Thai Journal of Mathematics : 187–203 Special Issue: Annual Meeting in Mathematics 2017

http://thaijmath.in.cmu.ac.th ISSN 1686-0209



# The Unique $\gamma$ -min Labelings of Graphs

#### Supaporn Saduakdee and Varanoot Khemmani<sup>1</sup>

Department of Mathematics, Faculty of Science Srinakharinwirot University, Bangkok 10110, Thailand e-mail: aa\_o\_rr@hotmail.com (S. Saduakdee) varanoot@g.swu.ac.th (V. Khemmani)

To the Memory of Professor Narong Punnim

**Abstract**: Let G be a graph of order n and size m. A  $\gamma$ -labeling of G is a one-to-one function  $f: V(G) \to \{0, 1, 2, ..., m\}$  that induces an *edge-labeling*  $f': E(G) \to \{1, 2, ..., m\}$  on G defined by

f'(e) = |f(u) - f(v)|, for each edge e = uv in E(G).

The value of f is defined as

$$\operatorname{val}(f) = \sum_{e \in E(G)} f'(e).$$

The maximum value of a  $\gamma$ -labeling of G is defined as

 $\operatorname{val}_{\max}(G) = \max{\operatorname{val}(f) : f \text{ is a } \gamma \text{-labeling of } G};$ 

while the *minimum value* of a  $\gamma$ -labeling of G is

 $\operatorname{val}_{\min}(G) = \min\{\operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G\}.$ 

A  $\gamma$ -labeling g of G is a  $\gamma$ -max *labeling* if  $val(g) = val_{max}(G)$  and a  $\gamma$ -labeling h is a  $\gamma$ -min *labeling* if  $val(h) = val_{min}(G)$ .

For a  $\gamma$ -labeling f of a graph G of size m, the complementary labeling  $\overline{f}$ :  $V(G) \to \{0, 1, \ldots, m\}$  of f is defined by

$$\overline{f}(v) = m - f(v)$$
 for  $v \in V(G)$ .

<sup>1</sup>Corresponding author.

Copyright C 2018 by the Mathematical Association of Thailand. All rights reserved.

Let G be a connected graph and f a  $\gamma$ -min labeling of G. Then G has a unique  $\gamma$ -min labeling if f and  $\overline{f}$  are only two  $\gamma$ -min labelings of G.

In this paper, we study a connected graph having the unique  $\gamma$ -min labeling. The minimum value of a  $\gamma$ -labeling is determined for some classes of trees. Spontaneously, we are able to find that they have no unique  $\gamma$ -min labeling.

Keywords :  $\gamma$ -labeling;  $\gamma$ -min labeling; unique  $\gamma$ -min labeling. 2010 Mathematics Subject Classification : 05C78.

### 1 Introduction

Let G be a graph of order n and size m. A  $\gamma$ -labeling of G is defined in [1] as a one-to-one function  $f: V(G) \to \{0, 1, \ldots, m\}$  that induces an *edge-labeling*  $f': E(G) \to \{1, \ldots, m\}$  on G defined by f'(e) = |f(u) - f(v)| for each edge e = uvof G. The value of f is defined by

$$\operatorname{val}(f) = \sum_{e \in E(G)} f'(e) \,.$$

If the edge-labeling f' of a  $\gamma$ -labeling f of a graph is also one-to-one, then f is a graceful labeling. Among all labelings of graphs, graceful labelings are probably the best known and most studied. Graceful labelings originated with a paper of Rosa [2], who used the term  $\beta$ -valuations. A few years later, Golomb [3] called these labelings "graceful" and this is the terminology that has been used since then.

Moreover, a more general vertex labeling of a graph was introduced by Hegde [4], in 2000, as follows. A vertex function f of a graph G is defined from V(G) to the set of nonnegative integers that induces an edge function f' defined by f'(e) = |f(u) - f(v)| for each edge e = uv of G. Such a function is called a geodetic function of G. A one-to-one geodetic function is a geodetic labeling of G if the induced edge function f' is also one-to-one. Gallian [5] has written an extensive survey on labelings of graphs.

Obviously, since  $\gamma$ -labeling f of a graph G of order n and size m is one-to-one, it follows that  $f'(e) \geq 1$ , for any edge e, and therefore,  $\operatorname{val}(f) \geq m$ . Moreover, G has a  $\gamma$ -labeling if and only if  $m \geq n-1$  and every connected graph has a  $\gamma$ -labeling.

The maximum value and the minimum value of a  $\gamma$ -labeling of G are defined in [1] as

$$\operatorname{val}_{\max}(G) = \max\{\operatorname{val}(f): f \text{ is a } \gamma\text{-labeling of } G\}$$

and

$$\operatorname{val}_{\min}(G) = \min\{\operatorname{val}(f): f \text{ is a } \gamma\text{-labeling of } G\},\$$

respectively. A  $\gamma$ -labeling g of G is a  $\gamma$ -max labeling if  $\operatorname{val}(g) = \operatorname{val}_{\max}(G)$  and a  $\gamma$ -labeling h is a  $\gamma$ -min labeling if  $\operatorname{val}(h) = \operatorname{val}_{\min}(G)$ .

Figure 1 shows nine  $\gamma$ -labelings  $f_1, f_2, \ldots, f_9$  of the path  $P_5$  of order 5 (where the vertex labels are shown above each vertex and the induced edge labels are shown below each edge). The value of each  $\gamma$ -labeling is shown in Figure 1 as well.



Since val $(f_1) = 4$  and the size of  $P_5 = 4$ , it follows that  $f_1$  is a  $\gamma$ -min labeling of  $P_5$ . It is shown in [1] that the  $\gamma$ -labeling  $f_9$  is a  $\gamma$ -max labeling of  $P_5$ .

In [1, 6, 7, 8, 9, 10, 11, 12], the maximum and minimum values of a  $\gamma$ -labeling of path  $P_n$ , cycle  $C_n$ , complete graph  $K_n$ , double star  $S_{p,q}$ , complete bipartite graph  $K_{r,s}$ , cycle with a triangle  $C_n^{\Delta}$  and cycle with one chord  $C_n + e$  are determined.

For a  $\gamma$ -labeling f of a graph G of size m, the complementary labeling  $\overline{f}$ :  $V(G) \to \{0, 1, \ldots, m\}$  of f is defined by

$$\overline{f}(v) = m - f(v)$$
 for  $v \in V(G)$ .

Not only is  $\overline{f}$  a  $\gamma$ -labeling of G but  $val(\overline{f}) = val(f)$  as well. This gives us the following.

**observation 1.1** ([1]). Let f be a  $\gamma$ -labeling of a graph G. Then f is a  $\gamma$ -max labeling ( $\gamma$ -min labeling) of G if and only if  $\overline{f}$  is a  $\gamma$ -max labeling ( $\gamma$ -min labeling) of G.

For integers a and b with a < b, let

$$[a,b] = \{a, a+1, \dots, b\}$$

be a *consecutive set* of integers between a and b.

The following results appeared in [1], [7] and [13] are useful to us.

**Theorem 1.2** ([1]). If G is a connected graph of order n, then G has a  $\gamma$ -min labeling f such that f(V(G)) = [0, n-1].

**Theorem 1.3** ([7]). Let G be a connected graph of order n and size m. Then  $\operatorname{val}_{\min}(G) = m$  if and only if  $G \cong P_n$ .

190

**Theorem 1.4** ([7]). Let f be a  $\gamma$ -labeling of a connected graph G. If P is a u - v path in G, then

$$\sum_{e \in E(P)} f'(e) \ge |f(u) - f(v)|.$$

**Theorem 1.5** ([13]). Let G be a nontrivial graph of order n and size m and f a  $\gamma$ -labeling of G. If f is a  $\gamma$ -min labeling of G, then f(V(G)) is a consecutive subset of [0,m], that is, f(V(G)) = [k, k+(n-1)] for some integer k with  $0 \le k \le m-(n-1)$ .

A vertex of degree at least 3 in a graph G is called a *major vertex*. An end-vertex z of G is said to be a *terminal vertex* of a major vertex v of G if d(v,z) < d(w,z) for every other major vertex w of G. A major vertex v of a graph G is an *exterior major vertex* of G if it has at least one terminal vertex.



Figure 2: The graph G

For example, the graph G of Figure 2 has four major vertices, namely,  $v_1, v_2, v_3$ ,  $v_4$ . The terminal vertices of  $v_1$  are  $z_1$  and  $z_2$ , the terminal vertices of  $v_3$  are  $z_3, z_4$  and  $z_5$ , and the terminal vertices of  $v_4$  are  $z_6$  and  $z_7$ . The major vertex  $v_2$  has no terminal vertex and so  $v_2$  is not an exterior major vertex of G. Thus G has three exterior major vertices  $v_1, v_3$  and  $v_4$ .

In [7] and [14], the minimum value and the maximum value of  $\gamma$ -labelings of some trees with exterior major vertices are determined.

Let G be a connected graph and f a  $\gamma$ -min labeling of G. Then G has a unique  $\gamma$ -min labeling if f and  $\overline{f}$  are only two  $\gamma$ -min labelings of G. Consequently, since the  $\gamma$ -labelings  $f_1$  and  $\overline{f}_1$  are only two  $\gamma$ -min labelings of the path  $P_5$  in Figure 1, it follows that the path  $P_5$  has a unique  $\gamma$ -min labeling.

The goal of this paper is to study a connected graph having the unique  $\gamma$ -min labeling. We also determine the minimum values of  $\gamma$ -labelings of some generalized

trees with exterior major vertices. It is shown that they have no unique  $\gamma$ -min labeling, but not so for a path.

The reader is referred to Chartrand and Zhang [15] for basic definitions and terminology not mentioned here.

## 2 Unique $\gamma$ -min Labelings of Graphs

Let G be a connected graph of order n and size m and f a  $\gamma$ -labeling of G. For each integer k with  $0 \leq k \leq m - \max\{f(v): v \in V(G)\}$ , let  $f^k: V(G) \rightarrow \{0, 1, 2, \ldots, m\}$  be a  $\gamma$ -labeling of G defined by

$$f^k(v) = f(v) + k$$
, for each  $v \in V(G)$ .

Note that  $f^k = f$  when k = 0.

**Theorem 2.1.** Let G be a connected graph of order n and size m and f a  $\gamma$ -labeling of G. Then for each integer k with  $0 \le k \le m - \max\{f(v) : v \in V(G)\}, val(f^k) = val(f).$ 

*Proof.* Let k be an integer with  $0 \le k \le m - \max\{f(v): v \in V(G)\}$ . Since  $|f^k(u) - f^k(v)| = |(f(u) + k) - (f(v) + k)| = |f(u) - f(v)|$  for each  $e = uv \in E(G)$ ,  $val(f^k) = val(f)$ . □

This also provides the following corollary.

**Corollary 2.2.** Let G be a connected graph of order n and size m and f a  $\gamma$ -labeling of G. Then f is a  $\gamma$ -max labeling ( $\gamma$ -min labeling) of G if and only if  $f^k$  is a  $\gamma$ -max labeling ( $\gamma$ -min labeling) of G for each integer k with  $0 \le k \le m - \max\{f(v): v \in V(G)\}$ .

By Theorem 1.2 and Corollary 2.2, we can verify that none of graphs with cycle has a unique  $\gamma$ -min labeling.

**Theorem 2.3.** If a connected graph G has the unique  $\gamma$ -min labeling, then G is a tree.

*Proof.* Let G be a connected graph of order n and size m. Assume that G contains a cycle. Then  $m \ge n$ . By Theorem 1.2, G has a  $\gamma$ -min labeling f such that f(V(G)) = [0, n - 1]. Since  $m \ge n$ ,  $m - (n - 1) \ge 1$ . Thus G has a  $\gamma$ - labeling  $f^1$ . By Corollary 2.2,  $f^1$  is a  $\gamma$ -min labeling of G. Since  $f^1(V(G)) = [1, n], f^1 \ne f$ and  $f^1 \ne \overline{f}$ . Therefore G has no unique  $\gamma$ -min labeling.  $\Box$ 

Next, we determine that every path  $P_n$  of order n has a unique  $\gamma$ -min labeling. This starts by characterizing  $\gamma$ -min labelings of a path  $P_n$ .

**Theorem 2.4.** Let f be a  $\gamma$ -labeling of a path  $P_n : v_1, v_2, \ldots, v_n$  defined by

 $f(v_i) = i - 1$ , for each integer i with  $1 \le i \le n$ .

Then f and  $\overline{f}$  are only two  $\gamma$ -min labelings of  $P_n$ .

Proof. By Theorem 1.3, we have  $\operatorname{val}_{\min}(P_n) = n-1$ . Since  $\operatorname{val}(f) = \operatorname{val}(\bar{f}) = n-1$ , f and  $\bar{f}$  are  $\gamma$ -min labelings of  $P_n$ . Let  $f_1$  be a  $\gamma$ -min labelings of  $P_n$ . Then  $\operatorname{val}(f_1) = \operatorname{val}_{\min}(P_n) = n-1$  which is the size of  $P_n$ . Since  $f'_1(e) = 1$  for each edge e in  $P_n$ , it follows that  $|f_1(v_{i+1}) - f_1(v_i)| = 1$  for each  $i, 1 \leq i \leq n-1$ . Thus either  $f_1 = f$  or  $f_1 = \bar{f}$ . Therefore f and  $\bar{f}$  are only two  $\gamma$ -min labelings of  $P_n$ .  $\Box$ 

**Corollary 2.5.** A path has a unique  $\gamma$ -min labeling.

192

The following result shows that there are many trees that fail to have unique  $\gamma$ -min labeling.

**Theorem 2.6.** Let T be a tree with exterior major vertices. If there are at least two terminal vertices  $z_1$  and  $z_2$  of some exterior major vertex v of T such that  $d(v, z_1) = d(v, z_2)$ , then T has no unique  $\gamma$ -min labeling.

*Proof.* Assume that there are at least two terminal vertices  $z_1$  and  $z_2$  of some exterior major vertex v of T such that  $d(v, z_1) = d(v, z_2)$ . By Theorem 1.2, T has a  $\gamma$ -min labeling f such that f(V(T)) = [0, n-1]. Let  $P: v = u_0, u_1, \ldots, u_d = z_1$  be a  $v - z_1$  path in T and  $Q: v = w_0, w_1, \ldots, w_d = z_2$  be a  $v - z_2$  path in T. Let  $f_1$  be a  $\gamma$ -labeling of T defined by

$$f_1(a) = \begin{cases} f(a) & \text{if } a \in V(T) - \{u_i, w_j | 1 \le i, j \le d\} \\ f(w_i) & \text{if } a = u_i \text{ with } 1 \le i \le d \\ f(u_j) & \text{if } a = w_j \text{ with } 1 \le j \le d \,. \end{cases}$$

Then  $\operatorname{val}(f_1) = \operatorname{val}(f) = \operatorname{val}_{\min}(T)$ . Thus  $f_1$  is a  $\gamma$ -min labeling of T such that  $f_1 \neq f$  and  $f_1 \neq \overline{f}$ . Therefore T has no unique  $\gamma$ -min labeling.

## 3 $\gamma$ -min Labeling of a Tree with Exterior Major Vertices of Degree 3

The maximum degree of a graph G is the maximum degree among the vertices of G and is denoted by  $\Delta(G)$ . A caterpillar is a tree of order at least 3, the removal of whose end-vertices produces a path. We recall the minimum value of a  $\gamma$ -labeling of a caterpillar with  $\Delta(T) = 3$  having an arbitrary number of exterior major vertices as follows.

**Theorem 3.1** ([7]). If T is a caterpillar of order  $n \ge 4$  such that  $\Delta(T) = 3$  and T has exactly k exterior major vertices, then

$$\operatorname{val}_{\min}(T) = n + k - 1$$
.

Note that if a tree T is a caterpillar, then d(v, z) = 1 for each terminal vertex z of an exterior major vertex v of T which does not lie on the path of length diam(T). Next, we generalize a caterpillar of Theorem 3.1 to a tree T having  $\Delta(T) = 3$  and  $d(v, z) \ge 1$  for each terminal vertex z of an exterior major vertex v of T, and then formulate val<sub>min</sub>(T).

**Proposition 3.2.** Let T be a tree of order n with  $\Delta(T) = 3$  whose all major vertices are exterior major vertices and lie on the same path of length d = diam(T). Then

$$\operatorname{val}_{\min}(T) \le 2n - d - 2$$

*Proof.* Let  $P: v_0, v_1, \ldots, v_d$  be a path containing all exterior major vertices in T. Let  $v_{l_1}, v_{l_2}, \ldots, v_{l_k}$  be all exterior major vertices in T such that  $1 \leq l_1 < l_2 < \cdots < l_k \leq d-1$ . For each  $1 \leq j \leq k$ , let  $z_j$  be the terminal vertices of  $v_{l_j}$  not on P and  $Q_j: v_{l_j} = u_{j0}, u_{j1}, \ldots, u_{jd_j} = z_j$  the  $v_{l_j} - z_j$  path in T. Let f be a  $\gamma$ -labeling of T defined by

$$f(a) = \begin{cases} i & \text{if } a = v_i \text{ with } 0 \le i \le l_1 \\ \left(\sum_{r=1}^s d_r\right) + i & \text{if } a = v_i \text{ with } l_s + 1 \le i \le l_{s+1}, \ 1 \le s \le k-1 \\ n-d-1+i & \text{if } a = v_i \text{ with } l_k + 1 \le i \le d \\ l_1+i & \text{if } a = u_{1i} \text{ with } 1 \le i \le d_1 \\ \left(\sum_{r=1}^{j-1} d_r\right) + l_j + i & \text{if } a = u_{ji} \text{ with } 1 \le i \le d_j, \ 2 \le j \le k. \end{cases}$$

Then

$$val(f) = \sum_{e \in E(P)} f'(e) + \left( \sum_{e \in E(Q_1)} f'(e) + \sum_{e \in E(Q_2)} f'(e) + \dots + \sum_{e \in E(Q_k)} f'(e) \right)$$
  
=  $2n - d - 2$ .

Therefore  $\operatorname{val}_{\min}(T) \leq \operatorname{val}(f) = 2n - d - 2$ .

We now establish the lower bound of the minimum value of a  $\gamma$ -labeling of a tree T with  $\Delta(T) = 3$  having an arbitrary number of exterior major vertices of degree 3, as follows.

**Proposition 3.3.** Let T be a tree of order n with  $\Delta(T) = 3$  whose all major vertices are exterior major vertices and lie on the same path of length d = diam(T). Then

$$\operatorname{val}_{\min}(T) \ge 2n - d - 2$$
.

*Proof.* Let g be an arbitrary  $\gamma$ -labeling of T. Since T has exactly n-1 edges, there are vertices  $u, w \in V(T)$  with g(u) = 0 and g(w) = n-1. Let Q be a u-w path in T. By Theorem 1.4,

$$\sum_{e \in E(Q)} g'(e) \ge |g(u) - g(w)| = n - 1.$$

#### 193

Since the length of Q is at most diam(T) = d, there are at least n - d - 1 edges of T not on Q, and hence

$$\sum_{e \in E(T) - E(Q)} g'(e) \ge n - d - 1.$$

Thus

194

$$\operatorname{val}(g) = \sum_{e \in E(Q)} g'(e) + \sum_{e \in E(T) - E(Q)} g'(e)$$
  

$$\geq 2n - d - 2.$$

Therefore  $\operatorname{val}_{\min}(T) \ge 2n - d - 2$ .

Combining Propositions 3.2 and 3.3, we have the following.

**Theorem 3.4.** Let T be a tree of order n with  $\Delta(T) = 3$  whose all major vertices are exterior major vertices and lie on the same path of length d = diam(T). Then

$$\operatorname{val}_{\min}(T) = 2n - d - 2$$

With aid of Theorem 3.4 we are able to show that a tree in Theorem 3.4 has no unique  $\gamma$ -min labeling.

**Theorem 3.5.** If T is a tree with  $\Delta(T) = 3$  whose all major vertices are exterior major vertices and lie on the same path of length diam(T), then T has no unique  $\gamma$ -min labeling.

*Proof.* Let T be a tree with  $\Delta(T) = 3$  whose all major vertices are exterior major vertices and lie on the same path of length diam(T). Let  $P: v_0, v_1, \ldots, v_d$  be a path containing all exterior major vertices in T. Let  $v_{l_1}, v_{l_2}, \ldots, v_{l_k}$  be all exterior major vertices in T such that  $1 \leq l_1 < l_2 < \cdots < l_k \leq d-1$ . For each  $1 \leq j \leq k$ , let  $z_j$  be the terminal vertices of  $v_{l_j}$  not on P and  $Q_j: v_{l_j} = u_{j0}, u_{j1}, \ldots, u_{jd_j} = z_j$  the  $v_{l_j} - z_j$  path in T. Let  $f_1$  be a  $\gamma$ -labeling of T defined by

$$f_1(a) = \begin{cases} i & \text{if } a = v_i \quad \text{with } 0 \le i \le l_1 - 1 \\ \left(\sum_{r=1}^s d_r\right) + i & \text{if } a = v_i \quad \text{with } l_s + 1 \le i \le l_{s+1}, \ 1 \le s \le k - 1 \\ n - d - 1 + i & \text{if } a = v_i \quad \text{with } l_k + 1 \le i \le d \\ l_1 + d_1 - i & \text{if } a = u_{1i} \quad \text{with } 0 \le i \le d_1 \\ \left(\sum_{r=1}^{j-1} d_r\right) + l_j + i & \text{if } a = u_{ji} \quad \text{with } 1 \le i \le d_j, \ 2 \le j \le k. \end{cases}$$

Then

$$\operatorname{val}(f_{1}) = \sum_{e \in E(P)} f_{1}'(e) + \left( \sum_{e \in E(Q_{1})} f_{1}'(e) + \sum_{e \in E(Q_{2})} f_{1}'(e) + \dots + \sum_{e \in E(Q_{k})} f_{1}'(e) \right)$$
  
=  $n - 1 + \sum_{i=1}^{k} d_{i}$   
=  $\operatorname{val}_{\min}(T)$  (by Theorem 3.4).

Thus not only  $f_1$  is a  $\gamma$ -min labeling of T, but the  $\gamma$ -labeling f in Proposition 3.2 is also  $\gamma$ -min labeling of T such that  $f_1 \neq f$  and  $f_1 \neq \overline{f}$ . Therefore T has no unique  $\gamma$ -min labeling.

## 4 $\gamma$ -min Labeling of a Tree with a Unique Exterior Major Vertex

In this section, we establish a minimum value of a  $\gamma$ -labeling of a tree with a unique exterior major vertex of an arbitrary degree. In order to do this, we first present the minimum value of a  $\gamma$ -labeling of a tree with a unique exterior major vertex of degree 3 shown in [7].

**Theorem 4.1** ([7]). Let T be a tree of order n with a unique exterior major vertex v of degree 3. If  $d = \min\{d(v, z) \mid z \text{ is a terminal vertex of } v\}$ , then

$$\operatorname{val}_{\min}(T) = n + d - 1$$
.

Next, we generalize Theorem 4.1 to a tree T with a unique exterior major vertex of an arbitrary degree. We are now prepared to present the upper bound of the minimum value of a  $\gamma$ -labeling of such a tree.

**Proposition 4.2.** Let T be a tree of order n with a unique exterior major vertex v. If  $d_1, d_2, \ldots, d_{\Delta(T)}$  are the distances between v and all its terminal vertices with  $d_1 \leq d_2 \leq \cdots \leq d_{\Delta(T)}$ , then

$$\mathrm{val}_{\min}(T) \leq \left\{ \begin{array}{ll} n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_i & \quad \text{if } \Delta(T) \text{ is even} \\ \\ n - 1 + \sum_{j=1}^{\frac{\Delta(T) - 1}{2}} \sum_{i=1}^{2j - 1} d_i & \quad \text{if } \Delta(T) \text{ is odd}. \end{array} \right.$$

*Proof.* Let  $z_1, z_2, \ldots, z_{\Delta(T)}$  be the terminal vertices of an exterior major vertex v. For each  $1 \leq i \leq \Delta(T)$ , let  $Q_i : v = v_{i0}, v_{i1}, \ldots, v_{id_i} = z_i$  be the  $v - z_i$  path in T. *Case* 1.  $\Delta(T)$  *is even.* 

Let f be a  $\gamma$ -labeling of T defined by

$$f(v_{ij}) = \begin{cases} \begin{pmatrix} \sum d_k \\ i \le k \le \Delta(T) \\ k \text{ is even} \end{pmatrix} - j & \text{ if } i \text{ is even}, 2 \le i \le \Delta(T) \text{ and } 1 \le j \le d_i \\ n - 1 + j - \sum_{\substack{i \le k \le \Delta(T) - 1 \\ k \text{ is odd}}} d_k & \text{ if } i \text{ is odd}, 1 \le i \le \Delta(T) - 1 \text{ and } 1 \le j \le d_i \\ \sum_{\substack{1 \le k \le \Delta(T) \\ k \text{ is even}}} d_k & \text{ if } v_{ij} = v \,. \end{cases}$$

Then

$$\operatorname{val}(f) = \left( \sum_{e \in E(Q_1)} f'(e) + \sum_{e \in E(Q_3)} f'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)-1})} f'(e) \right) \\ + \left( \sum_{e \in E(Q_2)} f'(e) + \sum_{e \in E(Q_4)} f'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)})} f'(e) \right) \\ = n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_i.$$

Therefore  $\operatorname{val}_{\min}(T) \leq \operatorname{val}(f) = n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2}-1} \sum_{i=1}^{2j} d_i$ .

Case 2.  $\Delta(T)$  is odd. Let f be a  $\gamma$ -labeling of T defined by

$$f(v_{ij}) = \begin{cases} \begin{pmatrix} \sum d_k \\ i \le k \le \Delta(T) \\ k \text{ is odd} \end{pmatrix} - j & \text{ if } i \text{ is odd, } 1 \le i \le \Delta(T) \text{ and } 1 \le j \le d_i \\ n - 1 + j - \sum_{\substack{i \le k \le \Delta(T) - 1 \\ k \text{ is even}}} d_k & \text{ if } i \text{ is even, } 2 \le i \le \Delta(T) - 1 \text{ and } 1 \le j \le d_i \\ \sum_{\substack{1 \le k \le \Delta(T) \\ k \text{ is odd}}} d_k & \text{ if } v_{ij} = v \text{ .} \end{cases}$$

Then

$$\operatorname{val}(f) = \left( \sum_{e \in E(Q_1)} f'(e) + \sum_{e \in E(Q_3)} f'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)})} f'(e) \right) \\ + \left( \sum_{e \in E(Q_2)} f'(e) + \sum_{e \in E(Q_4)} f'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)-1})} f'(e) \right) \\ = n - 1 + \sum_{j=1}^{\frac{\Delta(T)-1}{2}} \sum_{i=1}^{2j-1} d_i.$$

Therefore  $\operatorname{val}_{\min}(T) \le \operatorname{val}(f) = n - 1 + \sum_{j=1}^{\frac{\Delta(T)-1}{2}} \sum_{i=1}^{2j-1} d_i$ .

We are able to show the lower bound of the minimum value of a  $\gamma$ -labeling of a tree with a unique exterior major vertex of an arbitrary degree.

**Proposition 4.3.** Let T be a tree of order n with a unique exterior major vertex v. If  $d_1, d_2, \ldots, d_{\Delta(T)}$  are the distances between v and all its terminal vertices with  $d_1 \leq d_2 \leq \cdots \leq d_{\Delta(T)}$ , then

$$\operatorname{val}_{\min}(T) \ge \begin{cases} n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_i & \text{if } \Delta(T) \text{ is even} \\ n - 1 + \sum_{j=1}^{\frac{\Delta(T) - 1}{2}} \sum_{i=1}^{2j - 1} d_i & \text{if } \Delta(T) \text{ is odd}. \end{cases}$$

*Proof.* Let g be an arbitrary  $\gamma$ -labeling of T. Since T has exactly n-1 edges, there are vertices  $u_1, w_1 \in V(T)$  with  $g(u_1) = 0$  and  $g(w_1) = n-1$ . Let  $Q_1$  be a  $u_1 - w_1$  path in T. By Theorem 1.4,

$$\sum_{e \in E(Q_1)} g'(e) \ge |g(u_1) - g(w_1)| = n - 1.$$

Let  $u_2, w_2 \in V(T)$  with

$$g(u_2) = \min\{g(x) \mid x \notin V(Q_1)\}$$
 and  $g(w_2) = \max\{g(x) \mid x \notin V(Q_1)\}.$ 

Let  $Q_2$  be a  $u_2 - w_2$  path in T. By Theorem 1.4,

$$\sum_{e \in E(Q_2)} g'(e) \ge |g(u_2) - g(w_2)| = g(w_2) - g(u_2).$$

Since the length of  $Q_1$  is at most diam $(T) = d_{\Delta(T)} + d_{\Delta(T)-1}$ , there are at least  $(n-1) - d_{\Delta(T)} - d_{\Delta(T)-1}$  edges of T not on  $Q_1$ , and hence

$$g(w_2) - g(u_2) \ge (n-1) - d_{\Delta(T)} - d_{\Delta(T)-1}.$$

Thus

$$\sum_{e \in E(Q_2)} g'(e) \geq (n-1) - d_{\Delta(T)} - d_{\Delta(T)-1}$$
  
=  $d_1 + d_2 + \dots + d_{\Delta(T)-2}.$ 

Let  $u_3, w_3 \in V(T)$  with

$$g(u_3) = \min\{g(x) \mid x \notin V(Q_1) \cup V(Q_2)\}$$

and

$$g(w_3) = \max\{g(x) \mid x \notin V(Q_1) \cup V(Q_2)\}.$$

Let  $Q_3$  be a  $u_3 - w_3$  path in T. By Theorem 1.4,

$$\sum_{e \in E(Q_3)} g'(e) \ge |g(u_3) - g(w_3)| = g(w_3) - g(u_3).$$

Since the sum of the length of  $Q_1$  and  $Q_2$  is at most  $d_{\Delta(T)} + d_{\Delta(T)-1} + d_{\Delta(T)-2} + d_{\Delta(T)-3}$ , there are at least  $(n-1) - d_{\Delta(T)} - d_{\Delta(T)-1} - d_{\Delta(T)-2} - d_{\Delta(T)-3}$  edges of T not on  $Q_1$  and  $Q_2$ , and hence

$$g(w_3) - g(u_3) \ge (n-1) - d_{\Delta(T)} - d_{\Delta(T)-1} - d_{\Delta(T)-2} - d_{\Delta(T)-3}$$

Thus

198

$$\sum_{e \in E(Q_3)} g'(e) \geq (n-1) - d_{\Delta(T)} - d_{\Delta(T)-1} - d_{\Delta(T)-2} - d_{\Delta(T)-3}$$
  
=  $d_1 + d_2 + \dots + d_{\Delta(T)-4}.$ 

Continue until we have for each  $1 \le j \le \left\lfloor \frac{\Delta(T)}{2} \right\rfloor$ , let  $u_j, w_j \in V(T)$  with

$$g(u_j) = \min\{g(x) \mid x \notin \bigcup_{i=1}^{j-1} V(Q_i)\} \text{ and } g(w_j) = \max\{g(x) \mid x \notin \bigcup_{i=1}^{j-1} V(Q_i)\}$$

and let  $Q_j$  be a  $u_j - w_j$  path in T. Then

$$\sum_{e \in E(Q_j)} g'(e) \geq (n-1) - d_{\Delta(T)} - d_{\Delta(T)-1} - \dots - d_{\Delta(T)-2j+4} - d_{\Delta(T)-2j+3}$$
$$= d_1 + d_2 + \dots + d_{\Delta(T)-2j+2}.$$

 $\begin{array}{ll} Case \ 1. \ \Delta(T) \ is \ even. \\ \mathrm{Then} \left\lfloor \frac{\Delta(T)}{2} \right\rfloor = \frac{\Delta(T)}{2}. \ \mathrm{We \ have} \ E(T) - \bigcup_{j=1}^{\underline{\Delta(T)}} E(Q_j) = \emptyset \ \mathrm{or} \ E(T) - \bigcup_{j=1}^{\underline{\Delta(T)}} E(Q_j) \neq \emptyset. \\ \mathrm{If} \ E(T) - \bigcup_{j=1}^{\underline{\Delta(T)}} E(Q_j) = \emptyset, \ \mathrm{then} \\ \mathrm{val}(g) \ = \ \sum_{e \in E(Q_1)} g'(e) \ + \sum_{e \in E(Q_2)} g'(e) \ + \ \cdots \ + \sum_{e \in E\left(Q_{\underline{\Delta(T)}}\right)} g'(e) \\ \geq \ n - 1 + \sum_{j=1}^{\underline{\Delta(T)}} \sum_{i=1}^{2j} d_i \,. \end{array}$ 

If  $E(T) - \bigcup_{j=1}^{\frac{\Delta(T)}{2}} E(Q_j) \neq \emptyset$ , then

$$\begin{aligned} \operatorname{val}(g) &= \left( \sum_{e \in E(Q_1)} g'(e) + \sum_{e \in E(Q_2)} g'(e) + \cdots + \sum_{e \in E} g'(e) \\ &+ \sum_{e \in E(T) - \bigcup_{j=1}^{2} E(Q_j)} g'(e) \\ &\geq n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_i + 1 \\ &> n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_i . \end{aligned} \right) \end{aligned}$$

In general,  $\operatorname{val}(g) \ge n-1 + \sum_{j=1}^{\underline{\Delta}(T)} \sum_{i=1}^{-1} \sum_{i=1}^{2j} d_i$ . Therefore  $\operatorname{val}_{\min}(T) \ge n-1 + \sum_{j=1}^{\underline{\Delta}(T)} \sum_{i=1}^{-1} \sum_{i=1}^{2j} d_i$ .

Case 2.  $\Delta(T)$  is odd.

Then 
$$\left\lfloor \frac{\Delta(T)}{2} \right\rfloor = \frac{\Delta(T)-1}{2}$$
, and so  $E(T) - \bigcup_{j=1}^{\frac{\Delta(T)-1}{2}} E(Q_j) \neq \emptyset$ 

Since the sum of the length of  $Q_j$  for all  $1 \le j \le \frac{\Delta(T)-1}{2}$  is at most  $d_{\Delta(T)} + d_{\Delta(T)-1} + d_{\Delta(T)-2} + \dots + d_3 + d_2$ , there are at least  $(n-1) - d_{\Delta(T)} - d_{\Delta(T)-1} - d_{\Delta(T)-2} - \dots - d_3 - d_2 = d_1$  edges of T not on  $Q_j$  for all  $1 \le j \le \frac{\Delta(T)-1}{2}$ . Thus

$$\operatorname{val}(g) = \left( \sum_{e \in E(Q_1)} g'(e) + \sum_{e \in E(Q_2)} g'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)-1})} g'(e) + \sum_{e \in E(T) - \frac{\Delta(T) - 1}{2}} g'(e) + \sum_{e \in E(T) - \frac{\Delta(T) - 1}{2}} E(Q_j) \right)$$
  
$$\geq n - 1 + \sum_{j=1}^{\frac{\Delta(T) - 1}{2}} \sum_{i=1}^{2j-1} d_i.$$

Therefore  $\operatorname{val}_{\min}(T) \ge n - 1 + \sum_{j=1}^{\frac{\Delta(T)-1}{2}} \sum_{i=1}^{2j-1} d_i$ .

We compute the minimum value of a  $\gamma$ -labeling of a tree with a unique exterior major vertex of an arbitrary degree by combining Propositions 4.2 and 4.3 as follows.

199

**Theorem 4.4.** Let T be a tree of order n with a unique exterior major vertex v. If  $d_1, d_2, \ldots, d_{\Delta(T)}$  are the distances between v and all its terminal vertices with  $d_1 \leq d_2 \leq \cdots \leq d_{\Delta(T)}$ , then

$$\operatorname{val}_{\min}(T) = n - 1 + \sum_{i=1}^{\lfloor \frac{\Delta(T)}{2} \rfloor} \left( \left\lfloor \frac{\Delta(T)}{2} \right\rfloor - i \right) (d_{2i-1} + d_{2i}) + \delta_{\Delta} \sum_{i=1}^{\lfloor \frac{\Delta(T)}{2} \rfloor} d_{2i-1}$$

where

$$\delta_{\Delta} = \left\{ \begin{array}{ll} 0 & \quad \ if \ \Delta(T) \ is \ even \\ \\ 1 & \quad \ if \ \Delta(T) \ is \ odd \, . \end{array} \right.$$

We are now able to apply Theorem 4.4 to show that a tree with a unique exterior major vertex of an arbitrary degree has no unique  $\gamma$ -min labeling.

**Theorem 4.5.** If T is a tree with a unique exterior major vertex, then T has no unique  $\gamma$ -min labeling.

*Proof.* Let T be a tree with a unique exterior major vertex v. Let  $z_1, z_2, \ldots, z_{\Delta(T)}$  be the terminal vertices of v. Let  $Q_i : v = v_{i0}, v_{i1}, \ldots, v_{id_i} = z_i$  be the  $v - z_i$  path of T for each  $1 \leq i \leq \Delta(T)$ .

Case 1.  $\Delta(T)$  is even. Let  $f_1$  be a  $\gamma$ -labeling of T defined by

$$f_1(v_{ij}) = \begin{cases} \begin{pmatrix} \sum d_k \\ i \le k \le \Delta(T) \\ k \text{ is even} \end{pmatrix} - j & \text{ if } i \text{ is even}, 4 \le i \le \Delta(T) \text{ and } 1 \le j \le d_i \\ n - 1 + j - \sum_{\substack{i \le k \le \Delta(T) - 1 \\ k \text{ is odd}}} d_k & \text{ if } i \text{ is odd}, 3 \le i \le \Delta(T) - 1 \text{ and } 1 \le j \le d_i \\ n - 1 - d_2 + j - \sum_{\substack{3 \le k \le \Delta(T) - 1 \\ k \text{ is odd}}} d_k & \text{ if } i = 2 \text{ and } 1 \le j \le d_2 \\ d_1 + \begin{pmatrix} \sum_{\substack{4 \le k \le \Delta(T) \\ k \text{ is even}}} \end{pmatrix} - j & \text{ if } i = 1 \text{ and } 1 \le j \le d_1 \\ d_1 + \sum_{\substack{4 \le k \le \Delta(T) \\ k \text{ is even}}} d_k & \text{ if } v_{ij} = v \text{ .} \\ k \text{ is even} \end{cases}$$

Then

$$\operatorname{val}(f_{1}) = \left(\sum_{e \in E(Q_{1})} f_{1}'(e) + \sum_{e \in E(Q_{3})} f_{1}'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)-1})} f_{1}'(e) \right) \\ + \left(\sum_{e \in E(Q_{2})} f_{1}'(e) + \sum_{e \in E(Q_{4})} f_{1}'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)})} f_{1}'(e) \right) \\ = n - 1 + \sum_{j=1}^{\frac{\Delta(T)}{2} - 1} \sum_{i=1}^{2j} d_{i} \\ = \operatorname{val}_{\min}(T) \qquad \text{(by Theorem 4.4).}$$

Thus  $f_1$  is a  $\gamma$ -min labeling of T. Since the  $\gamma$ -labeling f in Case 1 of Proposition 4.2 is also  $\gamma$ -min labeling of T such that  $f_1 \neq f$  and  $f_1 \neq \overline{f}$ , it follows that T has no unique  $\gamma$ -min labeling.

Case 2.  $\Delta(T)$  is odd. Let  $f_1$  be a  $\gamma$ -labeling of T defined by

$$f_1(v_{ij}) = \begin{cases} \begin{pmatrix} \sum d_k \\ i \le k \le \Delta(T) \\ k \text{ is odd} \end{pmatrix} - j & \text{ if } i \text{ is odd}, \ 3 \le i \le \Delta(T) \text{ and } 1 \le j \le d_i \\ n - 1 + j - \sum_{\substack{i \le k \le \Delta(T) - 1 \\ k \text{ is even}}} d_k & \text{ if } i \text{ is even}, \ 2 \le i \le \Delta(T) - 1 \text{ and } 1 \le j \le d_i \\ n - 1 - d_1 + j - \sum_{\substack{2 \le k \le \Delta(T) - 1 \\ k \text{ is even}}} d_k & \text{ if } i = 1 \text{ and } 1 \le j \le d_1 \\ n - 1 - d_1 - \sum_{\substack{2 \le k \le \Delta(T) - 1 \\ k \text{ is even}}} d_k & \text{ if } v_{ij} = v \text{ .} \\ k \text{ is even} \end{cases}$$

Then

$$\operatorname{val}(f_{1}) = \left(\sum_{e \in E(Q_{1})} f_{1}'(e) + \sum_{e \in E(Q_{3})} f_{1}'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)})} f_{1}'(e)\right) \\ + \left(\sum_{e \in E(Q_{2})} f_{1}'(e) + \sum_{e \in E(Q_{4})} f_{1}'(e) + \dots + \sum_{e \in E(Q_{\Delta(T)-1})} f_{1}'(e)\right) \\ = n - 1 + \sum_{j=1}^{2} \sum_{i=1}^{2j-1} d_{i} \\ = \operatorname{val}_{\min}(T) \qquad \text{(by Theorem 4.4).}$$

Thus  $f_1$  is a  $\gamma$ -min labeling of T, however the  $\gamma$ -labeling f in Case 2 of Proposition 4.2 is also  $\gamma$ -min labeling of T such that  $f_1 \neq f$  and  $f_1 \neq \overline{f}$ . Therefore T has no unique  $\gamma$ -min labeling.

## 5 Open Question

202

Theorems 2.6, 3.5 and 4.5 show that some trees with exterior major vertices have no unique  $\gamma$ -min labeling. However, Corollary 2.5 shows that a path has a unique  $\gamma$ -min labeling. All such results lead us to the conjecture:

"A connected graph G has the unique  $\gamma$ -min labeling if and only if G is a path."

**Acknowledgements :** The authors are grateful to the referees for their careful reading of the manuscript and their useful comments.

## References

- G. Chartrand, D. Erwin, D.W. VanderJagt, P. Zhang, γ-labelings of graphs, Bull. Inst. Combin. Appl. 44 (2005) 51-68.
- [2] A. Rosa, On certain valuations of the vertices of a graph, in Theory of Graphs (Internat. Sympos., Rome, 1967) 349-355, Gordon and Breach, New York; Dunod, Paris, 1967.
- [3] S.W. Golomb, How to number a graph, in Graph Theory and Computing, Academic Press, New York (1972), 23-37.
- [4] S.M. Hegde, On (k, d)-graceful graphs, J. Combin. Inform. System Sci 25 (2000) 255-265.
- [5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) 1-308.
- [6] G.D. Bullington, L.L. Eroh, S.J. Winters, γ-labelings of complete bipartite graphs, Discuss. Math. Graph Theory 30 (2010) 45-54.
- [7] G. Chartrand, D. Erwin, D.W. VanderJagt, P. Zhang, On γ-labelings of trees, Discuss. Math. Graph Theory 25 (3) (2005) 363-383.
- [8] C.M. da Fonseca, V. Saenpholphat, P. Zhang, Extremal values for a  $\gamma$ -labeling of a cycle with a triangle, Utilitas Math 92 (2013) 167-185.
- C.M. da Fonseca, V. Saenpholphat, P. Zhang, The γ-spectrum of a graph, Ars Combin. 101 (2011) 109-127.
- [10] V. Khemmani, S. Saduakdee, The  $\gamma$ -spectrum of cycle with one chord, International Journal of Pure and Applied Mathematics 105 (4) (2015) 835-852.
- [11] S. Saduakdee, V. Khemmani,  $\gamma$ -labeling of a cycle with one chord, Discrete and Computational Geometry and Graphs, Lecture Notes in Computer Science 9943 (2016) 155-166.
- [12] S. Saduakdee, V. Khemmani, γ-max labelings of graphs, Journal of Mathematics research 9 (1) (2017) 90-97.

- [13] C.M. da Fonseca, V. Khemmani, P. Zhang, On $\gamma\text{-labelings}$  of graphs, Utilitas Math 98 (2015) 33-42.
- [14] S. Saduakdee, V. Khemmani,  $\gamma$ -max labelings of graphs with exterior major vertices, Ars Combinatoria 138 (2018) to appear.
- [15] G. Chartrand, P. Zhang, Introduction to Graph Theory, The Walter Rudin student series in advanced mathematics, McGraw-Hill Higher Education, Boston, 2005.

(Received 5 May 2017) (Accepted 17 July 2017)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$  Online @ http://thaijmath.in.cmu.ac.th