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1 Introduction

There are a number of generalizations of metric spaces and Banach contraction
principle. In this sequel, Bakhtin [1] and Czerwik [2] introduced b-metric spaces as
a generalization of metric spaces. They proved the contraction mapping principle
in b-metric spaces that generalized the famous Banach contraction principle in
such spaces. On the other hand, Matthews [3] introduced the notion of partial
metric space as a part of the study of denotational semantics of data flow network.
In this space, the usual metric is replaced by partial metric with an interesting
property that the self-distance of any point of space may not be zero. Further,
Matthews showed that the Banach contraction principle is valid in partial metric
space and can be applied in program verification. In [4], Shukla introduced the
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notion of a partial b-metric space as a generalization of partial metric spaces and
b-metric spaces.

In 1981, Gillespie and Williams [5] introduced a new class of maps where the
existing constant is greater than one.

Suppose (X, d) is a metric space, T : X → X and there exists a constant k > 1
such that d(Tx, Ty) ≥ kd(x, y), for all x, y ∈ X. Then T is called an expanding
map.

In this work, we introduce the class of expanding maps in partial b-metric
spaces and prove some fixed point theorems in the new setting. In 1999, Pant [6]
introduced a new continuity condition known as reciprocal continuity and proved
a common fixed point theorem by using the compatibility in metric spaces. The
notion of reciprocal continuity is weaker than the continuity of one of the mappings.

Han and Xu [7] proved the existence of common fixed point for a pair of ex-
panding mappings in cone metric spaces by assuming the surjectivity of the maps.
Esakkiappan [8] later proved a common fixed point theorem using compatible and
reciprocal continuous map in a cone metric space. Manro and Kumar [9] proved
common fixed point theorems for expansion mapping using the concept of compat-
ible maps and weakly reciprocal continuity in both metric and G-metric spaces.
Huang et al. [10] proved the fixed point and common fixed point theorems for ex-
pansion mappings and pairs of weakly compatible expansion maps respectively in
partial metric spaces. In this work, the existence of the fixed point of an expanding
map and common fixed point for a pair of expanding mappings on partial b-metric
spaces using the concept of compatible maps and reciprocal continuity are proved.
Shatanawi and Awawdeh [11] proved some results for fixed and coincidence points
for some expansive mappings in cone metric spaces in which the surjectivity of the
two maps is not assumed in proving the coincidence point theorem. Also we prove
the coincidence point theorem for expanding maps without assuming the surjec-
tivity of the maps therein in partial b-metric spaces. Our results generalize the
recent results of Huang et al. [10], Manro and Kumar [9] and an analogue results to
the results of Han and Xu [7], Esakkiappan [8] and Shatanawi and Awawdeh [11]
in the cone metric spaces.

2 Preliminaries

Throughout this paper the letters R,R+,N will denote the set of real numbers,
nonnegative real numbers and natural numbers, respectively.

First, we recall some definitions from b-metric and partial metric spaces

Definition 2.1. [1] Let X be a (nonempty) set and s ≥ 1 be a given real number.
A function b : X ×X → R+ is a b-metric on X if, for all x, y, z ∈ X, the following
conditions hold:

(b1) b(x, y) = 0 if and only if x = y;

(b2) b(x, y) = b(y, x);
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(b3) b(x, y) ≤ s
(
b(x, z) + b(z, y)

)
.

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Definition 2.2. [3] A partial metric on a nonempty set X is a function
p : X ×X → R+, such that for all x, y, z ∈ X:

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

In this case, the pair (X, p) is called partial metric space.

Now, we define the partial b-metric spaces.

Definition 2.3. [4] Let X be a nonempty set and s ≥ 1 be a given real number.
A mapping pb : X × X → R+ is said to be a partial b-metric on X, if for all
x, y, z ∈ X, the following conditions are satisfied:

(pb1) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y);

(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ s
(
pb(x, z) + pb(z, y)

)
− pb(z, z).

A partial b-metric space is a pair (X, pb) such that X is a nonempty set and pb is
a partial b-metric on X. The number s is called the coefficient of (X, pb).

Remark 2.4. In a partial b-metric space (X, pb), if pb(x, y) = 0, then (pb1) and
(pb2) imply that x = y. But the converse does not hold always. It is clear that
every partial metric space is a partial b-metric space with coefficient s = 1 and
every b-metric is a partial b-metric space with same coefficient and zero distance.
However, the converse of these facts need not hold.The following example shows
that a partial b-metric on X might be neither a partial metric, nor a b-metric on
X.

Example 2.5. [4] Let X = [0,∞). Define a function pb : X ×X → X such that

pb(x, y) =
{

max{x, y}
}2

+ |x − y|2, for all x, y ∈ X. Then (X, pb) is a partial
b-metric space with the coefficient s = 2 > 1, but it is neither a b-metric nor a
partial metric space.

In [4], S. Shukla defined Cauchy sequence and convergent sequence in partial
b-metric spaces.

Definition 2.6. [4] Let (X, pb) be a partial b-metric space with coefficient s. Let
{xn} be any sequence in X and x ∈ X. Then:
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(i) The sequence {xn} is said to be convergent and converges to x, if

lim
n→∞

pb(xn, x) = pb(x, x).

(ii) The sequence {xn} is said to be Cauchy sequence in (X, pb) if

lim
n,m→∞

pb(xn, xm) exists (and is finite).

(iii) (X, pb) is said to be a complete partial b-metric space if for every Cauchy
sequence {xn} in X there exists x ∈ X such that

lim
n,m→∞

pb(xn, xm) = lim
n→∞

pb(xn, x) = pb(x, x).

Now, we define expanding and commuting mapping, coincidence point and
weakly compatible in partial b-metric spaces.

Definition 2.7. Let (X, pb) be a partial b-metric space and T : X → X. Then T
is called a expanding mapping, if for every x, y ∈ X there exists a number k > 1
such that pb(Tx, Ty) ≥ kpb(x, y).

Definition 2.8. Two self mappings T and S of a partial b-metric space (X, pb)
are said to be commuting if TSx = STx for all x ∈ X.

Definition 2.9. Let T and S be self-mappings on a set X. If w = Tx = Sx for
some x ∈ X, then the point x is called a coincidence point of T and S, and w is
called a point of coincidence of T and S.

Definition 2.10. (i) Two self mappings T and S on a set X are said to be
compatible if for {xn} in X, Txn → x and Sxn → x, for some x ∈ X.

(ii) Two self mappings T and S on a set X. Then T and S are said to be
weakly compatible if they commute at each of their coincidence points; i.e.,
if Tx = Sx for some x ∈ X, then TSx = STx.

The notion of reciprocal continuity defined as follow.

Definition 2.11. Two self-mappings T and S are called reciprocally continuous
if lim

n→∞
TSxn = Tz and lim

n→∞
STxn = Sz, whenever {xn} is a sequence such that

lim
n→∞

Txn = lim
n→∞

Sxn = z for some z in X.

3 Main Results

3.1 Fixed Point Theorems
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Theorem 3.1. Let (X, pb) be a complete partial b-metric space with coefficient
s ≥ 1 and T : X → X be a surjection. Suppose that there exist a1, a2, a3, a4, a5 ≥ 0
with a1 + a3 > s(1− a2) ≥ a5 , such that

pb(Tx, Ty) ≥ a1pb(x, y) + a2pb(x, Tx) + a3pb(y, Ty)

+ a4pb(x, Ty) + a5pb(y, Tx),
(3.1)

for all x, y ∈ X,x 6= y. Then T has a fixed point in X. Moreover, if a1+a4+a5 > 1,
then the fixed point is unique.

Proof. Let x0 ∈ X be chosen. Since T is surjective, choose x1 ∈ X such that
Tx1 = x0. Continuing the process, we can define a sequence {xn} ∈ X such that
xn−1 = Txn, n ∈ N. Without loss of generality, we suppose that xn−1 6= xn for
n ≥ 1. From (3.1) we have

pb(xn−1, xn) ≥ a1pb(xn, xn+1) + a2pb(xn, Txn) + a3pb(xn+1, Txn+1)

+ a4pb(xn, Txn+1) + a5pb(xn+1, Txn)

= a1pb(xn, xn+1) + a2pb(xn, xn−1) + a3pb(xn+1, xn)

+ a4pb(xn, xn) + a5pb(xn+1, xn−1).

From (pb4) we have

pb(xn−1, xn+1) ≥ 1
spb(xn−1, xn)− pb(xn, xn+1) + 1

spb(xn+1, xn+1).

Also

pb(xn−1, xn) ≥ a1pb(xn, xn+1) + a2pb(xn−1, xn) + a3pb(xn, xn+1)

+ a5

(
1
spb(xn−1, xn)− pb(xn, xn+1)

)
≥ (a1 + a3 − a5)pb(xn, xn+1) + (a2 + a5

s )pb(xn−1, xn).

It follows that

(1− a2 − a5

s )pb(xn−1, xn) ≥ (a1 + a3 − a5)pb(xn, xn+1).

Hence

pb(xn, xn+1) ≤ 1−a2−(a5/s)
a1+a3−a5

pb(xn−1, xn).

Let k := 1−a2−(a5/s)
a1+a3−a5

. By s(1− a2) ≥ a5, a1 + a3 > a5 and a1 + a3 > s(1− a2) we

have k ∈ [0, 1s ). It follows that pb(xn, xn+1) ≤ kpb(xn−1, xn), by the induction, we
have

pb(xn, xn+1) ≤ kpb(xn−1, xn) ≤ k2pb(xn−2, xn−1) ≤ · · · ≤ knpb(x0, x1),
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and consequently pb(xn, xn+1) ≤ knpb(x0, x1) for all n ∈ N. For n > m, we get

pb(xm, xn) ≤ spb(xm, xm+1) + s2pb(xm+1, xm+2) + · · ·+ snpb(xn−1, xn)

− pb(xm+1, xm+1)− pb(xm+2, xm+2)− · · · − pb(xn−1, xn−1)

≤ (skm + s2km+1 + · · ·+ snkn−1)pb(x0, x1)

= skm(1 + sk + · · ·+ sn−1kn−m−1)pb(x0, x1) ; (sk < 1)

≤ skm

1− sk
pb(x0, x1).

Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X
such that Txn+1 = xn → p as n→∞. Therefore,

lim
n→∞

pb(xn, p) = lim
n→∞

pb(xn, xn) = lim
n,m→∞

pb(xm, xn) = pb(p, p).

Since T is a surjection, we find q ∈ X such that p = Tq. Now we prove that p = q
is the fixed point of T . Using (3.1), we obtain

pb(p, xn) = pb(Tq, Txn+1)

≥ a1pb(q, xn+1) + a2pb(q, T q) + a3pb(xn+1, Txn+1) (3.2)

+ a4pb(q, Txn+1) + a5pb(xn+1, T q).

From (pb4), we obtain

pb(q, T q) = pb(q, p) ≥ 1
spb(q, xn+1)− pb(xn+1, p) + 1

spb(p, p), (3.3)

pb(q, xn) ≥ 1
spb(q, xn+1)− pb(xn+1, xn) + 1

spb(xn, xn) (3.4)

and

pb(p, xn) ≤ spb(p, xn+1) + spb(xn+1, xn)− pb(xn+1, xn+1). (3.5)

Using (3.3), (3.4) and (3.5) in (3.2), we find that

spb(p, xn+1) + spb(xn, xn+1)− pb(xn+1, xn+1)

≥ a1pb(q, xn+1) +
(

a2

s pb(q, xn+1)− a2pb(xn+1, p) + a2

s pb(p, p)
)

+ a3pb(xn, xn+1) +
(

a4

s pb(q, xn+1)− a4pb(xn, xn+1) + a4

s pb(xn, xn)
)

+ a5pb(xn+1, p)

≥ (a1 + a2+a4

s )pb(q, xn+1) + (a5 − a2)pb(xn+1, p) + (a3 − a4)pb(xn, xn+1).

Taking the limit as n→∞ yields 0 ≥ (a1 + a2+a4

s )pb(q, p). Since a1 + a2+a4

s ≥ 0,
we have pb(q, p) ≤ 0. But pb(q, p) ≥ 0. Hence q = p. That is q = p = Tq. This
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gives that p is the fixed point of T . Now we suppose that a1 + a4 + a5 > 1 and let
p and v are fixed points of T , then

pb(p, v) = pb(Tp, Tv) ≥ a1pb(p, v) + a2pb(p, Tp) + a3pb(v, Tv)

+ a4pb(p, Tv) + a5pb(v, Tp),

= (a1 + a4 + a5)pb(p, v),

which implies that
pb(p, v) ≤ 1

a1+a4+a5
pb(p, v).

Since a1 + a4 + a5 > 1, we have pb(p, v) = 0 i.e., p = v. Therefore, T has a unique
fixed point in X.

Corollary 3.2. Let (X, pb) be a complete partial b-metric space with coefficient
s ≥ 1 and T : X → X be a surjection. Suppose that there exists a1, a2, a3 ≥ 0 with
a1 + a3 > s(1− a2) such that

pb(Tx, Ty) ≥ a1pb(x, y) + a2pb(x, Tx) + a3pb(y, Ty) , x, y ∈ X,x 6= y. (3.6)

Then T has a fixed point in X. Moreover, if a1 > 1, then the fixed point is unique.

Proof. It follows by taking a4 = a5 = 0 in Theorem 3.1.

Corollary 3.3. Let (X, pb) be a complete partial b-metric space with the coefficient
s ≥ 1. Suppose the mapping T : X → X is onto and satisfies the condition

pb(Tx, Ty) ≥ kpb(x, y)

for all x, y ∈ X, where k > s is a constant. Then T has a unique fixed point in X.

Proof. It follows by taking a2 = a3 = 0 in Corollary 3.2.

3.2 Coincidence Point Theorems

We prove a theorem on the coincidence point of two expansive type mappings
in the partial b-metric spaces in which the surjectivity condition of the maps is
not assumed.

Theorem 3.4. Let (X, pb) be a partial b-metric space with coefficient s ≥ 1. Let
T, S : X → X be mappings satisfying:

pb(Tx, Ty) ≥ a1pb(Sx, Sy) + a2pb(Sx, Tx) + a3pb(Sy, Ty)

+ a4pb(Sx, Ty) + a5pb(Sy, Tx),
(3.7)

for all x, y ∈ X where a1, a2, a3, a4, a5 ≥ 0 which are not all zero. Suppose the
following hypotheses are also satisfy: (1) a1 + a3 > s(1 − a2) ≥ a5 or a1 + a2 >
s(1 − a3) ≥ a4; (2) S(X) ⊆ T (X) and (3) T (X) is a complete subspace of X.
Then T and S have a coincidence point. Moreover, if a1 + a4 + a5 > 1, then the
point of coincidence is unique.
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Proof. Let x0 ∈ X be chosen. We choose x1 = Sx0 and x2 = Tx1 . Since
S(X) ⊆ T (X) and x1 6= x2 then there exists a sequence {xn} such that Sxn =
Txn+1(n ≥ 2). Without loss of generality, we claim that xn−1 6= xn for n ≥ 1.
From (3.7) with x = xn and y = xn+1 we have the following.

Case (i)

pb(Sxn−1, Sxn) = pb(Txn, Txn+1)

≥ a1pb(Sxn, Sxn+1) + a2pb(Sxn, Sxn−1) + a3pb(Sxn+1, Sxn)

+ a4pb(Sxn, Sxn) + a5pb(Sxn+1, Sxn−1)

≥ a1pb(Sxn, Sxn+1) + a2pb(Sxn−1, Sxn) + a3pb(Sxn, Sxn+1)

+ a4pb(Sxn, Sxn) + a5

s pb(Sxn−1, Sxn)− a5pb(Sxn, Sxn+1)

+ a5

s pb(Sxn+1, Sxn+1)

≥ a1pb(Sxn, Sxn+1) + a2pb(Sxn−1, Sxn) + a3pb(Sxn, Sxn+1)

+ a5

s pb(Sxn−1, Sxn)− a5pb(Sxn, Sxn+1)

≥ (a1 + a3 − a5)pb(Sxn, Sxn+1) + (a2 + a5

s )pb(Sxn−1, Sxn).

(3.8)

If a1 + a3 > s(1− a2) ≥ a5, then (3.8) becomes

(1− a2 − a5

s )pb(Sxn−1, Sxn) ≥ (a1 + a3 − a5)pb(Sxn, Sxn+1),

pb(Sxn, Sxn+1) ≤ 1−a2−(a5/s)
a1+a3−a5

pb(Sxn−1, Sxn). (3.9)

Case (ii)

pb(Sxn, Sxn−1) = pb(Txn+1, Txn)

≥ a1pb(Sxn+1, Sxn) + a2pb(Sxn+1, Txn+1) + a3pb(Sxn, Txn)

+ a4pb(Sxn+1, Txn) + a5pb(Sxn, Txn+1)

= a1pb(Sxn, Sxn+1) + a2pb(Sxn+1, Sxn) + a3pb(Sxn, Sxn−1)

+ a4pb(Sxn+1, Sxn−1) + a5pb(Sxn, Sxn)

≥ a1pb(Sxn, Sxn+1) + a2pb(Sxn, Sxn+1) + a3pb(Sxn−1, Sxn)

+ a4

s pb(Sxn−1, Sxn)− a4pb(Sxn, Sxn+1)

+ a4

s pb(Sxn+1, Sxn+1) + a5pb(Sxn, Sxn)

≥ a1pb(Sxn, Sxn+1) + a2pb(Sxn, Sxn+1) + a3pb(Sxn−1, Sxn)

+ a4

s pb(Sxn−1, Sxn)− a4pb(Sxn, Sxn+1)

= (a1 + a2 − a4)pb(Sxn, Sxn+1) + (a3 + a4

s )pb(Sxn−1, Sxn).

If a1 + a2 > s(1− a3) ≥ a4, then the above inequality becomes

(1− a3 − a4

s )pb(Sxn−1, Sxn) ≥ (a1 + a2 − a4)pb(Sxn, Sxn+1),

pb(Sxn, Sxn+1) ≤ 1−a3−(a4/s)
a1+a2−a4

pb(Sxn−1, Sxn). (3.10)



Fixed Point and Coincidence Point Theorems for Expansive Mappings ... 177

In both cases, we put k := 1−a2−(a5/s)
a1+a3−a5

in (3.9) and k := 1−a3−(a4/s)
a1+a2−a4

in (3.10).
Thus in both cases, we have k < 1. Hence pb(Sxn, Sxn+1) ≤ kpb(Sxn−1, Sxn) for
all n ∈ N. Consequently, we have

pb(Sxn, Sxn+1) ≤ knpb(Sx0, Sx1) ; for all n ∈ N.

For n > m, we obtain

pb(Sxm, Sxn) ≤ spb(Sxm, Sxm+1)+s2pb(Sxm+1, Sxm+2)+...+snpb(Sxn−1, Sxn)

− pb(Sxm+1, Sxm+1)− · · · − pb(Sxn−1, Sxn−1)

≤ (skm + s2km+1 + · · ·+ snkn−1)pb(Sx0, Sx1)

≤ skm

1− sk
pb(Sx0, Sx1).

Thus {Txn} is a Cauchy sequence. Since T (X) is a complete subspace of X, there
exists a point z ∈ X such that Txn → Tz as n → ∞. Likewise, Sxn → Tz as
n → ∞. Also pb(Tz, Tz) = lim

n→∞
pb(Txn, T z) = lim

n,m→∞
pb(Txm, Txn) = 0. Since

a1, a2, a3, a4, a5 are not all zero, from (3.7) we obtain the following cases:

if a1 6= 0, pb(Txn, T z) ≥ a1pb(Sxn, Sz);

if a2 6= 0, pb(Tz, Txn) ≥ a2pb(Sz, Tz);

if a3 6= 0, pb(Txn, T z) ≥ a3pb(Sz, Tz);

if a4 6= 0, pb(Tz, Txn) ≥ a4pb(Sz, Txn);

if a5 6= 0, pb(Txn, T z) ≥ a5pb(Sz, Txn).

In all cases, as n → ∞, we have pb(Tz, Tz) ≥ aipb(Tz, Sz), i = 1, 2, 3, 4, 5.
Thus pb(Tz, Sz) ≤ 0. But pb(Tz, Sz) ≥ 0. Therefore pb(Tz, Sz) = 0, which
implies that Tz = Sz. Thus S and T have coincidence point which is z.

Now we suppose that a1 + a4 + a5 > 1. Let v, w are points of coincidence of
T and S. So Tx = Sx = v, Ty = Sy = w for some x, y ∈ X. Then

pb(v, w) = pb(Tx, Ty) ≥ a1pb(Sx, Sy) + a2pb(Sx, Tx) + a3pb(Sy, Ty)

+ a4pb(Sx, Ty) + a5pb(Sy, Tx)

= a1pb(v, w) + a2pb(v, v) + a3pb(w,w)

+ a4pb(v, w) + a5pb(w, v)

= (a1 + a4 + a5)pb(v, w).

which implies that

pb(v, w) ≤ 1
a1+a4+a5

pb(v, w).

Since a1 + a4 + a5 > 1, we have pb(v, w) = 0 i.e., v = w. Therefore, T and S have
a unique point of coincidence in X.
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Corollary 3.5. Let (X, pb) be a partial b-metric space with coefficient s ≥ 1. Let
T, S : X → X be mappings satisfying:

pb(Tx, Ty) ≥ a1pb(Sx, Sy) + a2pb(Sx, Tx) + a3pb(Sy, Ty) (3.11)

for all x, y ∈ X where a1, a2, a3 ≥ 0 which are not all zero. Suppose the following
hypotheses are also satisfy: (1) a1 + a3 > s(1 − a2) or a1 + a2 > s(1 − a3), (2)
S(X) ⊆ T (X) and (3) T (X) is a complete subspace of X. Then T and S have a
coincidence point. Moreover, if a1 > 1, then the point of coincidence is unique.

Proof. It follows by taking a4 = a5 = 0 in Theorem 3.4.

Corollary 3.6. Let (X, pb) be a partial b-metric space with coefficient s ≥ 1. Let
T, S : X → X be mappings satisfying:

pb(Tx, Ty) ≥ a1pb(Sx, Sy), (3.12)

for all x, y ∈ X where a1 > s. Suppose the following hypotheses are also satisfy:
(1) S(X) ⊆ T (X) and (2) T (X) is a complete subspace of X. Then T and S have
a unique coincidence point.

Proof. It follows by taking a2 = a3 = 0 in Corollary 3.5.

The following Corollary is the partial b-metric version of Banach contraction
principle.

Corollary 3.7. Let (X, pb) be a partial b-metric space with coefficient s ≥ 1. Let
S : X → X be mapping satisfying:

pb(Sx, Sy) ≤ kpb(x, y), (3.13)

for all x, y ∈ X where k ∈ (0, 1s ). Then S has a unique fixed point in X. Further-
more, the iterative sequence {Snx} converges to the fixed point.

Proof. Setting k := 1/a1 and T = I, the identity mapping on X, in Corollary
3.6.

Example 3.8. Let X = R+ and pb : X × X → [0,∞) defined by pb(x, y) ={
max{x, y}

}2
for all x, y ∈ X. Then (X, pb) is a complete partial b-metric space

with s = 2. Define T, S : X → X by Tx = x
2 and Sx = x

5 for all x ∈ X. Then for
every x, y ∈ X we have pb(Tx, Ty) ≥ 6pb(Sx, Sy) i.e. the condition (3.7) holds for
a1 = 6, a2 = a3 = a4 = a5 = 0. Therefore we have all the hypothesis of Theorem
3.4 satisfied and 0 is the coincidence point of T and S.
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3.3 Common Fixed Point Theorems

In the next theorem, we prove the existence of the common fixed point for a
pair of weakly compatible maps satisfying certain conditions in partial b-metric
spaces in which the surjectivity of the two maps is assumed.

Theorem 3.9. Let T and S be two weakly compatible and surjective self mappings
of a complete partial b-metric space (X, pb) satisfying the following conditions: for
any x, y ∈ X and a1 + a3 > s(1− a2) ≥ a5, a1 + a2 > s(1− a3) ≥ a4 we have that

pb(Tx, Sy) ≥ a1pb(x, y) + a2pb(x, Tx) + a3pb(y, Sy)

+ a4pb(x, Sy) + a5pb(y, Tx).
(3.14)

If S and T are compatible pair of reciprocal continuous maps, then S and T have
a common fixed point in X. Moreover, if a1 + a4 + a5 > 1, then the common fixed
point is unique.

Proof. Let x0 ∈ X be chosen. Since T and S are surjective then there exist
x1, x2 ∈ X such that x0 = Tx1 and x1 = Sx2. Continuing the process, we can
define a sequence {xn} ∈ X such that x2n = Tx2n+1, x2n+1 = Sx2n+2. Using
(3.14), we have

pb(x2n, x2n+1) = pb(Tx2n+1, Sx2n+2)

≥ a1pb(x2n+1, x2n+2)+a2pb(x2n+1, Tx2n+1)+a3pb(x2n+2, Sx2n+2)

+ a4pb(x2n+1, Sx2n+2) + a5pb(x2n+2, Tx2n+1)

= a1pb(x2n+1, x2n+2) + a2pb(x2n+1, x2n) + a3pb(x2n+2, x2n+1)

+ a4pb(x2n+1, x2n+1) + a5pb(x2n+2, x2n).

By (pb4), the above inequality becomes

pb(x2n, x2n+1) ≥ a1pb(x2n+1, x2n+2) + a2pb(x2n, x2n+1) + a3pb(x2n+1, x2n+2)

+ a4pb(x2n+1, x2n+1) + a5

s pb(x2n, x2n+1)− a5pb(x2n+1, x2n+2)

+ a5

s pb(x2n+2, x2n+2)

≥ a1pb(x2n+1, x2n+2) + a2pb(x2n, x2n+1) + a3pb(x2n+1, x2n+2)

+ a5

s pb(x2n, x2n+1)− a5pb(x2n+1, x2n+2)

≥ (a1 + a3 − a5)pb(x2n+1, x2n+2) + (a2 + a5

s )pb(x2n, x2n+1)

≥ (a1 + a3 − a5)pb(x2n+1, x2n+2) + (a2 + a5

s )pb(x2n, x2n+1).

Therefore, we have (1−a2−a5

s )pb(x2n, x2n+1) ≥ (a1+a3−a5)pb(x2n+1, x2n+2) and

pb(x2n+1, x2n+2) ≤ 1−a2−(a5/s)
a1+a3−a5

pb(x2n, x2n+1).

Let M := 1−a2−(a5/s)
a1+a3−a5

. Since a1 + a3 > s(1− a2) ≥ a5, we have M ∈ [0, 1s ), and

pb(x2n+1, x2n+2) ≤ Mpb(x2n, x2n+1). (3.15)
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Similarly, we have

pb(x2n, x2n−1) = pb(Tx2n+1, Sx2n)

≥ a1pb(x2n+1, x2n) + a2pb(x2n+1, Tx2n+1) + a3pb(x2n, Sx2n)

+ a4pb(x2n+1, Sx2n) + a5pb(x2n, Tx2n+1)

= a1pb(x2n, x2n+1) + a2pb(x2n+1, x2n) + a3pb(x2n, x2n−1)

+ a4pb(x2n+1, x2n−1) + a5pb(x2n, x2n).

By (pb4), the above inequality becomes

pb(x2n−1, x2n) ≥ a1pb(x2n, x2n+1) + a2pb(x2n, x2n+1) + a3pb(x2n−1, x2n)

+ a4

s pb(x2n−1, x2n)− a4pb(x2n, x2n+1)

+ a4pb(x2n+1, x2n+1) + a5pb(x2n, x2n)

≥ a1pb(x2n, x2n+1) + a2pb(x2n, x2n+1) + a3pb(x2n−1, x2n)

+ a4

s pb(x2n−1, x2n)− a4pb(x2n, x2n+1)

≥ (a1 + a2 − a4)pb(x2n, x2n+1) + (a3 + a4

s )pb(x2n−1, x2n).

Therefore, (1− a3 − a4

s )pb(x2n−1, x2n) ≥ (a1 + a2 − a4)pb(x2n, x2n+1) and

pb(x2n, x2n+1) ≤ 1− a3 − (a4/s)

a1 + a2 − a4
pb(x2n−1, x2n).

Let L := 1−a3−(a4/s)
a1+a2−a4

. Since a1 + a2 > s(1− a3) ≥ a4, we have that L ∈ [0, 1s ) and

pb(x2n, x2n+1) ≤ Lpb(x2n−1, x2n). (3.16)

Let λ := ML ∈ [0, 1
s2 ). Then by induction, we have

pb(x2n+1, x2n+2) ≤ Mpb(x2n, x2n+1)

≤ M
(
Lpb(x2n−1, x2n)

)
≤ Mλpb(x2n−2, x2n−1)

...

≤ Mλnpb(x0, x1)

and

pb(x2n, x2n+1) ≤ Lpb(x2n−1, x2n)

≤ λpb(x2n−2, x2n−1)

...

≤ λnpb(x0, x1).
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For n > m, we get

pb(x2m+1, x2n+1) ≤ spb(x2m+1, x2m+2) + s2pb(x2m+2, x2m+3)+

· · ·+ s2(n−m)pb(x2n, x2n+1)− pb(x2m+2, x2m+2)

− pb(xm+3, xm+3)− · · · − pb(x2n, x2n)

≤ spb(x2m+1, x2m+2) + s2pb(x2m+2, x2m+3)+

· · ·+ s2(n−m)pb(x2n, x2n+1)

≤ sMλmpb(x0, x1) + s2λm+1pb(x0, x1) + s3Mλm+1pb(x0, x1)

+ s4λm+2pb(x0, x1) + · · ·+ s2(n−m)λnpb(x0, x1)

≤
(
sMλm

(
1 + s2λ+ . . .

)
+ s2λm+1

(
1 + s2λ+ . . .

))
pb(x0, x1)

≤
(
sMλm + s2λm+1

1− s2λ

)
pb(x0, x1)

≤ (sL+ 1)
( sMλm

1− s2λ

)
pb(x0, x1).

Similarly, we have

pb(x2m, x2n+1) ≤ spb(x2m, x2m+1) + s2pb(x2m+1, x2m+2)+

· · ·+ s2(n−m)+1pb(x2n, x2n+1)− pb(x2m+1, x2m+1)

− pb(xm+2, xm+2)− · · · − pb(x2n, x2n)

≤ spb(x2m, x2m+1) + s2pb(x2m+1, x2m+2)+

· · ·+ s2(n−m)+1pb(x2n, x2n+1)

≤
((
sλm+s3λm+1+ ...

)
+
(
s2Mλm + s4Mλm+1 + ...

))
pb(x0, x1)

≤ (sM + 1)

(
sλm

1− s2λ

)
pb(x0, x1).

Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists a point
z ∈ X such that xn → z as n→∞. It is equivalent to x2n = Tx2n+1 → z, x2n+1 =
Sx2n+2 → z as n→∞. Also

pb(z, z) = lim
n→∞

pb(xn, z) = lim
n,m→∞

pb(xn, xm) = 0.

Suppose T and S are compatible and reciprocal continuous. By reciprocal con-
tinuity of T and S, lim

n→∞
TSxn = Tz and lim

n→∞
STxn = Sz. By compatibility

of T and S, Tz = Sz. Since T and S are weakly compatible, Tz = Sz implies
TTz = TSz = STz = SSz.

Next we show that z is a common fixed point of S and T . From (3.14) we have

pb(Tz, Sx2n+2) ≥ a1pb(z, x2n+2) + a2pb(z, Tz) + a3pb(x2n+2, Sx2n+2)

+ a4pb(z, Sx2n+2) + a5pb(x2n+2, T z).
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From the following three inequalities,

pb(z, Tz) ≥ 1
spb(z, x2n+2)− pb(x2n+2, T z) + 1

spb(Tz, Tz),

pb(z, x2n+1) ≥ 1
spb(z, x2n+2)− pb(x2n+2, x2n+1) + 1

spb(x2n+1, x2n+1)

and

pb(Tz, x2n+1) ≤ spb(Tz, x2n+2) + spb(x2n+2, x2n+1)− pb(x2n+2, x2n+2),

we obtain

spb(Tz, x2n+2) + spb(x2n+1, x2n+2)− pb(x2n+2, x2n+2)

≥ a1pb(z, x2n+2) + a2

s pb(z, x2n+2)− a2pb(x2n+2, T z) + a2

s pb(Tz, Tz)

+ a3pb(x2n+2, x2n+1) + a4

s pb(z, x2n+2)− a4pb(x2n+1, x2n+2)

+ a4

s pb(x2n+1, x2n+1) + a5pb(x2n+2, T z)

≥ (a1 + a2

s + a4

s )pb(z, x2n+2) + (a3 − a4)pb(x2n+1, x2n+2)

+ (a5 − a2)pb(Tz, x2n+2).

Therefore, we have

(a5−a2−1)pb(Tz, x2n+2) ≤ (1−a3+a4)pb(xn+2, x2n+1)−(a1+ a2

s + a4

s )pb(z, x2n+2),

or

pb(Tz, x2n+2) ≤ 1− a3 + a4
a5 − a2 − 1

pb(xn+2, x2n+1)− a1 + (a2/s) + (a4/s)

a5 − a2 − 1
pb(z, x2n+2).

As n → ∞, we get pb(Tz, z) ≤ 0. pb(Tz, z) ≥ 0 implies that pb(Tz, z) = 0.
Therefore Tz = Sz = z. Suppose there exists u ∈ X such that u is another
common fixed point of T and S then we show that u = z. On the contrary, letting
u 6= z and using (3.14) we have

pb(u, z) = pb(Tu, Sz)

≥ a1pb(u, z) + a2pb(u, Tu) + a3pb(z, Sz) + a4pb(u, Sz) + a5pb(z, Tu)

= a1pb(u, z) + a4pb(u, z) + a5pb(z, u)

= (a1 + a4 + a5)pb(u, z).

Since a1 + a4 + a5 > 1, then we have pb(u, z) = 0 i.e., u = z. The uniqueness of
fixed points is proved.

Corollary 3.10. Let (X, pb) be a complete partial b-metric space. Suppose map-
pings T, S : X → X are onto, compatible, reciprocally continuous, and satisfy

pb(Tx, Sy) ≥ a1pb(x, y) + a2pb(x, Tx) + a3pb(y, Sy) (3.17)

for all x, y ∈ X, with a1 + a3 > s(1 − a2), a1 + a2 > s(1 − a3) and a1 > 1. Then
S and T have a unique common fixed point.
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Corollary 3.11. Let (X, pb) be a complete partial b-metric space. Suppose map-
pings T, S : X → X are onto, compatible, reciprocally continuous, and satisfy

pb(Tx, Sy) ≥ a1pb(x, y) (3.18)

for all x, y ∈ X, with a1 > s. Then S and T have a unique common fixed point.

Example 3.12. Let X = R+ and pb(x, y) =
{

max{x, y}
}2

; then (X, pb) is a
complete partial b-metric space. Let T, S : R→ R be defined by

Tx = Sx = 3
2x
√

1 + 1
1+x2 , for all x ∈ X.

Then T and S are surjective, reciprocally continuous and compatible. Without
loss of generality, we assume that x ≤ y.

pb(Tx, Sy) =
(

max
{

3
2x
√

1 + 1
1+x2 ,

3
2y
√

1 + 1
1+y2

})2
=
(

3
2y
√

1 + 1
1+y2

)2
= 9

4

(
y2 + y2

1+y2

)
≥ 2

(
y2 + y2

1+y2

)
= 2pb(x, y).

Also T and S satisfy the inequality of Theorem 3.9 with a1 = 2 and a2 = a3 =
a4 = a5 = 0. Hence T and S have a unique common fixed point 0 in X.

Theorem 3.13. Let T and S be two continuous and surjective self mappings of
a complete partial b-metric space (X, pb) satisfying the following conditions: for
any x ∈ X and k, c1, c2 are nonnegative real numbers with c1, c2 > s(k+ 1) + k we
have that

pb(TSx, Sx) + k
s pb(TSx, x) ≥ c1pb(Sx, x) (3.19)

and
pb(STx, Tx) + k

s pb(STx, x) ≥ c2pb(Tx, x). (3.20)

Then S and T have a common fixed point in X.

Proof. Let x0 ∈ X be chosen. Since T and S are surjective then there exist
x1, x2 ∈ X such that x0 = Tx1 and x1 = Sx2. Continuing the process, we can
define a sequence {xn} ∈ X such that x2n = Tx2n+1, x2n+1 = Sx2n+2. Using
(3.19), we have

pb(TSx2n+2, Sx2n+2) + k
s pb(TSx2n+2, x2n+2) ≥ c1pb(Sx2n+2, x2n+2),

which implies that

pb(x2n, x2n+1) + k
s pb(x2n, x2n+2) ≥ c1pb(x2n+1, x2n+2).

Hence, we have

c1pb(x2n+1, x2n+2) ≤ pb(x2n, x2n+1) + kpb(x2n, x2n+1) + kpb(x2n+1, x2n+2)

− k
s pb(x2n+1, x2n+1)

≤ pb(x2n, x2n+1) + kpb(x2n, x2n+1) + kpb(x2n+1, x2n+2)
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Therefore,
pb(x2n+1, x2n+2) ≤ 1+k

c1−kpb(x2n, x2n+1). (3.21)

Similarly, by using (3.20), we obtain that

pb(x2n, x2n+1) ≤ 1+k
c2−kpb(x2n−1, x2n). (3.22)

Let λ := max{ 1+k
c1−k ,

1+k
c2−k}. From c1, c2 > s(k + 1) + k, we obtain λ ∈ (0, 1s ).

Combining (3.21) and (3.22), we get

pb(xn, xn+1) ≤ λpb(xn−1, xn) , for all n ∈ N.

By an argument similar to that used in Theorem 3.1, it follows that {xn} is a
Cauchy sequence. Since X is complete, there exists p ∈ X such that xn → p as
n → ∞. Also, x2n+1 → p and x2n+2 → p as n → ∞. The continuity of S and
T imply that Tx2n+1 → Tp and Sx2n+2 → Sp as n → ∞ i.e., x2n → Tp and
x2n+1 → Sp as n→∞. The uniqueness of limit yields that p = Sp = Tp. Hence,
p is a common fixed point of S and T .

Corollary 3.14. Let T be a continuous surjective mapping of a complete partial
b-metric space (X, pb) satisfying the following conditions: for any x ∈ X and k,C
are nonnegative real numbers with C > s(k + 1) + k we have

pb(T
2x, Tx) + k

s pb(T
2x, x) ≥ Cpb(Tx, x). (3.23)

Then T has a fixed point in X.

Proof. It follows from Theorem 3.13 by taking S = T and set C := c1 = c2.

Corollary 3.15. Let T be a continuous surjective mapping of a complete partial
b-metric space (X, pb) satisfying the following conditions: for any x ∈ X and k,C
are nonnegative real numbers with C > s we have

pb(T
2x, Tx) ≥ Cpb(Tx, x). (3.24)

Then T has a fixed point in X.

Proof. It follows from Corollary 3.14 by taking k = 0.

Example 3.16. Let X = R+ and pb(x, y) =
{

max{x, y}
}2

; then (X, pb) is a
complete partial b-metric space with s = 2. Let T, S : R → R be defined by
Tx = 2x and Sx = 3x. T and S are surjective, reciprocally continuous, compatible.
For all x ∈ X,{

max{6x, 3x}
}2

+ 1
2

{
max{6x, x}

}2
= 54x2 ≥ 54x2 = 6

{
max{3x, x}}2

and {
max{6x, 2x}

}2
+ 1

2

{
max{6x, x}

}2
= 54x2 ≥ 24x2 = 6

{
max{2x, x}}2.

Also satisfy the inequalities of Theorem 3.13 with c1 = c2 = 6 > s(k + 1) + k,
where k = 1. Then T and S have a common fixed point 0 in X.
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