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Abstract : This work addresses the clustering problem with two types of clients
via the multiple depot vehicle routing problem (MDVRP). The objective function
is to minimize the total distance traveled in the system. Two algorithms are
proposed to tackle the difficulty of this problem. In the first algorithm, clients are
randomly assigned to their closet depots while in the second algorithm each depot
in the unassigned depot list is assigned sequentially to its nearest unassigned client.
Comparisons of solutions obtained from the proposed algorithms and the optimal
solutions show that in small size problems, the objective functions from the first
algorithm are closer to the optimal solutions than those from the second algorithm.
In larger problems, however, the second algorithm works better than the first
because the difference between the number of clients and number of depots is
increased. More feasible solutions can also be obtained from the second algorithm
in all problems sizes. It can thus be seen that the ratio between number of clients
and number of depots affects to the performance of the proposed algorithms.
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1 Introduction

An important issue in logistics is the efficiency of vehicle routing management
in minimizing the total transportation cost. Not only do system managers make
decisions on the number of used vehicles, they also have to specify which customers
are served by which vehicle and what sequence of customers is served by each
vehicle. This problem is known as the vehicle routing problem (VRP). Heuristics
are usually proposed to tackle its difficulty. Routing problem can also help solve
other issues such as clustering problems with the objective to minimize the total
travelling time or the distance traveled in the system, the latter of which is the
main focus of this study.

A clustering problem involves grouping a set of data using distance or simi-
larity measures among individual data. Clustering problems and algorithms have
been proposed by many researchers. Gonzalez [1] proposed an approximation algo-
rithm to solve the problem of clustering a set of points to minimize the maximum
intercluster distance. The complexity of this algorithm is O(nk) where n is the
number of points and k is the number of clusters. Bradley et al. [2] proposed
an approach for assigning points to clusters based on the concave minimization
model, by formulating a mathematical model to minimize the total distance from
each node to the nearest center and comparing it with other algorithms. Negreiros
and Palhano [3], addressing the capacitated centered clustering problem (CCCP),
found a set of clusters with limited capacity with minimum distance in each clus-
ter, and proposed a heuristic algorithm for solving this problem. Later, Chaves
and Lorena [4] proposed a metaheuristic algorithm for solving CCCP, the main
idea of the algorithm being to identify the searching space by generating solutions
and clustering them into groups that are subsequently explored with a local search
heuristic.

A clustering problem can be solved optimally using the traveling salesman
problem (TSP) as described in Lenstra and Kan [5] i.e. finding a cyclic per-
mutation of cities such that the total distance between adjacent cities under the
permutation is minimized. They transformed cities and the distance between the
corresponding cities as points and the distance between two points, respectively,
making the TSP route an optimal clustering of points with minimum total dis-
tance. Climer and Zhang [6] proposed an algorithm based on a variation of TSP
for clustering problems. A TSP variation, the vehicle routing problem (VRP),
deals with how we design and manage customer routing in order to minimize the
total cost (transportation or distance-based cost). Each route begins at the de-
pot or center, serves customers and ends back at the depot or center under the
conditions that each customer belongs to only one route and the total demand of
served customers cannot exceed the capacity of the serving vehicle. In VRP, the
system may involve multiple routes so as to minimize the total distance traveled.
Assigning customers to routes in VRP can be considered a clustering problem.
There are several VRPs depending on the types of service and limitations. Appli-
cations on real world problems include a VRP model in the collection of olive oil
in Tunisia, proposed by Lahyani et al.[7], and a waste collection problem described
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by Buhrkal et al. [8] who proposed an algorithm and applied it to a Danish com-
pany. One variant of VRP is multiple depot vehicle routing problem (MDVRP),
which involves finding routes with multiple depots.

There are 2 ways to solve VRP: Exact methods and heuristics. The exact
methods give the optimal solution but involve considerable execution time, so
they are only suitable for small size problems. Examples of the exact methods are
branch and bound, branch and cut and cutting plane methods. Christofides et
al. [9] proposed a branch and bound method for solving VRP and compared the
computational results with those from other methods. Laporte et al. [10] proposed
a class of multi-depot vehicle routing and location routing problems, which they
transformed into graph and then solved using a branch and bound algorithm. Bal-
dacci and Mingozzi [11] proposed an exact method for solving an extended model of
VRP, using LP-relaxation and Lagrangean relaxation to derive the lower bounds.
Even though heuristics may not yield optimal solutions, they are a popular method
for solving NP-hard problems because their execution time is measurably shorter
than that of the exact method. Many approximation algorithms also belong to
this class, including genetic algorithm, ant colony optimization and tabu search,
among others. Crevier et al. [12] studied a variant of MDVRP and proposed a
heuristic for solving an extension of MDVRP where depots can act as intermedi-
ate replenishment facilities along a route. The proposed algorithm combined the
adaptive memory principle and tabu search algorithm. Mancini [13] proposed a
mathematical formulation to minimize the total cost of delivery operations over a
fixed time-horizon. An Adaptive Large Neighborhood Search-based metaheuristic
was proposed and computational results were illustrated in this work. Wang et
al. [14] proposed a heuristic for solving the max-min split delivery multi-depot
vehicle routing problem with minimum service time requirement. Their heuris-
tic consists of 3 stages: initialization of a feasible solution without split service
time and no minimum service time requirement; improvement of the solution by
splitting service time but ignoring the minimum service time requirement via local
search; and solving linear programing with the added constraints to ensure that
minimum service time requirements are satisfied. Oliveira et al. [15] proposed a
cooperative coevolutionary algorithm to minimize the total cost of the MDVRP.
They decomposed the problem into subproblems, then solved subproblems and
simultaneously evolved solutions to the main problem.

In this work, we propose algorithms for assigning clients to clusters, where
each cluster consists of one depot and two types of clients, the objective being
to minimize the total distance traveled. The problem can be formulated as a
multiple depot vehicle routing problem serving two types of clients (suppliers and
customers) on each route. Currently available algorithms and heuristics are con-
structed to solve MDVRP with only one type of client, and so they cannot be used
to solve the problems being studied. The remainder of this paper is organized as
follows: The mathematical formulation is described in Section 2; the proposed
algorithms and operation counts are stated in Section 3; simulation results are
discussed in Section 4 and finally, the conclusions are given in Section 5.
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2 Mathematical Formulation

This section presents the mathematical programming of multiple depot capac-
itated vehicle routing problems (MDVRP). The MDVRP is defined by a graph
G = (V,A) where V = {1, 2, ..., p + m + n} denotes the set of nodes, and A =
{(i, j)|i, j ∈ V } denotes the set of edges between nodes i and j. The routing de-
noted as k = 1, 2, ..., p starts and ends at node i = 1, 2, .., p which are the depots
with Q capacity and a fixed cost for each depot as fi. The suppliers are indexed
as i = p+ 1, p+ 2, ..., p+m with a supply for each supplier as si. The clients are
indexed as i = p+m+ 1, p+m+ 2, ..., p+m+ n and the demand of each client
as di. The transportation cost from node i to node j is denoted as cij and can be
either the distance traveled or time spent. Decision variables are:

xkij =

{
1 , if edge (i, j) is in cluster k,

0 , otherwise

where i, j ∈ {1, 2, ..., p+m+ n}, k ∈ {1, 2, ..., p}.

ykj =

{
1 , if depot j is in cluster k,

0 , otherwise

where j ∈ {1, ..., p}, k ∈ {1, 2, ..., p}.

Let Xk = [xk1j x
k
2j ... x

k
(p+m+n)j ]

T , j ∈ {1, 2, ..., p+m+ n}

Y k = [ykj ]T , j ∈ {1, 2, ..., p}

Uk = [ukj ]T , j ∈ {p+ 1, p+ 2, ..., p+m+ n}

C = [c1j c2j ... c(p+m+n)j ], j ∈ {1, 2, ..., p+m+ n} and

F = [fj ], j ∈ {1, 2, ..., p}

min

p∑
k=1

CXk +

p∑
k=1

FY k (2.1)

s.t. A1X
k −B1Y

k = 0 (2.2)
p∑

k=1

A2X
k = 1 (2.3)

B2Y
k = 1 (2.4)

A3X
k = 0 (2.5)

p∑
k=1

A4X
k = 0 (2.6)
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p∑
k=1

A4X
k = 0 (2.7)

A5X
k ≤ D1 (2.8)

A6X
k + E1U

k ≤ D2 (2.9)

D3 ≤ E2U
k ≤ D4 (2.10)

Xk and Y k are binary

Uk ≥ 0

Objective function (2.1) is to minimize the total cost including transporta-
tion cost and fixed cost. Constraints (2.2) ensure that each routing starts from
the depot and continues to supplier (customer) until it ends back at the de-
pot where A1 is the 6p × (p + m + n)2 matrix whose elements are 0 or 1 and
B1 = [2Ip Ip Ip Ip Ip 2Ip]T . Constraint (2.3) implies that each supplier (cus-
tomer) can be on only one route where A2 is the 2(m+ n)× (p+m+ n)2 matrix
whose elements are 0 or 1. Constraints (2.4) ensure that each depot is on only
one route where B2 = [e 0p×1 Ip]. Constraints (2.5) ensure that the entering arc
to each supplier (customer) and the leaving arc from this supplier (customer) is
on the same route where A3 is the (p + m + n) × (p + m + n)2 matrix whose
elements are 0 or 1. Constraint (2.6) ensures that there are no route between the
different clients i.e., each supplier does not connect with customer where A4 is the
2 × (p + m + n)2 matrix whose elements are 0 or 1. Constraint (2.7) imply that
the total supplies (demands) of the suppliers (customers) on any one route do not

exceed the capacity of the depot serving that route where A5 =

[
sj

dj − sj

]
, j ∈

{1, 2, ..., p + m + n} is the 2p × (p + m + n)2 matrix, and D1 = [Q Q ... Q]T is
the 2p × 1 matrix. Constraints (2.8) ensure that there will be no cycle in each
route where A6 is a constant matrix with dimension 2(m + n)2 × (p + m + n)2,
E1 is the [2(m + n)2 + 2p] × (m + n) matrix whose elements are 1, 0,−1, and
D2 = [Q − dj Q − sj ]T , j ∈ {p, p + 1, ..., p + m + n}. Constraints (2.9) imply
that value of Uk is between supply (demand) and capacity of depot where E2 =
[Im+n Im+n ... Im+n]T , D3 = [dp+1 dp+2 ... dp+m+n sp+1 sp+2 ... sp+m+n]T ,
and D4 = [Q Q ... Q]T . This model is to assign suppliers and customers to clusters,
each having one depot or center as shown in Figure 1.

3 The Proposed Algorithms and Operation Counts

The multiple depot vehicle routing problem is difficult to solve because it is
an NP-hard problem. The two algorithms proposed can solve this problem in a
reasonable processing time. The proposed algorithms assign suppliers (customers)
to a depot according to the following rules:

1. The supply of each supplier cannot exceed the capacity of the depot;
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- supplier - customer - depot

Figure 1: Example of 4 clusters with 20 suppliers and 15 customers.

2. The distance between a supplier and a depot is in a fixed radius;

3. A supplier is assigned to a cluster by connecting to an end-point node whose
distance to the supplier is minimum.

To guarantee feasibility, the fixed radius is assumed to be the minimum
distance from each depot to the farthest supplier (customer).

3.1 Algorithm A: Minimum Distance

In this algorithm, the distances from suppliers to depots are sorted
and then the supplier with the minimum distance is assigned to the depot
nearest to them (within the given radius) provided that their supply does
not exceed that depot’s capacity. Repeat the processes until all suppliers
have been assigned.

Algorithm A is described in detail only in the supplier-depot part as
follows:

For each unassigned supplier i,

If the supply does not exceed the remaining capacity of some depot,

If the distance between supplier i and its nearest depot is in a
fixed radius,
assign supplier i to that depot, and
uupdate the remaining capacity of the chosen depot.

Else, supplier i cannot be assigned to any depot within the
given radius, the problem is infeasible in this radius.

End.
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Else, supplier i cannot be assigned to any depot, the problem is
infeasible.

End.

Repeat the process until the unassigned supplier set is empty.

End.

The operation count of Algorithm A is mp + np. If m is a very large
number compared to n i.e. m � n, then the complexity of this algorithm
is O(mp).

3.2 Algorithm B: Minimum Distance with Balancing Depot

In Algorithm B, the supplier located nearest to the first depot is chosen
and assigned to the first depot, and then each of the remaining depots is
sequentially assigned to its closest unassigned supplier (within the given
radius) provided that their supply does not exceed the capacity of that
depot.

This algorithm can be written in detail only in the supplier-depot part
as follows:

Do while the unassigned supplier set is not empty,

While the unassigned depot list is not empty,

If the nearest suppliers supply i does not exceed the remaining
capacity of depot j,

If the distance between supplier i and depot j is in the fixed
radius,
assign the supplier i to depot j,
update the remaining capacity of depot j, and
move depot j to the end of the unassigned depot list.

Else, remove depot j from the list of unassigned depots and
move on to the next depot.

End.

Else,
remove depot j from the list of unassigned depots.

If the unassigned depot list is empty,
the problem is infeasible.

Else, move to the next depot.

End.

End.
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Move to the next unassigned supplier.

End.

End.

The operation count of Algorithm B is m2 + m + n2 + n. If m is a
very large number compared to n i.e. m � n, then the complexity of this
algorithm is O(m2).

The processes of the 2 proposed algorithms are shown in Figure 2.

Algorithm A

A current supplier

Check whether the supply exceeds the combined remaining capacity.

 Assign that supplier 
to the closest depot.

Note to the solution 
that the given radius is 
not feasible.

 Assign the supplier  
to the nearest 
feasible depot.

 Update the 
remaining capacity 
of the chosen depot.

If the distance between this supplier 
and the depot is in a fixed radius.

N
ext su

p
p
lier

This supplier cannot be 
assigned to any depot, 
the problem is infeasible.

Yes No

NoYes

Algorithm B

A current depot at the top of the unassigned depot list.

Check whether the supply of the nearest supplier exceeds the remaining capacity of 
this depot.

 Assign that supplier 
to the closest depot.

Note to the solution 
that the given radius 
is not feasible.

 Assign the supplier to 
this depot.

 Update the remaining 
capacity of this depot.

 Move the current 
depot to the end of 
the unassigned depot 
list.

If the distance between the supplier 
and the depot is in a fixed radius.

N
ext d

ep
ot

Remove the current 
depot from the 
unassigned depot list.

Yes No

NoYes

If the unassigned depot 
list is empty.

The problem is infeasible.

N
ex

t 
d
ep

ot

Yes

No

Figure 2: The processes of the proposed algorithms.

4 Simulation Results

We formulate our mathematical model on AIMMS where the models are
solved by CPLEX solver. The multiple depot vehicle routing problem is
NP-hard. However, an optimal solution can be found when the problem size
is small. Small size optimal solutions obtained from CPLEX are compared
with the proposed algorithms. The problem sizes constructed are 10×3×3
(10 suppliers × 3 depots × 3 customers), 10× 3× 5, 10× 3× 7, 10× 3× 9,
and 10 × 3 × 11. In each size, 30 problems are solved on Intel R© Xeon
R© CPU@2.30 GHz 2.29 GHz (2 processors) with 64 GB of RAM. The
random samplings, distances between suppliers, customers and depots are
normally generated with µ = 150 and σ = 40. The combined supplies of
suppliers is at 60% of the combined capacity of depots and the combined
demands of customers is at 60% of the combined supplies of suppliers.
The supplies (demands) of the suppliers (customers) are generated from
the normal distribution with the different µ depending on the sizes of the
problems and σ is 30% of µ. The solutions obtained via the proposed
algorithms along with their corresponding processing times are compared
with those of the optimal solution from CPLEX.
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Table 1: Results of data simulations for small size problems
Optimal Algorithm A Algorithm B

size Execution Total # of feasible Execution Total # of feasible Execution Total
times (s) distance solutions times (s) distance solutions times (s) distance

10× 3× 3 121.98 1,089.77 29 0.039 1,394.52 30 0.087 1,461.47
10× 3× 5 1,339.90 1,224.63 27 0.054 1,617.15 30 0.084 1,678.10
10× 3× 7 2,160.61 1,321.50 30 0.050 1,745.77 30 0.038 1,811.57
10× 3× 9 2,525.91 1,422.67 29 0.051 1,927.28 30 0.040 1,935.50
10× 3× 11 12,128.38 1,575.27 25 0.057 2,068.92 29 0.088 2,013.83

As shown in Table 1, although CPLEX gives the minimum total dis-
tance, its processing time increases considerably when the problem size
increases even slightly. When a comparison is made between the 2 algo-
rithms, the total distance yielded by Algorithm A is shown to be shorter
than that from Algorithm B except in problem size 10x3x11. The optimal-
ity gaps of Algorithm A are in 21 − 24% while those of Algorithm B are
in 21− 27% The numbers of feasible solutions yielded by Algorithm B are
3− 14% higher than those from Algorithm A.

In larger problems, the distances between a pair of nodes are normally
generated with µ = 150 and σ = 40. Suppliers combined supply is at
80% of the combined capacity of depots; customers combined demand is at
80% of suppliers combined supply. The supplies (demands) of the suppliers
(customers) are generated from the normal distribution with the difference
µ depending on the sizes of the problems and σ being 30% of µ. The
problems are simulated and solved via the 2 proposed algorithms on Intel R©

Xeon R© CPU E5-2667 v4 @ 3.20 GHz 3.20 GHz (2 processors) with 64 GB
of RAM. In each case, 30 problems are generated.

Table 2: Results of simulations for larger size problems.

Algorithm A Algorithm B
size Execution Total Execution Total

times (s) distance times (s) distance
250× 25× 250 0.09 39,738.47 0.48 32,950.83
250× 50× 250 0.10 43,067.53 0.45 40,569.57
250× 100× 250 0.12 51,968.50 0.47 55,894.97
500× 25× 500 0.17 69,923.43 1.82 49,182.67
500× 50× 500 0.20 68,878.80 1.83 56,497.07
500× 100× 500 0.26 75,853.47 1.79 71,653.90
1000× 25× 1000 0.37 130,547.80 7.21 74,112.00
1000× 50× 1000 0.40 119,170.17 7.03 80,993.80
1000× 100× 1000 0.53 118,202.40 7.38 95,726.33

As shown in Table 2, the processing times required by Algorithm A
are 75 − 95% shorter than those required by Algorithm B, while the total
distances obtained via Algorithm B are 5-45% shorter than those from Al-
gorithm A except in problem size 250× 100× 250. It can be observed that
among the problems with the same number of clients, the differences be-
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tween objective function values obtained from Algorithm A and B decrease
when the number of depots increase. In all instances, both algorithms can
result in feasible solutions. Therefore, the columns indicating the number
of feasible solutions are omitted.

From Tables 1 and 2, it can be concluded that the ratio between number
of clients and number of depots affects the performance of the proposed
algorithms. Algorithm A works better than Algorithm B when the ratio
between number of clients and number of depots is less than 3 (problem
sizes 10 × 3 × 3, 10 × 3 × 5, 10 × 3 × 7, 10 × 3 × 9, and 250 × 100 × 250).
When the ratios between number of clients and number of depots are over
3, Algorithm B results in a better solution. This is due to the fact that the
searching space in each iteration of Algorithm A depends on the number of
depots while the searching space of Algorithm B depends on the number
of clients.

5 Conclusions

In this work, we create two algorithms based on MDVRP to solve clus-
tering problems. The procedure assigns clients to clusters with the objective
of minimizing the total distance in the system. The proposed algorithms
are able to solve larger size problems within a reasonable time. Simulation
data are generated from normal distribution. Since the real data are often
large in number and right-skewed normally distributed, the larger data set
used to test the proposed algorithms are randomly generated with a nor-
mal distribution having a mean depending on the size of the problem and
SD of 30% of mean. In small size problems, the solutions obtained from
the proposed algorithms are slightly different, with Algorithm A working
better than Algorithm B in most cases. In small size problems, the num-
ber of feasible solutions obtained from Algorithm B is 13.79% greater than
that from Algorithm A. In larger problems, however, Algorithm B generally
yields better solutions. The objective functions obtained from Algorithm
B are approximately 18.09% better than those obtained from Algorithm
A. Both algorithms result in a feasible solution in all larger size problems.
As for processing time, obtaining an exact solution from CPLEX for the
problem size with 24 nodes takes more than 3 hours while the two proposed
algorithms can solve large size problems in less than 8 seconds.

The assignment strategies of the two algorithms show different view-
points. In Algorithm A, a random customer is assigned to the depot near-
est to them while in Algorithm B, the ordered depot selects the nearest
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client to be served. Note that when the numbers of clients and depots are
large and the former is greater than the latter, Algorithm B yields a better
solution because the searching space in each iteration of B depends on the
number of clients. When the number of clients is slightly greater than the
number of depots, however, the searching space of Algorithm A is close
to that of Algorithm B, but Algorithm A works better. This is because
Algorithm B tries to balance the number of assigned clients in each depot
by removing the assigned depot to the end of the list while in Algorithm
A, clients can freely choose the nearest depot.
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