributions for the innovations. Almost all
parameter estimates in GARCH models are highly significant at 5 percent.

The trading details we have used describe forecasts of the closed price of
the gold price between 1 to 31 March 2016 and trading in gold future contract
(GF10J16). We found that the cumulative of return with ARIMA(2,0,2)-GARCH-
N model and the ARIMA(2,0,2)- GARCH-GED model give cumulative of return
more than the ARIMA(2,0,2)-GARCH-t models when we use m=35.

For further study, three or four volatility regimes setting can be considered
rather than two-volatility regimes. Also, using Markov Regime Switching with
other volatility models e.g. EGARCH, GJR. In addition, the performance of
MRS-GARCH models can be hedged in future for long and short positions.
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