The Eigenvalue and Fixed-Point Theorem for

some Nonlinear Mapping on Near-algebra

and Banach Algebra

ANSHENG YANG AND EORGE YUAN

Abstract

Let a (p, q)-additive selfmap f on near-algebra or Banach algebra X satisfy $f(e)=e$ and $f(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)$, where $\phi: X \rightarrow X$ and $\varphi:$ $X \rightarrow D E S(X)$ be an automorphism and antiautomorphism respectively such that $\phi(u)=u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then the selfmap f has the common eigenvalue and fixed point all of the normal invertibles of X.

Keywords : fixed point, near-algebra, Banach algebra, automorphism, antiautomorphism, normal invertible, eigenvalue.
2002 Mathematics Subject Classification : 47h;49:988f;94f; 87 m

1 Introduction

The materials [1-7] show that the study to near-ring is surpassed the close range of pure abstract algebra. In this paper we introduce the concept of near-algebra, and try to explore a special way to research some fixed-point and eigenvalue questions in range of functional analysis by means of abstract algebraic method [8]. J. Vukman [9] studied derivations in prime rings and Banach algebras and some functional equation in Banach algebras [8], and Wang [10] had discussion for derivations in prime near-rings. J. E. Andersen [11] researched fixed points of the mapping class group in the $S U(n)$ moduli spaces. Now we are interested in the following questions: 1. Which mapping has fixed point in near-algebras and Banach algebras? 2. What mapping has eigenvalue in near-algebras and Banach algebras? The study to fixed points should be introduced into near-algebras and Banach algebras. This paper tries give one way to answer the questions above.

2 Definitions

A set X, together with two binary operations + and \cdot, is called a (left) near-ring, denoted $(X,+, \cdot)$, if: (i) $(X,+$) is a group (not necessarily abelian); (ii) (X, \cdot) is a semigroup; (iii) $x(y+z)=x y+x z$ for all $x, y, z \in X$. An element $d \in X$ is called distributive if $(x+y) d=x d+y d$ for all $x, y \in X$. The subset $D E S(X)$ of the distributive elements in X forms a subsemigroup of $(X, \cdot)[11]$. A (left) nearring $(X,+, \cdot)$ with identity e over scalars K is called a (left) near-algebra over K, denoted $(X, K,+, \cdot)$, if for any x in X and λ in K, a product $\lambda x \in X$ is defined in such a way that the following rule holds: $\lambda(x y)=(\lambda x) y=x(\lambda y), y \in X$. Clearly, Banach algebra is a special case of near-algebra.

Definition 1. A mapping $f: X \rightarrow X$ is called (p, q)-additive, if there are $p, q \in K, q \neq 0$, such that $f(e \pm u)=p f(e) \pm q f(u)$ for any invertible element u in X, where X is a near-algebra, with identity e, over scalars K.Obviously, (p, q) additive mappings must not be additive hence they are nonlinear.

Definition 2. An invertible element u in X is called to be normal if $(e-u)^{-1}$ existing in X.

3 Eigenvalue and Fixed-Point Theorems on Nearalgebra and Banach Algebra

Theorem 1. Let $(X, K,+, \cdot)$ be a left near-algebra, with identity e, over scalars K. Let a (p, p)-additive selfmap f of X satisfy $f(e)=e$ and $f(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)$ where $\phi: X \rightarrow X$ and $\varphi: X \rightarrow D E S(X)$ be an automorphism and antiautomorphism (i.e., $\varphi(u v)=\varphi(v) \varphi(u)$) respectively such that $\phi(u)=u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then all of the normal invertibles of X have the common eigenvalue, of map $f, \lambda=2 p /(1+p)$ where $p \neq-1$.

Proof of Theorem 1. Obviously, $N=\{$ all of the normal invertibles of X$\} \neq \Phi$, for example, $e / 2 \in N$.Let

$$
\begin{equation*}
g(u)=f(u)-u \tag{1}
\end{equation*}
$$

\qquad
then

$$
\begin{equation*}
g(e)=f(e)-e=0 \tag{2}
\end{equation*}
$$

Now we assume that f is (p, q)-additive and

$$
\begin{equation*}
e=(e-u)^{-1}(e-u)=(e-u)^{-1}-(e-u)^{-1} u \tag{3}
\end{equation*}
$$

hence

$$
\begin{gather*}
g(e \pm u)=p f(e) \pm q f(u)-(e \pm u)= \pm q g(u)+(p-1) e \pm(q-1) u \ldots \ldots(4) \tag{4}\\
g\left((e-u)^{-1}\right)=g\left(e+(e-u)^{-1} u\right)=q g\left((e-u)^{-1} u\right)+(p-1) e+(q-1)(e-u)^{-1} u \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
g\left(u^{-1}\right)=g\left(e+u^{-1}(e-u)\right)=q g\left(u^{-1}(e-u)\right)+(p-q) e+(q-1) u^{-1} \tag{6}
\end{equation*}
$$

On the other side, from $\varphi(u) \in D E S(X)$ and other conditions of the theorem, we obtain

$$
\begin{gathered}
\phi(u) g\left(u^{-1}\right) \varphi(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)-\phi(u) u^{-1} \varphi(u)=f(u)-u \varphi\left(u^{-1}\right) u u^{-1} \varphi(u)= \\
g(u) \ldots(7)
\end{gathered}
$$

Now we have from (1)-(7)

$$
g(u)=\phi(u) g\left(u^{-1}\right) \varphi(u)
$$

$=\phi(u)\left[q g\left(u^{-1}(e-u)\right)+(p-q) e+(q-1) u^{-1}\right] \varphi(u)$
$=q \phi(u) g\left(u^{-1}(e-u)\right) \varphi(u)+(p-q) \phi(u) \varphi(u)+(q-1) u \varphi\left(u^{-1}\right) u u^{-1} \varphi(u)$
$=q \phi(u) \phi\left(u^{-1}(e-u)\right) g\left((e-u)^{-1} u\right) \varphi\left(u^{-1}(e-u)\right) \varphi(u)+(p-q) \phi(u) \varphi(u)+(q-1) u$
$=q \phi\left(u u^{-1}(e-u)\right) g\left((e-u)^{-1} u\right) \varphi\left(u u^{-1}(e-u)\right)+(p-q) \phi(u) \varphi(u)+(q-1) u$
$=q \phi(e-u) g\left((e-u)^{-1} u\right) \varphi(e-u)+(p-q) \phi(u) \varphi(u)+(q-1) u$
$=\phi(e-u)\left[g\left((e-u)^{-1}\right)+(1-p) e+(1-q)(e-u)^{-1} u\right] \varphi(e-u)+(p-q) \phi(u) \varphi(u)+$
$(q-1) u$
$=\phi(e-u) \phi\left((e-u)^{-1}\right) g(e-u) \varphi\left((e-u)^{-1}\right) \varphi(e-u)+r(u)$
$=\phi\left((e-u)(e-u)^{-1}\right) g(e-u) \varphi\left((e-u)(e-u)^{-1}\right)+r(u)$
$=g(e-u)+r(u)$
$=-q g(u)+(p-1) e+(1-q) u+2(q-1) u+(1-p) e+(p-q)(\phi(u)+\varphi(u))$
$=-q g(u)+(q-1) u+(p-q)(\phi(u)+\varphi(u))$
where
$r(u)=(1-p) \phi(e-u) \varphi(e-u)+(1-q) \phi(e-u)(e-u)^{-1} u \varphi(e-u)+(p-$
q) $\phi(u) \varphi(u)+(q-1) u$
$=(1-p) \phi(e-u) \varphi(e-u)+(1-q) \phi(e-u)\left[(e-u)^{-1}-e\right] \varphi(e-u)+(p-$
q) $\phi(u) \varphi(u)+(q-1) u$
$=(1-p) \phi(e-u) \varphi(e-u)+(1-q)\left[\phi(e-u)(e-u)^{-1} \varphi(e-u)-\phi(e-u) \varphi(e-u)\right]$
$+(p-q) \phi(u) \varphi(u)+(q-1) u$
$=(1-q)(e-u) \varphi\left((e-u)^{-1}\right)(e-u)(e-u)^{-1} \varphi(e-u)+(q-1) u+(q-p)[\phi(e-$
u) $\varphi(e-u)-\phi(u) \varphi(u)]$
$=(1-q)(e-u) \varphi\left((e-u)(e-u)^{-1}\right)+(q-p)[(e-\phi(u))(e-\varphi(u))-\phi(u) \varphi(u)]+$ $(q-1) u$
$=(1-q)(e-u) \varphi(e)+(q-p)[e-\phi(u)-\varphi(u))+\phi(u) \varphi(u)-\phi(u) \varphi(u)]+(q-1) u$
$=(1-p) e+2(q-1) u+(p-q)(\phi(u)+\varphi(u))$
there
$(1+q) g(u)=(p-q)(\phi(u)+\varphi(u))-(1-q) u$
Obviously, (8) and (1) yields the following conclusions:
(i) $f(u)=\lambda u, \lambda=2 q /(1+q)$, ifp $=q \neq-1$;
(ii) $f(u)=u, i f(p-q)(\phi(u)+\varphi(u))=(1-q) u, a n d q \neq-1$;
(iii) $\phi(u)+\varphi(u)=\lambda u, \lambda=2 /(1+q)$, ifp $\neq q=-1$.

Since a Banach algebra is a near-algebra and $X=\operatorname{DES}(X)$, we can get the following result by Theorem 1.

Theorem 2. Let $(X, K,+, \cdot)$ be a Banach algebra, with identity e, over scalars K. Let a (p, p)-additive selfmap f of X satisfy $f(e)=e$ and $f(u)=$ $\phi(u) f\left(u^{-1}\right) \varphi(u)$ where $\phi: X \rightarrow X$ and $\varphi: X \rightarrow D E S(X)$ be an automorphism
and antiautomorphism (i.e., $\varphi(u v)=\varphi(v) \varphi(u)$) respectively such that $\phi(u)=$ $u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then all of the normal invertibles of X have the common eigenvalue, of map $f, \lambda=2 p /(1+p)$ where $p \neq-1$.

By Theorem 1, we see that all of the normal invertibles of X are the eigenvalue points of map f . Thus, The following result is naturally obtained

Theorem 3. Let $(X, K,+, \cdot)$ be a left near-algebra, with identity e, over scalars K. Let an additive selfmap f,i.e., $f(x+y)=f(x)+f(y)$, of X satisfy $f(e)=e$ and $f(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)$ where $\phi: X \rightarrow X$ and $\varphi: X \rightarrow D E S(X)$ be an automorphism and antiautomorphism (i.e., $\varphi(u v)=\varphi(v) \varphi(u)$) respectively such that $\phi(u)=u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then all of the normal invertibles of X are the fixed points of map f.

Theorem 4. Let $(X, K,+, \cdot)$ be a Banach algebra, with identity e, over scalars K. Let an additive selfmap f,i.e., $f(x+y)=f(x)+f(y)$, of X satisfy $f(e)=e$ and $f(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)$ where $\phi: X \rightarrow X$ and $\varphi: X \rightarrow D E S(X)$ be an automorphism and antiautomorphism (i.e., $\varphi(u v)=\varphi(v) \varphi(u))$ respectively such that $\phi(u)=u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then all of the normal invertibles of X are the fixed points of map f.

Theorem 5. Let $(X, K,+, \cdot)$ be a left near-algebra, with identity e, over scalars K. Let a (p, q)-additive selfmap f of X satisfy $f(e)=e$ and $f(u)=$ $\phi(u) f\left(u^{-1}\right) \varphi(u)$ where $\phi: X \rightarrow X$ and $\varphi: X \rightarrow \operatorname{DES}(X)$ be an automorphism and antiautomorphism (i.e., $\varphi(u v)=\varphi(v) \varphi(u)$) respectively such that $\phi(u)=$ $u \varphi\left(u^{-1}\right) u$ for each invertible u of X. Then all of the normal invertibles of X have the common eigenvalue, of map $\phi+\varphi, \lambda=2 /(1+p)$ where $p \neq q=-1$.

4 Remark

Remark The main result in [8] is the especial case of Theorem 4. Now let $F(x)=f(x)+x$. Clearly, $F(x)$ is additive if f is additive. When
$f(u)=\phi(u) f\left(u^{-1}\right) \varphi(u) \ldots \ldots . .(9)$
We have
$\phi(u) F\left(u^{-1}\right) \varphi(u)=\phi(u)\left(f\left(u^{-1}\right)+u^{-1}\right) \varphi(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)+\phi(u) u^{-1} \varphi(u)$.
On the other hand
$\phi(u) u^{-1} \varphi(u)=u \varphi\left(u^{-1}\right) u u^{-1} \varphi(u)=u \varphi\left(u^{-1}\right) \varphi(u)=u \varphi\left(u u^{-1}\right)=u \varphi(e)=$ u...(11)

From (9)-(11), we have
$\phi(u) F\left(u^{-1}\right) \varphi(u)=\phi(u) f\left(u^{-1}\right) \varphi(u)+\phi(u) u^{-1} \varphi(u)=f(u)+u=F(u) \ldots(12)$
Therefore $F(x)$ satisfies Theorem 4. Thus, all of the normal invertibles u of X are the fixed points of map $F(x)$, i.e., $u=F(u)=f(u)+u$, hence $f(u)=0$. So we get the main result of J. Vukman [8].

Acknowledgement. The authors would like to thank the referee for the helpful suggestions on this paper.

References

[1] S. J. Mahmood and J. D. P. Meldrum, On group d.g. near-rings, Proc. Amer. Math. Soc. 88(1983), 379-385.
[2] Carl Faith, Algebra I, Rings, Modules and Categories, New York, 1981.
[3] G. Pilz, Near-ring, North-Holland, Amsterdam (1983).
[4] N. J. Groenewald and P. C. Potgieter, On uniformly strongly prime nearrings, Math. Japonica, No. 4(1990), 667-673.
[5] Iwao Yakabe, Quasi-ideals in near-rings, Math. Rep. Kyushu Univ. 14(1983), 41-46.
[6] Iwao Yakabe, A characterization of near fields by quasi-ideals, Math. Japonica, No. 3(1985), 353-356.
[7] J. D. P. Meldrum, The group distributively generated near-ring, Pro. London Math. Soc. (3) 32(1976), 323-346
[8] J. Vukman, Some functional equations in Banach algebra and an application, Proc. Amer. Soc., 100 (1987), 133-136.
[9] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Soc., 116 (1992), 877-884.
[10] Xue-kuan Wang, Derivations in prime near-ring, Proc. Amer. Math. Soc.121(1994),361-366.
[11] J. E.Andersen, Fixed points of the mapping class group in the $\mathrm{SU}(\mathrm{n})$ moduli spaces, Proc. Amer. Math. Soc. 125(1997), 1511-1515
[12] M. Nagumo, Einige analytische Untersuchungen in linearen matrischen. Jap. J. Math.13(1936).61-80.
[13] J. Vukman, A result concerning additive functions in hermitian Banach*algebras and an application, Proc. Amer. Math. Soc. 91(1984), 367-372.
[14] J. Vukman, Some results concerning the Cauchy functional equation in certain Banach algebras, Bull. Austral. Math. Soc. 31(1985), 137-144.
[15] G. Betsch, Near-Rings and Near-Fields, North-Holland, Amsterdam, 1987, pp. 31-35.
[16] Yang Hansheng, A functional equation on Banach semi-algebras or semialgebras. Journal of Guizhou University, Vol. 12 No. 3 (1995), 145-152.

ANSHENG YANG
Department of Mathematics, Southwest University of
Science and Technology, Mianyang,Sichuan, P.R.China 621010

EORGE YUAN
KPMG-Dallas Center, 717 North Harwood Street
Dallas,Texas 75201,USA

