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Abstract : For each z ∈ Zd, we define random scenery on the integer lattice Zd
as {ξz : z ∈ Zd} where each ξz are identical and independent random variables
with finite mean and variance. For a simple symmetric random walk on Zd in
dimension d ≥ 3, we focus on Xn :=

∑
z∈Vn ξz, where Vn is the lattice visited

by the walk by time n. We investigate that Xn satisfies large deviation principle
with explicitly given rate functions. The expectation and variance of Xn can also
be calculated. This is an extended result from the large deviation result on the
number of sites visited by a simple random walk.
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1 Introduction

Let (Sn : n = 1, 2, . . .) be a simple symmetric random walk on the integer
lattice Zd, i.e. Sn =

∑n
i=1Xn for X1, X2, . . . a sequence of independent, identi-

cally distributed random vectors with P(X1 = ei) = P(X1 = −ei) = 1
2d , where

e1, e2, . . . , ed are the orthogonal unit vectors on Zd. Polya [1] show that the prob-
ability that the random walk will not return to the origin is positive for dimen-
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sion three or more. Later on, Dvoretzky and Erdös [2] investigate the number
of lattice sites Rn visited at least once by the random walk up to time n, i.e.
Rn = ]{S1, . . . , Sn}, and they prove that, for dimension three or more, E(Rn) is
associated with the non-return probability and of order n. Let Vn be the set of sites
visited at least once by the random walk up to time n. Furthermore, define random
scenery for each lattice z ∈ Zd as {ξz : z ∈ Zd} to be independent and identically
distributed random variables with finite mean and variance, independent of (Sn).
In this work, we focus on Xn, which is defined as

Xn :=
∑
x∈Vn

ξx.

Clearly, Xn depends on two randomnesses, (i) from the distribution of Rn, and
(ii) from the distribution of ξ.
Note that, by setting ξz = 1 for all z ∈ Zd, Xn simply equals to Rn. The
properties of Rn has been well-studied, such as expectation, variance, the strong
law of large number [2], and the central limit theorem [3, 4]. In 1979, Donsker and
Varadhan [5] discover the limit behaviour of Rn for d ≥ 3 in an exponent form:

lim
n→∞

n−d/(d+2) logE exp(−θRn) = −k(θ, d), (1.1)

for any θ > 0, where k(θ, d) is a constant. Later on, it turns out that the study
coincides with theory of large deviation [6]. Large deviation theory deals with an
exponential decay of the probability of increasingly unlikely events. It is one of the
key techniques of modern probability. Applications of large deviation theory arise,
for example, in statistical mechanics, information theory and insurance. Note that,
large deviation theory compliments the well-known central limit theorem result in
the sense of how fast the decay in the event that sample mean deviates from its
expectation, which is very unlikely event by laws of large numbers. The definition
of large deviation principle is in Section 2.1. To point out an example of large
deviation theory, we can transform (1.1), by the Gärtner-Ellis theorem [7], into

lim
n→∞

n−d/(d+2) logP{Rn ≤ νnd/(d+2)} = −J(ν),

for explicitly given function J(ν). We can see that the decay depends on n−d/(d+2)

and J(ν). It also turns out that central limit theorem can also be described by
the large deviation theory [4, 8], see Theorem 2.4. More large deviation results on
Rn are in [4, 5, 9, 10, 11, 12, 13].

It is worth to say that Xn is not a random walk in random scenery, Wn,
which is defined as Wn =

∑n
i=1 ξSi . For the process Wn, random walk collects

energies in every visit, while for the process Xn, the walk only collect energies at
newly visited point. Clearly, Xn ≤Wn when ξz is non negative random variables.
Random walk in random scenery is a family of stationary processes exhibiting
amazing rich behaviour, including large deviation behaviour. The large deviation
results of random walk in random scenery are, for example, in [14, 15].
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Our main aim of this article is to investigate expectation and variance, as
well as the large deviation behavior of Xn. The rest of this paper is organised
as follows: In Section 2, we provide background definitions, notations and related
results on our random walk model. Then, Section 3 provides our main results.

2 Preliminaries

In this section, we first describe the large deviation principle. Then, we give
definitions and notations of random walk, random scenery and the quantities we
study. Finally, we quote the related results concerning our study.

2.1 Large Deviation Principle

2.1.1 Definition

Consider a sequence of random variable X1, X2, . . . in a general metric space
M and consider events of the type {Xn ∈ A} where A ⊂ M is a Borel set. We
now give the definitions of a rate function and a large deviation principle.

Definition 2.1. For a metric space M , the function I : M → [0,∞] is called

• a rate function if it is lower semicontinuous, which means that the level sets
Na := {x ∈M : I(x) ≤ a} are closed for any a ≥ 0;

• a good rate function if the level sets Na are compact for any a ≥ 0.

Definition 2.2. A sequence of random variable X1, X2, . . . with values in a metric
space is said to satisfy a large deviation principle with

• speed an (which tends to infinity as n→∞) and

• rate function I,

if, for all Borel sets A ⊂M ,

lim sup
n→∞

1

an
logP{Xn ∈ A} ≤ − inf

x∈cl(A)
I(x),

and

lim inf
n→∞

1

an
logP{Xn ∈ A} ≥ − inf

x∈int(A)
I(x).

Remark 2.3. (a) Loosely speaking, the probability of occurring of the event
{Xn ∈ A} decreases exponentially fast.

(b) In the case I(x) = +∞, it implies that the probability of occurring of the
event {Xn ∈ A} decays slower than speed an.
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2.1.2 Central Limit Theorem as a Large Deviation Principle

Consider independent and identically distributed sequence of Y, Y1, Y2, . . . with
mean µ and variance σ2. Define Sn =

∑n
i=1 Yi as a partial sum up to time n. Note

that by the weak law of large number Sn
n → µ as n → ∞. Also, by the central

limit theorem, we have

lim
n→∞

P
{Sn − µn

σ
√
n
≤ a

}
→ Φ(a) as n→∞

where Φ is the distribution of a standard normal random variable. To describe
how the probabilities P{ 1

nSn > µ+ ε} decays as a function of ε, it turns out that
finer features of the random variable Y rather than the finiteness of its variance
is required, namely the existence of cumulant generating function condition:

ϕ(λ) := logEeλY1 <∞ for all λ ∈ R. (2.1)

If (Yi)i≥0 satisfy the above condition, the large deviation probability decays expo-
nentially and Cramér’s theorem tells us exactly how fast of the decay.

Theorem 2.4 (Cramér’s theorem [7]). Let Y1, Y2, . . . be independent and identi-
cally distributed random variables with mean µ, logE

(
eλY1

)
< ∞ for all λ ∈ R,

and define Sn =
∑n
i=1 Yi. Then, for any y > µ, we have

lim
n→∞

1

n
logP{ 1

n
Sn ≥ y} = −ϕ∗(y),

where ϕ∗(y) is given by

ϕ∗(y) := sup
λ∈R
{λy − ϕ(λ)}

is the Legendre transform of ϕ.

Example 2.5. (a) If Y1 ∼ ber(p), then it can be shown that

ϕ∗(y) =

{
y log(y/p) + (1− y) log(1−y

1−p ), if y ∈ [0, 1],

+∞, otherwise.

(b) If Y1 ∼ Poi(θ), then it can be shown that

ϕ∗(y) =

{
θ − y + y log(y/θ)), if y ≥ 0,
+∞, otherwise.

(c) If Y1 ∼ N (0, σ2), then ϕ∗(y) = y2/2σ2.

Remark 2.6. Note that the central limit theorem tells us by how much the partial
sum normally exceeds its average, namely by an order of

√
n. More precisely,

P{Sn − µn ≥
√
nx} → 1− Φ(x/σ) > 0.
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This implies that for any sequence an with
√
n� an � n∗, we still have

P{Sn − µn ≥ an} → 0,

and neither the central limit theorem nor Cramér’s theorem tells us how fast this
convergence is. The answer of this question is by a moderate deviation principle
stated below

Theorem 2.7 (Moderate deviation principle [7]). Assume the same condition of
Y1, Y2, . . . as in Theorem 2.4. If

√
n� an � n, we have, for all y > 0,

lim
n→∞

n

a2
n

logP{Sn − µn ≥ yan} = − y2

2σ2
.

Remark 2.8. (a) By Definition 2.2 and Theorem 2.4, 1
nSn satisfy a large de-

viation principle with speed n and good rate function ϕ∗.

(b) By Definition 2.2 and Theorem 2.7, for any sequence
√
n � an � n, the

random variables

Sn − µn
an

satisfy a large deviation principle with speed a2
n/n and good rate function

I(y) = y2/2σ2.

2.2 Random Walk and Random Scenery

Definition 2.9. A simple symmetric random walk on the integer lattice Zd is the
sequence (Sn : n = 1, 2, . . .), such that

Sn =

n∑
i=1

Xn

where X1, X2, . . . are a sequence of independent, identically distributed random
vectors with P{X1 = ei} = P{X1 = −ei} = 1

2d , where e1, e2, . . . , ed are the
orthogonal unit vectors on Zd.

Definition 2.10. For a simple symmetric random walk (Sn : n = 1, 2, . . .), we
define

(a) Vn := {x ∈ Zd : Si = x for some 1 ≤ i ≤ n} is the set of sites in Zd that is
visited at least once by the random walk up to time n, and,

(b) Rn := ]{S1, . . . , Sn} is the number of lattice sites visited at least once by
the random walk up to time n.

∗ we define an � bn when limn→∞ bn/an =∞
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Definition 2.11 (Random scenery). For z ∈ Zd, we define random scenery as
{ξz : z ∈ Zd} where ξz are identical and independent random variables with finite
mean µ and finite variance σ2, independent of (Sn).

Remark 2.12. We may think of this random scenery as energies that embedded
on each integer lattice.

Next, we define Xn, our main quantity of interest.

Definition 2.13. Define the total energies collected by the random walk up to
time n by

Xn :=
∑
x∈Vn

ξx.

Remark 2.14. (a) From Definition 2.13, we can write

Xn =
∑
x∈Zd

ξx1{x∈Vn},

where 1{·} is an indicator function.

(b) In this set up, the random walk always collect energies from only newly-visit
sites.

2.3 Related Results on Rn

2.3.1 Expectation and Variance

One of the typical questions to be asked is what is the expected value and
the variance of Rn. This question has been answered by Dvoretzky and Erdös [2].
Before we quote the theorem, we first need to define the non-return probability of
random walk on Zd:

κ := κ(d) = P{Si 6= 0 for all i ≥ 1}, (2.2)

i.e. κ is the probability of the event that the random will never return to the
origin. Polya [1] prove that the non-return probability is positive for dimension
three or more.

Theorem 2.15. As n→∞,

E(Rn) =

 κn+O(n1/2), if d = 3,
κn+O(log n), if d = 4,
κn+ cd +O(n2−d/2), if d ≥ 5,

where cd are positive constants depending on the dimension d ≥ 5. Furthermore,
it also satisfies the strong law of large numbers,

lim
n→∞

Rn
ERn

= 1 almost surely.
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We can see that the expected value of Rn is of order n. Next, we quote the
exact order of the variance of Rn proved by Jain and Orey [3] for d ≥ 5 and by
Jain and Pruitt [4] for d ≥ 3:

Theorem 2.16.

var(Rn) �
{
O(n log n), for d = 3,
O(n), for d ≥ 4,

where we write f(n) � O
(
g(n)

)
implies that, for some positive constants c1, c2,

c1g(n) ≤ f(n) ≤ c2g(n),

for all large n.

2.3.2 Large Deviation Principle for Rn

Phetpradap [11] proves the large deviation result for deviations below the typ-
ical value of Rn.

Theorem 2.17. Let d ≥ 3. For every b > 0,

lim
n→∞

1

n
d−2
d

logP{Rn ≤ bn} = −1

d
Iκ(b), (2.3)

where

Iκ(b) = inf
φ∈Φκ(b)

[1

2

∫
Rd
|∇φ|2(x) dx

]
, (2.4)

with

Φκ(b) =
{
φ ∈ H1(Rd) :

∫
Rd
φ2(x)dx = 1,

∫
Rd

(1− e−κφ
2(x))dx ≤ b

}
, (2.5)

where H1 ≡W 1,2 is the Hilbert-Sobolev space.

Remark 2.18. As the deviations we are interested in are on the scale of the mean,
some may consider this as a moderate deviation result. A large deviation result
(where the range is assumed to be on a much smaller scale than the mean) was
given by Donsker and Varadhan in [5]. They show that for any b > 0,

lim
n→∞

n−d/(d+2) logP
{
Rn ≤ bnd/(d+2)

}
= −J(b),

where

J(b) =
(d+ 2

2

)( d

2αd

) 2(b−1)
d−2 − b

( b

2αd

)b
,

and αd is the lowest eigenvalue of −(1/2)4 for the sphere of unit volume in Rd
with zero boundary values. Note that this result has been transformed from the
original result by the Gärtner-Ellis Theorem.



224 Thai J. Math. (Special Issue, 2018)/ P. Phetpradap

Let us finally mention the result for deviations above the typical value on the
scale of the mean, which is due to Hamana and Kesten [10]. They show that the
large deviation behaviour in upward direction exists.

Theorem 2.19. For d ≥ 3, the function

ψ(θ) = lim
n→∞

−1

n
logP{Rn ≥ θn}

exists for all θ, and satisfies

ψ(θ) = 0, for θ ≤ κ
0 < ψ(θ) <∞, for κ < θ ≤ 1

ψ(θ) =∞, for θ > 1.

3 Main Results

In this section, we make some remarks for the behaviour of Xn. Theorem 3.1
provides expectation and variance of the process Xn, while Theorem 3.2 shows its
large deviation behaviour.

Theorem 3.1. Expectation and variance of Xn

(a)

E(Xn) =

 κµn+O(n1/2), if d = 3,
κµn+O(log n), if d = 4,
κµn+ cd +O(n2−d/2), if d ≥ 5,

(b)

var(Xn) �
{
O(n log n), for d = 3,
O(n), for d ≥ 4,

Proof. We write ER(varR) as the expectation(variance) with respect to Rn, and
Eξ(varξ) as expectation(variance) with respect to {ξz}. Since Xn =

∑
x∈Vn ξx, we

can write this as a random sum

Xn =

Rn∑
i=1

ξ̂i,

where ξ̂1, ξ̂2, . . . are i.i.d. random variables with the same distribution as ξz.

(a) By the tower rule, we have

E(Xn) = ER(Eξ(Xn|Rn)) = ER(µRn).

Hence, the result follows by Theorem 2.15. Note that the order of error
terms in each dimension remains the same.
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(b) By the conditional variance formula, we have

var(Xn) = varR
(
Eξ(Xn|Rn)

)
+ ER

(
varξ(Xn|Rn)

)
= varR(µRn) + ER(σ2Rn)

= µ2varR(Rn) + σ2ER(Rn)

Note that, by Theorem 2.15 and Theorem 2.16, the orders of expectation and
variance are, respectively, n and n log n in d = 3, and n and n in d ≥ 4.

Theorem 3.2 (Large deviation for Xn). Let d ≥ 3. For every b > 0,

lim
n→∞

1

n
d−2
d

logP({Xn ≤ bµn} = −1

d
Iκ(b), (3.1)

where Iκ(b) is the same rate function given in (2.4).

Proof. Note that by Theorem 3.1, we have E(Xn) is approximately equal µκn. So,
it is sensible to consider the large deviation on the scale of order n. Hence, we will
now consider the event of the type P

{
1
µnXn < b

}
. Note that, we only consider

only the case b ≤ κ, otherwise, the event become typical and the rate function will
be infinite. Now, by conditional probability, we can write

P
{ 1

µn
Xn < b

}
=
∑
Rn

PR
{ 1

n
Rn < b

}
Pξ
{ 1

n

∑
y∈Vn

ξy < µ|Rn
}
,

where PR and Pξ are probabilities with respect to Rn and ξz respectively. Note
that, by Theorem 2.17, 1

nRn satisfies the large deviation principle with speed

n(d−2)/d and rate function 1
dI
κ(b). Next, the average value of i.i.d. random vari-

ables {ξy} for y ∈ Vn tends to its expectation as n tends to infinity due to the
central limit theorem. This is because the order of Rn is n by Theorem 2.15.
Hence, condition on Rn, 1

n

∑
y∈Vn ξy satisfies the large deviation principle with

speed n and rate function ϕ∗(µ). Since the speed from the first probability is
slower, the decay rate of Xn is influenced by the large deviation behaviour from
Rn. The rate function of event {Xn ≤ bκn} is the same as in Theorem 2.17 as Rn
is the dominated term.
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