The Unique γ-min Labelings of Graphs

Supaporn Saduakdee and Varanoot Khemman ${ }^{1}$

Department of Mathematics, Faculty of Science
Srinakharinwirot University, Bangkok 10110, Thailand
e-mail : aa_o_rr@hotmail.com (S. Saduakdee)
varanoot@g.swu.ac.th (V. Khemmani)

To the Memory of Professor Narong Punnim

Abstract : Let G be a graph of order n and size m. A γ-labeling of G is a

 one-to-one function $f: V(G) \rightarrow\{0,1,2, \ldots, m\}$ that induces an edge-labeling $f^{\prime}: E(G) \rightarrow\{1,2, \ldots, m\}$ on G defined by$$
f^{\prime}(e)=|f(u)-f(v)|, \quad \text { for each edge } e=u v \text { in } E(G)
$$

The value of f is defined as

$$
\operatorname{val}(f)=\sum_{e \in E(G)} f^{\prime}(e) .
$$

The maximum value of a γ-labeling of G is defined as

$$
\operatorname{val}_{\max }(G)=\max \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\} ;
$$

while the minimum value of a γ-labeling of G is

$$
\operatorname{val}_{\min }(G)=\min \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\} .
$$

A γ-labeling g of G is a γ-max labeling if $\operatorname{val}(g)=\operatorname{val}_{\max }(G)$ and a γ-labeling h is a γ-min labeling if $\operatorname{val}(h)=\operatorname{val}_{\text {min }}(G)$.

For a γ-labeling f of a graph G of size m, the complementary labeling \bar{f} : $V(G) \rightarrow\{0,1, \ldots, m\}$ of f is defined by

$$
\bar{f}(v)=m-f(v) \text { for } v \in V(G)
$$

[^0]Let G be a connected graph and f a γ-min labeling of G. Then G has a unique γ-min labeling if f and \bar{f} are only two γ-min labelings of G.

In this paper, we study a connected graph having the unique γ-min labeling. The minimum value of a γ-labeling is determined for some classes of trees. Spontaneously, we are able to find that they have no unique γ-min labeling.

Keywords : γ-labeling; γ-min labeling; unique γ-min labeling.
2010 Mathematics Subject Classification : 05C78.

1 Introduction

Let G be a graph of order n and size m. A γ-labeling of G is defined in [1] as a one-to-one function $f: V(G) \rightarrow\{0,1, \ldots, m\}$ that induces an edge-labeling $f^{\prime}: E(G) \rightarrow\{1, \ldots, m\}$ on G defined by $f^{\prime}(e)=|f(u)-f(v)|$ for each edge $e=u v$ of G. The value of f is defined by

$$
\operatorname{val}(f)=\sum_{e \in E(G)} f^{\prime}(e)
$$

If the edge-labeling f^{\prime} of a γ-labeling f of a graph is also one-to-one, then f is a graceful labeling. Among all labelings of graphs, graceful labelings are probably the best known and most studied. Graceful labelings originated with a paper of Rosa [2], who used the term β-valuations. A few years later, Golomb [3] called these labelings "graceful" and this is the terminology that has been used since then.

Moreover, a more general vertex labeling of a graph was introduced by Hegde [4], in 2000, as follows. A vertex function f of a graph G is defined from $V(G)$ to the set of nonnegative integers that induces an edge function f^{\prime} defined by $f^{\prime}(e)=|f(u)-f(v)|$ for each edge $e=u v$ of G. Such a function is called a geodetic function of G. A one-to-one geodetic function is a geodetic labeling of G if the induced edge function f^{\prime} is also one-to-one. Gallian [5] has written an extensive survey on labelings of graphs.

Obviously, since γ-labeling f of a graph G of order n and size m is one-to-one, it follows that $f^{\prime}(e) \geq 1$, for any edge e, and therefore, $\operatorname{val}(f) \geq m$. Moreover, G has a γ-labeling if and only if $m \geq n-1$ and every connected graph has a γ-labeling.

The maximum value and the minimum value of a γ-labeling of G are defined in [1] as

$$
\operatorname{val}_{\max }(G)=\max \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\}
$$

and

$$
\operatorname{val}_{\min }(G)=\min \{\operatorname{val}(f): f \text { is a } \gamma \text {-labeling of } G\}
$$

respectively. A γ-labeling g of G is a γ-max labeling if $\operatorname{val}(g)=\operatorname{val}_{\max }(G)$ and a γ-labeling h is a γ-min labeling if $\operatorname{val}(h)=\operatorname{val}_{\text {min }}(G)$.

Figure 1 shows nine γ-labelings $f_{1}, f_{2}, \ldots, f_{9}$ of the path P_{5} of order 5 (where the vertex labels are shown above each vertex and the induced edge labels are shown below each edge). The value of each γ-labeling is shown in Figure 1 as well.
$f_{1}: \stackrel{0}{\circ} \underset{1}{-} \stackrel{1}{\circ} \stackrel{2}{\circ} \underset{1}{\square} \stackrel{3}{\square} \underset{1}{\circ}$
$\operatorname{val}\left(f_{1}\right)=4$
$f_{2}: \stackrel{0}{\circ} \underset{1}{\circ} \stackrel{1}{1} \stackrel{2}{\circ} \underset{2}{-} \stackrel{4}{\square} \stackrel{3}{1}$
$\operatorname{val}\left(f_{2}\right)=5$

$\operatorname{val}\left(f_{3}\right)=6$

$\operatorname{val}\left(f_{4}\right)=7$

$\operatorname{val}\left(f_{5}\right)=8$
$f_{6}: \stackrel{0}{\circ} \underset{3}{-} \stackrel{3}{-} \stackrel{2}{\mathrm{O}} \underset{2}{\mathrm{O}} \underset{3}{\mathrm{O}}{ }^{1}$
$\operatorname{val}\left(f_{6}\right)=9$
$f_{7}: \stackrel{4}{\circ} \underset{4}{\circ} \stackrel{0}{0} \stackrel{3}{\circ} \underset{2}{-} \stackrel{1}{\circ} \underset{1}{\circ} \mathrm{O}$
$\operatorname{val}\left(f_{7}\right)=10$
$f_{8}: \stackrel{2}{\circ} \underset{2}{\circ} \stackrel{0}{-} \stackrel{3}{\circ} \underset{2}{\circ} \stackrel{1}{\circ}-\stackrel{4}{\circ}$
$\operatorname{val}\left(f_{8}\right)=10$
$f_{9}: \stackrel{3}{\circ} \underset{3}{\mathrm{O}} \stackrel{0}{\mathrm{O}} \stackrel{4}{\mathrm{O}} \underset{3}{\mathrm{O}} \stackrel{1}{1} \stackrel{2}{\circ}$

Figure 1: Some γ-labelings of P_{5}
Since $\operatorname{val}\left(f_{1}\right)=4$ and the size of $P_{5}=4$, it follows that f_{1} is a γ-min labeling of P_{5}. It is shown in [1] that the γ-labeling f_{9} is a γ-max labeling of P_{5}.

In [1, 6, 7, 8, 9, 10, 11, 12], the maximum and minimum values of a γ-labeling of path P_{n}, cycle C_{n}, complete graph K_{n}, double star $S_{p, q}$, complete bipartite graph $K_{r, s}$, cycle with a triangle C_{n}^{\triangle} and cycle with one chord $C_{n}+e$ are determined.

For a γ-labeling f of a graph G of size m, the complementary labeling \bar{f} : $V(G) \rightarrow\{0,1, \ldots, m\}$ of f is defined by

$$
\bar{f}(v)=m-f(v) \text { for } v \in V(G)
$$

Not only is \bar{f} a γ-labeling of G but $\operatorname{val}(\bar{f})=\operatorname{val}(f)$ as well. This gives us the following.
observation 1.1 ([1]). Let f be a γ-labeling of a graph G. Then f is a γ-max labeling (γ-min labeling) of G if and only if \bar{f} is a γ-max labeling (γ-min labeling) of G.

For integers a and b with $a<b$, let

$$
[a, b]=\{a, a+1, \ldots, b\}
$$

be a consecutive set of integers between a and b.
The following results appeared in [1], [7] and [13] are useful to us.
Theorem 1.2 ([1]). If G is a connected graph of order n, then G has a γ-min labeling f such that $f(V(G))=[0, n-1]$.

Theorem 1.3 (7). Let G be a connected graph of order n and size m. Then $\operatorname{val}_{\text {min }}(G)=m$ if and only if $G \cong P_{n}$.

Theorem 1.4 (7). Let f be a γ-labeling of a connected graph G. If P is a $u-v$ path in G, then

$$
\sum_{e \in E(P)} f^{\prime}(e) \geq|f(u)-f(v)|
$$

Theorem 1.5 ([13]). Let G be a nontrivial graph of order n and size m and f a γ labeling of G. If f is a γ-min labeling of G, then $f(V(G))$ is a consecutive subset of $[0, m]$, that is, $f(V(G))=[k, k+(n-1)]$ for some integer k with $0 \leq k \leq m-(n-1)$.

A vertex of degree at least 3 in a graph G is called a major vertex. An end-vertex z of G is said to be a terminal vertex of a major vertex v of G if $d(v, z)<d(w, z)$ for every other major vertex w of G. A major vertex v of a graph G is an exterior major vertex of G if it has at least one terminal vertex.

Figure 2: The graph G
For example, the graph G of Figure 2 has four major vertices, namely, v_{1}, v_{2}, v_{3}, v_{4}. The terminal vertices of v_{1} are z_{1} and z_{2}, the terminal vertices of v_{3} are z_{3}, z_{4} and z_{5}, and the terminal vertices of v_{4} are z_{6} and z_{7}. The major vertex v_{2} has no terminal vertex and so v_{2} is not an exterior major vertex of G. Thus G has three exterior major vertices v_{1}, v_{3} and v_{4}.

In [7] and [14], the minimum value and the maximum value of γ-labelings of some trees with exterior major vertices are determined.

Let G be a connected graph and f a γ-min labeling of G. Then G has a unique γ-min labeling if f and \bar{f} are only two γ-min labelings of G. Consequently, since the γ-labelings f_{1} and \bar{f}_{1} are only two γ-min labelings of the path P_{5} in Figure 1 , it follows that the path P_{5} has a unique γ-min labeling.

The goal of this paper is to study a connected graph having the unique γ-min labeling. We also determine the minimum values of γ-labelings of some generalized
trees with exterior major vertices. It is shown that they have no unique γ-min labeling, but not so for a path.

The reader is referred to Chartrand and Zhang [15] for basic definitions and terminology not mentioned here.

2 Unique γ-min Labelings of Graphs

Let G be a connected graph of order n and size m and f a γ-labeling of G. For each integer k with $0 \leq k \leq m-\max \{f(v): v \in V(G)\}$, let $f^{k}: V(G) \rightarrow$ $\{0,1,2, \ldots, m\}$ be a γ-labeling of G defined by

$$
f^{k}(v)=f(v)+k, \quad \text { for each } v \in V(G)
$$

Note that $f^{k}=f$ when $k=0$.
Theorem 2.1. Let G be a connected graph of order n and size m and f a γ labeling of G. Then for each integer k with $0 \leq k \leq m-\max \{f(v): v \in V(G)\}$, $\operatorname{val}\left(f^{k}\right)=\operatorname{val}(f)$.

Proof. Let k be an integer with $0 \leq k \leq m-\max \{f(v): v \in V(G)\}$. Since $\left|f^{k}(u)-f^{k}(v)\right|=|(f(u)+k)-(f(v)+k)|=|f(u)-f(v)|$ for each $e=u v \in E(G)$, $\operatorname{val}\left(f^{k}\right)=\operatorname{val}(f)$.

This also provides the following corollary.
Corollary 2.2. Let G be a connected graph of order n and size m and f a γ labeling of G. Then f is a γ-max labeling (γ-min labeling) of G if and only if f^{k} is a γ-max labeling (γ-min labeling) of G for each integer k with $0 \leq k \leq$ $m-\max \{f(v): v \in V(G)\}$.

By Theorem 1.2 and Corollary 2.2 , we can verify that none of graphs with cycle has a unique γ-min labeling.

Theorem 2.3. If a connected graph G has the unique γ-min labeling, then G is a tree.

Proof. Let G be a connected graph of order n and size m. Assume that G contains a cycle. Then $m \geq n$. By Theorem 1.2 , G has a γ-min labeling f such that $f(V(G))=[0, n-1]$. Since $m \geq n, m-(n-1) \geq 1$. Thus G has a γ - labeling f^{1}. By Corollary 2.2, f^{1} is a γ-min labeling of G. Since $f^{1}(V(G))=[1, n], f^{1} \neq f$ and $f^{1} \neq \bar{f}$. Therefore G has no unique γ-min labeling.

Next, we determine that every path P_{n} of order n has a unique γ-min labeling. This starts by characterizing γ-min labelings of a path P_{n}.

Theorem 2.4. Let f be a γ-labeling of a path $P_{n}: v_{1}, v_{2}, \ldots, v_{n}$ defined by

$$
f\left(v_{i}\right)=i-1, \quad \text { for each integer } i \text { with } 1 \leq i \leq n .
$$

Then f and \bar{f} are only two γ-min labelings of P_{n}.

Proof. By Theorem 1.3. we have $\operatorname{val}_{\min }\left(P_{n}\right)=n-1$. Since $\operatorname{val}(f)=\operatorname{val}(\bar{f})=n-1$, f and \bar{f} are γ-min labelings of P_{n}. Let f_{1} be a γ-min labelings of P_{n}. Then $\operatorname{val}\left(f_{1}\right)=\operatorname{val}_{\min }\left(P_{n}\right)=n-1$ which is the size of P_{n}. Since $f_{1}^{\prime}(e)=1$ for each edge e in P_{n}, it follows that $\left|f_{1}\left(v_{i+1}\right)-f_{1}\left(v_{i}\right)\right|=1$ for each $i, 1 \leq i \leq n-1$. Thus either $f_{1}=f$ or $f_{1}=\bar{f}$. Therefore f and \bar{f} are only two γ-min labelings of P_{n}.

Corollary 2.5. A path has a unique γ-min labeling.
The following result shows that there are many trees that fail to have unique γ-min labeling.

Theorem 2.6. Let T be a tree with exterior major vertices. If there are at least two terminal vertices z_{1} and z_{2} of some exterior major vertex v of T such that $d\left(v, z_{1}\right)=d\left(v, z_{2}\right)$, then T has no unique γ-min labeling.
Proof. Assume that there are at least two terminal vertices z_{1} and z_{2} of some exterior major vertex v of T such that $d\left(v, z_{1}\right)=d\left(v, z_{2}\right)$. By Theorem 1.2. T has a γ-min labeling f such that $f(V(T))=[0, n-1]$. Let $P: v=u_{0}, u_{1}, \ldots, u_{d}=z_{1}$ be a $v-z_{1}$ path in T and $Q: v=w_{0}, w_{1}, \ldots, w_{d}=z_{2}$ be a $v-z_{2}$ path in T. Let f_{1} be a γ-labeling of T defined by

$$
f_{1}(a)= \begin{cases}f(a) & \text { if } a \in V(T)-\left\{u_{i}, w_{j} \mid 1 \leq i, j \leq d\right\} \\ f\left(w_{i}\right) & \text { if } a=u_{i} \text { with } 1 \leq i \leq d \\ f\left(u_{j}\right) & \text { if } a=w_{j} \text { with } 1 \leq j \leq d\end{cases}
$$

Then $\operatorname{val}\left(f_{1}\right)=\operatorname{val}(f)=\operatorname{val}_{\min }(T)$. Thus f_{1} is a γ-min labeling of T such that $f_{1} \neq f$ and $f_{1} \neq \bar{f}$. Therefore T has no unique γ-min labeling.

3γ-min Labeling of a Tree with Exterior Major Vertices of Degree 3

The maximum degree of a graph G is the maximum degree among the vertices of G and is denoted by $\Delta(G)$. A caterpillar is a tree of order at least 3, the removal of whose end-vertices produces a path. We recall the minimum value of a γ-labeling of a caterpillar with $\Delta(T)=3$ having an arbitrary number of exterior major vertices as follows.

Theorem 3.1 (7]). If T is a caterpillar of order $n \geq 4$ such that $\Delta(T)=3$ and T has exactly k exterior major vertices, then

$$
\operatorname{val}_{\min }(T)=n+k-1
$$

Note that if a tree T is a caterpillar, then $d(v, z)=1$ for each terminal vertex z of an exterior major vertex v of T which does not lie on the path of length $\operatorname{diam}(T)$. Next, we generalize a caterpillar of Theorem 3.1 to a tree T having $\Delta(T)=3$ and $d(v, z) \geq 1$ for each terminal vertex z of an exterior major vertex v of T, and then formulate $\operatorname{val}_{\text {min }}(T)$.

Proposition 3.2. Let T be a tree of order n with $\Delta(T)=3$ whose all major vertices are exterior major vertices and lie on the same path of length $d=\operatorname{diam}(T)$. Then

$$
\operatorname{val}_{\min }(T) \leq 2 n-d-2
$$

Proof. Let $P: v_{0}, v_{1}, \ldots, v_{d}$ be a path containing all exterior major vertices in T. Let $v_{l_{1}}, v_{l_{2}}, \ldots, v_{l_{k}}$ be all exterior major vertices in T such that $1 \leq l_{1}<l_{2}<\cdots<$ $l_{k} \leq d-1$. For each $1 \leq j \leq k$, let z_{j} be the terminal vertices of $v_{l_{j}}$ not on P and $Q_{j}: v_{l_{j}}=u_{j 0}, u_{j 1}, \ldots, u_{j d_{j}}=z_{j}$ the $v_{l_{j}}-z_{j}$ path in T. Let f be a γ-labeling of T defined by
$f(a)= \begin{cases}i & \text { if } a=v_{i} \quad \text { with } 0 \leq i \leq l_{1} \\ \left(\sum_{r=1}^{s} d_{r}\right)+i & \text { if } a=v_{i} \quad \text { with } l_{s}+1 \leq i \leq l_{s+1}, 1 \leq s \leq k-1 \\ n-d-1+i & \text { if } a=v_{i} \quad \text { with } l_{k}+1 \leq i \leq d \\ l_{1}+i & \text { if } a=u_{1 i} \text { with } 1 \leq i \leq d_{1} \\ \left(\sum_{r=1}^{j-1} d_{r}\right)+l_{j}+i & \text { if } a=u_{j i} \text { with } 1 \leq i \leq d_{j}, 2 \leq j \leq k .\end{cases}$
Then

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in E(P)} f^{\prime}(e)+\left(\sum_{e \in E\left(Q_{1}\right)} f^{\prime}(e)+\sum_{e \in E\left(Q_{2}\right)} f^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{k}\right)} f^{\prime}(e)\right) \\
& =2 n-d-2
\end{aligned}
$$

Therefore $\operatorname{val}_{\text {min }}(T) \leq \operatorname{val}(f)=2 n-d-2$.

We now establish the lower bound of the minimum value of a γ-labeling of a tree T with $\Delta(T)=3$ having an arbitrary number of exterior major vertices of degree 3 , as follows.

Proposition 3.3. Let T be a tree of order n with $\Delta(T)=3$ whose all major vertices are exterior major vertices and lie on the same path of length $d=\operatorname{diam}(T)$. Then

$$
\operatorname{val}_{\min }(T) \geq 2 n-d-2
$$

Proof. Let g be an arbitrary γ-labeling of T. Since T has exactly $n-1$ edges, there are vertices $u, w \in V(T)$ with $g(u)=0$ and $g(w)=n-1$. Let Q be a $u-w$ path in T. By Theorem 1.4 .

$$
\sum_{e \in E(Q)} g^{\prime}(e) \geq|g(u)-g(w)|=n-1
$$

Since the length of Q is at $\operatorname{most} \operatorname{diam}(T)=d$, there are at least $n-d-1$ edges of T not on Q, and hence

$$
\sum_{e \in E(T)-E(Q)} g^{\prime}(e) \geq n-d-1 .
$$

Thus

$$
\begin{aligned}
\operatorname{val}(g) & =\sum_{e \in E(Q)} g^{\prime}(e)+\sum_{e \in E(T)-E(Q)} g^{\prime}(e) \\
& \geq 2 n-d-2 .
\end{aligned}
$$

Therefore $\operatorname{val}_{\min }(T) \geq 2 n-d-2$.
Combining Propositions 3.2 and 3.3 , we have the following.
Theorem 3.4. Let T be a tree of order n with $\Delta(T)=3$ whose all major vertices are exterior major vertices and lie on the same path of length $d=\operatorname{diam}(T)$. Then

$$
\operatorname{val}_{\min }(T)=2 n-d-2 .
$$

With aid of Theorem 3.4 we are able to show that a tree in Theorem 3.4 has no unique γ-min labeling.
Theorem 3.5. If T is a tree with $\Delta(T)=3$ whose all major vertices are exterior major vertices and lie on the same path of length $\operatorname{diam}(T)$, then T has no unique γ-min labeling.
Proof. Let T be a tree with $\Delta(T)=3$ whose all major vertices are exterior major vertices and lie on the same path of length $\operatorname{diam}(T)$. Let $P: v_{0}, v_{1}, \ldots, v_{d}$ be a path containing all exterior major vertices in T. Let $v_{l_{1}}, v_{l_{2}}, \ldots, v_{l_{k}}$ be all exterior major vertices in T such that $1 \leq l_{1}<l_{2}<\cdots<l_{k} \leq d-1$. For each $1 \leq j \leq k$, let z_{j} be the terminal vertices of $v_{l_{j}}$ not on P and $Q_{j}: v_{l_{j}}=u_{j 0}, u_{j 1}, \ldots, u_{j d_{j}}=z_{j}$ the $v_{l_{j}}-z_{j}$ path in T. Let f_{1} be a γ-labeling of T defined by

$$
f_{1}(a)= \begin{cases}i & \text { if } a=v_{i} \text { with } 0 \leq i \leq l_{1}-1 \\ \left(\sum_{r=1}^{s} d_{r}\right)+i & \text { if } a=v_{i} \text { with } l_{s}+1 \leq i \leq l_{s+1}, 1 \leq s \leq k-1 \\ n-d-1+i & \text { if } a=v_{i} \text { with } l_{k}+1 \leq i \leq d \\ l_{1}+d_{1}-i & \text { if } a=u_{1 i} \text { with } 0 \leq i \leq d_{1} \\ \left(\sum_{r=1}^{j-1} d_{r}\right)+l_{j}+i & \text { if } a=u_{j i} \text { with } 1 \leq i \leq d_{j}, 2 \leq j \leq k .\end{cases}
$$

Then

$$
\begin{aligned}
\operatorname{val}\left(f_{1}\right) & =\sum_{e \in E(P)} f_{1}^{\prime}(e)+\left(\sum_{e \in E\left(Q_{1}\right)} f_{1}^{\prime}(e)+\sum_{e \in E\left(Q_{2}\right)} f_{1}^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{k}\right)} f_{1}^{\prime}(e)\right) \\
& =n-1+\sum_{i=1}^{k} d_{i} \\
& =\operatorname{val}_{\min }(T) \quad \quad \text { (by Theorem 3.4). }
\end{aligned}
$$

Thus not only f_{1} is a γ-min labeling of T, but the γ-labeling f in Proposition 3.2 is also γ-min labeling of T such that $f_{1} \neq f$ and $f_{1} \neq \bar{f}$. Therefore T has no unique γ-min labeling.

$4 \gamma-$ min Labeling of a Tree with a Unique Exterior Major Vertex

In this section, we establish a minimum value of a γ-labeling of a tree with a unique exterior major vertex of an arbitrary degree. In order to do this, we first present the minimum value of a γ-labeling of a tree with a unique exterior major vertex of degree 3 shown in [7].

Theorem 4.1 ([7]). Let T be a tree of order n with a unique exterior major vertex v of degree 3. If $d=\min \{d(v, z) \mid z$ is a terminal vertex of $v\}$, then

$$
\operatorname{val}_{\min }(T)=n+d-1
$$

Next, we generalize Theorem 4.1 to a tree T with a unique exterior major vertex of an arbitrary degree. We are now prepared to present the upper bound of the minimum value of a γ-labeling of such a tree.

Proposition 4.2. Let T be a tree of order n with a unique exterior major vertex v. If $d_{1}, d_{2}, \ldots, d_{\Delta(T)}$ are the distances between v and all its terminal vertices with $d_{1} \leq d_{2} \leq \cdots \leq d_{\Delta(T)}$, then

$$
\operatorname{val}_{\min }(T) \leq \begin{cases}n-1+\frac{\sum_{j=1}^{\frac{\Delta(T)}{2}}-1}{\sum_{i=1}^{2 j} d_{i}} & \text { if } \Delta(T) \text { is even } \\ n-1+\frac{\Delta(T)-1}{2} \sum_{j=1}^{2} \sum_{i=1}^{2 j-1} d_{i} & \text { if } \Delta(T) \text { is odd }\end{cases}
$$

Proof. Let $z_{1}, z_{2}, \ldots, z_{\Delta(T)}$ be the terminal vertices of an exterior major vertex v. For each $1 \leq i \leq \Delta(T)$, let $Q_{i}: v=v_{i 0}, v_{i 1}, \ldots, v_{i d_{i}}=z_{i}$ be the $v-z_{i}$ path in T.

Case 1. $\Delta(T)$ is even.
Let f be a γ-labeling of T defined by
$f\left(v_{i j}\right)=\left\{\begin{array}{l}\binom{\sum_{i \leq k \leq \Delta(T)} d_{k}}{k \text { is even }}-j \quad \text { if } i \text { is even, } 2 \leq i \leq \Delta(T) \text { and } 1 \leq j \leq d_{i} \\ n-1+j-\sum_{i \leq k \leq \Delta(T)-1}^{k \text { is odd }} \begin{array}{l} \\ \sum_{\substack{1 \leq k \leq \Delta(T) \\ k \text { is even }}} \quad \text { if } i \text { is odd, } 1 \leq i \leq \Delta(T)-1 \text { and } 1 \leq j \leq d_{i}\end{array} \quad \text { if } v_{i j}=v .\end{array}\right.$

Then

$$
\begin{aligned}
\operatorname{val}(f)= & \left(\sum_{e \in E\left(Q_{1}\right)} f^{\prime}(e)+\sum_{e \in E\left(Q_{3}\right)} f^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)-1}\right)} f^{\prime}(e)\right) \\
& +\left(\sum_{e \in E\left(Q_{2}\right)} f^{\prime}(e)+\sum_{e \in E\left(Q_{4}\right)} f^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)}\right)} f^{\prime}(e)\right) \\
= & n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i} .
\end{aligned}
$$

Therefore $\operatorname{val}_{\text {min }}(T) \leq \operatorname{val}(f)=n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i}$.
Case 2. $\Delta(T)$ is odd.
Let f be a γ-labeling of T defined by

Then

$$
\begin{aligned}
\operatorname{val}(f)= & \left(\sum_{e \in E\left(Q_{1}\right)} f^{\prime}(e)+\sum_{e \in E\left(Q_{3}\right)} f^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)}\right)} f^{\prime}(e)\right) \\
& +\left(\sum_{e \in E\left(Q_{2}\right)} f^{\prime}(e)+\sum_{e \in E\left(Q_{4}\right)} f^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)-1}\right)} f^{\prime}(e)\right) \\
= & n-1+\frac{\Delta(T)-1}{\sum_{j=1}^{2}} \sum_{i=1}^{2 j-1} d_{i} .
\end{aligned}
$$

Therefore $\operatorname{val}_{\text {min }}(T) \leq \operatorname{val}(f)=n-1+\frac{\Delta(T)-1}{\sum_{j=1}^{2}} \sum_{i=1}^{2 j-1} d_{i}$.
We are able to show the lower bound of the minimum value of a γ-labeling of a tree with a unique exterior major vertex of an arbitrary degree.

Proposition 4.3. Let T be a tree of order n with a unique exterior major vertex v. If $d_{1}, d_{2}, \ldots, d_{\Delta(T)}$ are the distances between v and all its terminal vertices with $d_{1} \leq d_{2} \leq \cdots \leq d_{\Delta(T)}$, then

$$
\operatorname{val}_{\min }(T) \geq \begin{cases}n-1+\frac{\Delta(T)}{\sum_{j=1}^{2}-1} \sum_{i=1}^{2 j} d_{i} & \text { if } \Delta(T) \text { is even } \\ n-1+\frac{\Delta(T)-1}{2} \sum_{j=1}^{2} \sum_{i=1}^{2 j-1} d_{i} & \text { if } \Delta(T) \text { is odd }\end{cases}
$$

Proof. Let g be an arbitrary γ-labeling of T. Since T has exactly $n-1$ edges, there are vertices $u_{1}, w_{1} \in V(T)$ with $g\left(u_{1}\right)=0$ and $g\left(w_{1}\right)=n-1$. Let Q_{1} be a $u_{1}-w_{1}$ path in T. By Theorem 1.4 ,

$$
\sum_{e \in E\left(Q_{1}\right)} g^{\prime}(e) \geq\left|g\left(u_{1}\right)-g\left(w_{1}\right)\right|=n-1
$$

Let $u_{2}, w_{2} \in V(T)$ with

$$
g\left(u_{2}\right)=\min \left\{g(x) \mid x \notin V\left(Q_{1}\right)\right\} \text { and } g\left(w_{2}\right)=\max \left\{g(x) \mid x \notin V\left(Q_{1}\right)\right\} .
$$

Let Q_{2} be a $u_{2}-w_{2}$ path in T. By Theorem 1.4 ,

$$
\sum_{e \in E\left(Q_{2}\right)} g^{\prime}(e) \geq\left|g\left(u_{2}\right)-g\left(w_{2}\right)\right|=g\left(w_{2}\right)-g\left(u_{2}\right)
$$

Since the length of Q_{1} is at most $\operatorname{diam}(T)=d_{\Delta(T)}+d_{\Delta(T)-1}$, there are at least $(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}$ edges of T not on Q_{1}, and hence

$$
g\left(w_{2}\right)-g\left(u_{2}\right) \geq(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}
$$

Thus

$$
\begin{aligned}
\sum_{e \in E\left(Q_{2}\right)} g^{\prime}(e) & \geq(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1} \\
& =d_{1}+d_{2}+\cdots+d_{\Delta(T)-2}
\end{aligned}
$$

Let $u_{3}, w_{3} \in V(T)$ with

$$
g\left(u_{3}\right)=\min \left\{g(x) \mid x \notin V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right\}
$$

and

$$
g\left(w_{3}\right)=\max \left\{g(x) \mid x \notin V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right\}
$$

Let Q_{3} be a $u_{3}-w_{3}$ path in T. By Theorem 1.4 ,

$$
\sum_{e \in E\left(Q_{3}\right)} g^{\prime}(e) \geq\left|g\left(u_{3}\right)-g\left(w_{3}\right)\right|=g\left(w_{3}\right)-g\left(u_{3}\right)
$$

Since the sum of the length of Q_{1} and Q_{2} is at most $d_{\Delta(T)}+d_{\Delta(T)-1}+d_{\Delta(T)-2}+$ $d_{\Delta(T)-3}$, there are at least $(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}-d_{\Delta(T)-2}-d_{\Delta(T)-3}$ edges of T not on Q_{1} and Q_{2}, and hence

$$
g\left(w_{3}\right)-g\left(u_{3}\right) \geq(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}-d_{\Delta(T)-2}-d_{\Delta(T)-3} .
$$

Thus

$$
\begin{aligned}
\sum_{e \in E\left(Q_{3}\right)} g^{\prime}(e) & \geq(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}-d_{\Delta(T)-2}-d_{\Delta(T)-3} \\
& =d_{1}+d_{2}+\cdots+d_{\Delta(T)-4} .
\end{aligned}
$$

Continue until we have for each $1 \leq j \leq\left\lfloor\frac{\Delta(T)}{2}\right\rfloor$, let $u_{j}, w_{j} \in V(T)$ with

$$
g\left(u_{j}\right)=\min \left\{g(x) \mid x \notin \bigcup_{i=1}^{j-1} V\left(Q_{i}\right)\right\} \text { and } g\left(w_{j}\right)=\max \left\{g(x) \mid x \notin \bigcup_{i=1}^{j-1} V\left(Q_{i}\right)\right\}
$$

and let Q_{j} be a $u_{j}-w_{j}$ path in T. Then

$$
\begin{aligned}
\sum_{e \in E\left(Q_{j}\right)} g^{\prime}(e) & \geq(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}-\cdots-d_{\Delta(T)-2 j+4}-d_{\Delta(T)-2 j+3} \\
& =d_{1}+d_{2}+\cdots+d_{\Delta(T)-2 j+2} .
\end{aligned}
$$

Case 1. $\Delta(T)$ is even.
Then $\left\lfloor\frac{\Delta(T)}{2}\right\rfloor=\frac{\Delta(T)}{2}$. We have $E(T)-\bigcup_{j=1}^{\frac{\Delta(T)}{2}} E\left(Q_{j}\right)=\emptyset$ or $E(T)-\bigcup_{j=1}^{\frac{\Delta(T)}{2}} E\left(Q_{j}\right) \neq \emptyset$.
If $E(T)-\bigcup_{j=1}^{\frac{\Delta(T)}{2}} E\left(Q_{j}\right)=\emptyset$, then

$$
\begin{aligned}
\operatorname{val}(g) & =\sum_{e \in E\left(Q_{1}\right)} g^{\prime}(e)+\sum_{e \in E\left(Q_{2}\right)} g^{\prime}(e)+\cdots+\sum_{e \in E\left(\frac{\Delta(T)}{2}\right)}^{\sum^{\prime}(e)} \\
& \geq n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i} .
\end{aligned}
$$

If $E(T)-\bigcup_{j=1}^{\frac{\Delta(T)}{2}} E\left(Q_{j}\right) \neq \emptyset$, then

$$
\begin{aligned}
\operatorname{val}(g)= & \left(\sum_{e \in E\left(Q_{1}\right)} g^{\prime}(e)+\sum_{e \in E\left(Q_{2}\right)} g^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\frac{\Delta(T)}{2}}\right)} g^{\prime}(e)\right. \\
& +\sum_{e \in E(T)-\frac{\Delta(T)}{\sum_{j=1}^{2}} g^{\prime}(e)}^{E\left(Q_{j}\right)} \\
\geq & n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i}+1 \\
> & n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i} .
\end{aligned}
$$

In general, $\operatorname{val}(g) \geq n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i}$. Therefore $\operatorname{val}_{\min }(T) \geq n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i}$.
Case 2. $\Delta(T)$ is odd.
Then $\left\lfloor\frac{\Delta(T)}{2}\right\rfloor=\frac{\Delta(T)-1}{2}$, and so $E(T)-\bigcup_{j=1}^{\frac{\Delta(T)-1}{2}} E\left(Q_{j}\right) \neq \emptyset$.
Since the sum of the length of Q_{j} for all $1 \leq j \leq \frac{\Delta(T)-1}{2}$ is at most $d_{\Delta(T)}+$ $d_{\Delta(T)-1}+d_{\Delta(T)-2}+\cdots+d_{3}+d_{2}$, there are at least $(n-1)-d_{\Delta(T)}-d_{\Delta(T)-1}-$ $d_{\Delta(T)-2}-\cdots-d_{3}-d_{2}=d_{1}$ edges of T not on Q_{j} for all $1 \leq j \leq \frac{\Delta(T)-1}{2}$.
Thus

$$
\begin{aligned}
\operatorname{val}(g)= & \left(\sum_{e \in E\left(Q_{1}\right)} g^{\prime}(e)+\sum_{e \in E\left(Q_{2}\right)} g^{\prime}(e)+\cdots+\sum_{e \in E\left(\frac{Q_{\Delta(T)-1}^{2}}{}\right)}^{\sum^{\prime} g^{\prime}(e)}\right) \\
& +\sum^{\sum^{\prime} g^{\prime}(e)} \\
& e \in E(T)-\frac{\Delta(T)-1}{\sum_{j=1}^{2}} E\left(Q_{j}\right) \\
\geq & n-1+\frac{\Delta(T)-1}{\sum_{j=1}^{2}} \sum_{i=1}^{2 j-1} d_{i} .
\end{aligned}
$$

Therefore $\operatorname{val}_{\min }(T) \geq n-1+\frac{\Delta(T)-1}{\sum_{j=1}^{2}} \sum_{i=1}^{2 j-1} d_{i}$.
We compute the minimum value of a γ-labeling of a tree with a unique exterior major vertex of an arbitrary degree by combining Propositions 4.2 and 4.3 as follows.

Theorem 4.4. Let T be a tree of order n with a unique exterior major vertex v. If $d_{1}, d_{2}, \ldots, d_{\Delta(T)}$ are the distances between v and all its terminal vertices with $d_{1} \leq d_{2} \leq \cdots \leq d_{\Delta(T)}$, then

$$
\operatorname{val}_{\min }(T)=n-1+\sum_{i=1}^{\left\lfloor\frac{\Delta(T)}{2}\right\rfloor}\left(\left\lfloor\frac{\Delta(T)}{2}\right\rfloor-i\right)\left(d_{2 i-1}+d_{2 i}\right)+\delta_{\Delta} \sum_{i=1}^{\left\lfloor\frac{\Delta(T)}{2}\right\rfloor} d_{2 i-1}
$$

where

$$
\delta_{\Delta}= \begin{cases}0 & \text { if } \Delta(T) \text { is even } \\ 1 & \text { if } \Delta(T) \text { is odd } .\end{cases}
$$

We are now able to apply Theorem 4.4 to show that a tree with a unique exterior major vertex of an arbitrary degree has no unique γ-min labeling.

Theorem 4.5. If T is a tree with a unique exterior major vertex, then T has no unique γ-min labeling.

Proof. Let T be a tree with a unique exterior major vertex v. Let $z_{1}, z_{2}, \ldots, z_{\Delta(T)}$ be the terminal vertices of v. Let $Q_{i}: v=v_{i 0}, v_{i 1}, \ldots, v_{i d_{i}}=z_{i}$ be the $v-z_{i}$ path of T for each $1 \leq i \leq \Delta(T)$.

Case 1. $\Delta(T)$ is even.
Let f_{1} be a γ-labeling of T defined by

Then

$$
\begin{aligned}
\operatorname{val}\left(f_{1}\right)= & \left(\sum_{e \in E\left(Q_{1}\right)} f_{1}^{\prime}(e)+\sum_{e \in E\left(Q_{3}\right)} f_{1}^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)-1}\right)} f_{1}^{\prime}(e)\right) \\
& +\left(\sum_{e \in E\left(Q_{2}\right)} f_{1}^{\prime}(e)+\sum_{e \in E\left(Q_{4}\right)} f_{1}^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)}\right)} f_{1}^{\prime}(e)\right) \\
= & n-1+\sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2 j} d_{i} \quad \quad \text { (by Theorem 4.4). }
\end{aligned}
$$

Thus f_{1} is a γ-min labeling of T. Since the γ-labeling f in Case 1 of Proposition 4.2 is also γ-min labeling of T such that $f_{1} \neq f$ and $f_{1} \neq \bar{f}$, it follows that T has no unique γ-min labeling.

Case 2. $\Delta(T)$ is odd.
Let f_{1} be a γ-labeling of T defined by

Then

$$
\begin{aligned}
\operatorname{val}\left(f_{1}\right)= & \left(\sum_{e \in E\left(Q_{1}\right)} f_{1}^{\prime}(e)+\sum_{e \in E\left(Q_{3}\right)} f_{1}^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)}\right)} f_{1}^{\prime}(e)\right) \\
& +\left(\sum_{e \in E\left(Q_{2}\right)} f_{1}^{\prime}(e)+\sum_{e \in E\left(Q_{4}\right)} f_{1}^{\prime}(e)+\cdots+\sum_{e \in E\left(Q_{\Delta(T)-1)}\right.} f_{1}^{\prime}(e)\right) \\
= & n-1+\frac{\sum_{j(T)-1}^{2}}{\sum_{i=1}^{2 j-1} d_{i}} \quad \text { (by Theorem 4.4). }
\end{aligned}
$$

Thus f_{1} is a γ-min labeling of T, however the γ-labeling f in Case 2 of Proposition 4.2 is also γ-min labeling of T such that $f_{1} \neq f$ and $f_{1} \neq \bar{f}$. Therefore T has no unique γ-min labeling.

5 Open Question

Theorems 2.6, 3.5 and 4.5 show that some trees with exterior major vertices have no unique γ-min labeling. However, Corollary 2.5 shows that a path has a unique γ-min labeling. All such results lead us to the conjecture:
"A connected graph G has the unique γ-min labeling if and only if G is a path."

Acknowledgements : The authors are grateful to the referees for their careful reading of the manuscript and their useful comments.

References

[1] G. Chartrand, D. Erwin, D.W. VanderJagt, P. Zhang, γ-labelings of graphs, Bull. Inst. Combin. Appl. 44 (2005) 51-68.
[2] A. Rosa, On certain valuations of the vertices of a graph, in Theory of Graphs (Internat. Sympos., Rome, 1967) 349-355, Gordon and Breach, New York; Dunod, Paris, 1967.
[3] S.W. Golomb, How to number a graph, in Graph Theory and Computing, Academic Press, New York (1972), 23-37.
[4] S.M. Hegde, On (k, d)-graceful graphs, J. Combin. Inform. System Sci 25 (2000) 255-265.
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) 1-308.
[6] G.D. Bullington, L.L. Eroh, S.J. Winters, γ-labelings of complete bipartite graphs, Discuss. Math. Graph Theory 30 (2010) 45-54.
[7] G. Chartrand, D. Erwin, D.W. VanderJagt, P. Zhang, On γ-labelings of trees, Discuss. Math. Graph Theory 25 (3) (2005) 363-383.
[8] C.M. da Fonseca, V. Saenpholphat, P. Zhang, Extremal values for a γ labeling of a cycle with a triangle, Utilitas Math 92 (2013) 167-185.
[9] C.M. da Fonseca, V. Saenpholphat, P. Zhang, The γ-spectrum of a graph, Ars Combin. 101 (2011) 109-127.
[10] V. Khemmani, S. Saduakdee, The γ-spectrum of cycle with one chord, International Journal of Pure and Applied Mathematics 105 (4) (2015) 835-852.
[11] S. Saduakdee, V. Khemmani, γ-labeling of a cycle with one chord, Discrete and Computational Geometry and Graphs, Lecture Notes in Computer Science 9943 (2016) 155-166.
[12] S. Saduakdee, V. Khemmani, γ-max labelings of graphs, Journal of Mathematics research 9 (1) (2017) 90-97.
[13] C.M. da Fonseca, V. Khemmani, P. Zhang, On γ-labelings of graphs, Utilitas Math 98 (2015) 33-42.
[14] S. Saduakdee, V. Khemmani, γ-max labelings of graphs with exterior major vertices, Ars Combinatoria 138 (2018) to appear.
[15] G. Chartrand, P. Zhang, Introduction to Graph Theory, The Walter Rudin student series in advanced mathematics, McGraw-Hill Higher Education, Boston, 2005.
(Received 5 May 2017)
(Accepted 17 July 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2018 by the Mathematical Association of Thailand. All rights reserved.

