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1 Introduction

Let (X, d) be a metric space. The distance from an element x in X to a
nonempty subset E of X is defined by

dist(x,E) := inf{d(x, y) : y ∈ E}.

We shall denote by CB(E) the family of nonempty closed bounded subsets of
E and by K(E) the family of nonempty compact subsets of E. The Pompeiu-
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Hausdorff distance on CB(E) is defined by

H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ CB(E).

A multivalued mapping T : E → CB(E) is said to be contractive if there exists a
constant k ∈ [0, 1) such that

H(T (x), T (y)) ≤ kd(x, y) for all x, y ∈ E. (1.1)

If (1.1) is valid when k = 1, then T is said to be nonexpansive. It is clear that
every contractive mapping is nonexpansive and, in general, the converse is not
true. The mapping T is called a single-valued mapping if T (x) is a singleton for
every x in E.

An element x in E is called a fixed point of T if x ∈ T (x). Moreover, if
{x} = T (x), then x is called an endpoint of T. We denote by Fix(T ) the set of
all fixed points of T and by End(T ) the set of all endpoints of T. It is clear that
End(T ) ⊆ Fix(T ) for every multivalued mapping T and End(t) = Fix(t) for
every single-valued mapping t.

The existence of endpoints for a special kind of contractive mappings was first
studied by Aubin and Siegel [1] in 1980. They proved that every multivalued
dissipative mapping on a complete metric space always has an endpoint. In 1986,
Corley [2] proved that a maximization with respect to a cone is equivalent to
the problem of finding an endpoint of a certain multivalued mapping. Since then
the endpoint results for several kinds of contractive mappings have been rapidly
developed and many of papers have appeared (see, e.g., [3–23]). Among other
things, Panyanak [21] obtained the following result.

Theorem 1.1. Let E be a nonempty bounded closed convex subset of a uniformly
convex Banach space and T : E → K(E) be a nonexpansive mapping. Then T has
an endpoint if and only if T has the approximate endpoint property.

Our purpose of this paper is threefold.
(i) To extend Theorem 1.1 from the class of nonexpansive mappings to a wider

class of mappings, namely, the class of Suzuki mappings.
(ii) To extend Theorem 1.1 from the class of uniformly convex Banach spaces

to a wider class of spaces, namely, the class of uniformly convex hyperbolic spaces.
(iii) To prove a common endpoint theorem for a commuting pair of single-

valued and multivalued Suzuki mappings in uniformly convex hyperbolic spaces.

2 Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands
for the set of real numbers.

Definition 2.1. [24] A hyperbolic space is a triple (X, d,W ) where (X, d) is a
metric space andW : X×X×[0, 1]→ X is a function such that for all x, y, z, w ∈ X
and α, β ∈ [0, 1], we have
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(W1) d(z,W (x, y, α)) ≤ (1− α)d(z, x) + αd(z, y);

(W2) d (W (x, y, α),W (x, y, β)) = |α− β|d(x, y);

(W3) W (x, y, α) = W (y, x, 1− α);

(W4) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w).

If x, y ∈ X and α ∈ [0, 1], then we use the notation (1−α)x⊕αy for W (x, y, α).
It is easy to see that for any x, y ∈ X and α ∈ [0, 1], one has

d(x, (1− α)x⊕ αy) = αd(x, y) and d(y, (1− α)x⊕ αy) = (1− α)d(x, y).

We shall denote by [x, y] the set {(1− α)x⊕ αy : α ∈ [0, 1]}. A nonempty subset
C of X is said to be convex if [x, y] ⊆ C for all x, y ∈ C.

Definition 2.2. [24] The hyperbolic space (X, d,W ) is called uniformly convex if
for any r > 0, and ε ∈ (0, 2] there exists a δ ∈ (0, 1] such that for all a, x, y ∈ X
with d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ rε, it is the case that

d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.

A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given
r > 0 and ε ∈ (0, 2] is called a modulus of uniform convexity. The mapping δ
is monotone (resp. lower semi-continuous from the right) if for every fixed ε it
decreases (resp. is lower semi-continuous from the right) with respect to r.

Obviously, uniformly convex Banach spaces are uniformly convex hyperbolic
spaces. CAT(0) spaces are also uniformly convex hyperbolic spaces, see [24, Propo-
sition 8].

Definition 2.3. [25] Let E be a nonempty subset of a metric space (X, d). A
multivalued mapping T : E → CB(E) is said to be Suzuki if for each x, y ∈ E,

1

2
dist(x, T (x)) ≤ d(x, y) implies H(T (x), T (y)) ≤ d(x, y).

The mapping T is said to satisfy condition (Eµ) if there exists µ ≥ 1 such that for
each x, y ∈ E, we have

dist(x, T (y)) ≤ µdist(x, T (x)) + d(x, y).

The mapping T is said to be quasi-nonexpansive if for each x ∈ E and y ∈ Fix(T ),
one has

H(T (x), T (y)) ≤ d(x, y).

A single-valued mapping t : E → E and a multivalued mapping T : E → CB(E)
are said to be commuting [26] if for x, y ∈ E such that x ∈ T (y), we have t(x) ∈
T (t(y)).
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Definition 2.4. [27] Let E be a nonempty subset of a metric space (X, d) and
x ∈ X. The radius of E relative to x is defined by

rx(E) := sup{d(x, y) : y ∈ E}.

The diameter of E is defined by

diam(E) := sup{d(x, y) : x, y ∈ E}.

The set E is said to be bounded if diam(E) <∞.

Definition 2.5. [12] Let T : E → CB(E) be a multivalued mapping. A sequence
{xn} in E is called an approximate fixed point sequence (resp. an approximate
endpoint sequence) for T if lim

n→∞
dist(xn, T (xn)) = 0 (resp. lim

n→∞
rxn

(T (xn)) = 0).

The mapping T is said to have the approximate fixed point property (resp. the
approximate endpoint property) if it has an approximate fixed point sequence (resp.
an approximate endpoint sequence) in E.

Let E be a nonempty subset of a metric space (X, d) and {xn} be a bounded
sequence in X. The asymptotic radius of {xn} relative to E is defined by

r(E, {xn}) = inf
{

lim sup
n→∞

d(xn, x) : x ∈ E
}
.

The asymptotic center of {xn} relative to E is defined by

A(E, {xn}) =
{
x ∈ E : lim sup

n→∞
d(xn, x) = r(E, {xn})

}
.

The sequence {xn} is called regular relative to E if r(E, {xn}) = r(E, {xnk
})

for every subsequence {xnk
} of {xn}. It is known that every bounded sequence in

a Banach space has a regular subsequence (see, e.g., [27, p. 166]). The proof is
metric in nature and carries over to the present setting without change.

Before proving our main results we collect some basic facts about uniformly
convex hyperbolic spaces. From now on, X stands for a complete uniformly convex
hyperbolic space with monotone (or lower semi-continuous from the right) modulus
of uniform convexity.

Lemma 2.6. The following statements hold:

(i) [28, Theorem 2.6] if E is a nonempty bounded closed convex subset of X and
t : E → E is a single-valued Suzuki mapping, then End(t) is nonempty closed and
convex;

(ii) [29, Proposition 2] if E is a nonempty subset of X and t : E → E is a single-
valued Suzuki mapping with End(t) 6= ∅, then t is a quasi-nonexpansive mapping;

(iii) [28, Lemma 3.2] if E is a nonempty closed convex subset of X and T : E →
K(E) is a multivalued Suzuki mapping, then T satisfies condition (E3);

(iv) [30, Proposition 2.4] if E is a nonempty closed convex subset of X and x ∈ X,
then there exists a unique point x0 ∈ E such that

d(x, x0) = dist(x,E).
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Lemma 2.7. [21, Proposition 2.4] Let E be a nonempty subset of X, {xn} be a
sequence in E, and T : E → K(E) be a multivalued mapping. Then rxn

(T (xn))→
0 if and only if dist(xn, T (xn))→ 0 and diam(T (xn))→ 0.

3 Main Results

We begin this section by proving the existence of endpoints for multivalued
Suzuki mappings in uniformly convex hyperbolic spaces. Our proof follows the
ideas of Panyanak [21] and Abkar and Eslamian [31].

Theorem 3.1. Let E be a nonempty bounded closed convex subset of X and
T : E → K(E) be a multivalued Suzuki mapping. Then T has an endpoint if and
only if T has the approximate endpoint property.

Proof. It is clear that if T has an endpoint, then T has the approximate endpoint
property. Conversely, suppose that T has the approximate endpoint property.
Then there exists a sequence {xn} in E such that rxn

(T (xn))→ 0. It follows from
Lemma 2.7 that

dist(xn, T (xn))→ 0 and diam(T (xn))→ 0. (3.1)

For each n ∈ N, select yn ∈ T (xn) so that d(xn, yn) = dist(xn, T (xn)). By passing
through a subsequence, we may assume that {xn} is regular relative to E. Let
A(E, {xn}) = {x} and r = r(E, {xn}). We show that x is an endpoint of T.

Case 1. For each n ∈ N there exists m ∈ N such that m ≥ n and 1
2d(xm, ym) >

d(xm, x). Then there is a subsequence {xnk
} of {xn} such that

1

2
d(xnk

, ynk
) > d(xnk

, x) for all k ∈ N. (3.2)

It follows from (3.1) and (3.2) that lim
k→∞

xnk
= x. By Lemma 2.6 (iii), we have

dist(x, T (x)) ≤ d(x, xnk
) + dist(xnk

, T (x))

≤ 2d(x, xnk
) + 3dist(xnk

, T (xnk
))→ 0 as k →∞.

Hence x ∈ T (x). Notice also that 1
2dist(x, T (x)) = 0 ≤ d(xnk

, x) for all k ∈ N.
Since T is Suzuki, we have

H(T (xnk
), T (x)) ≤ d(xnk

, x)→ 0 as k →∞. (3.3)

We now let v ∈ T (x) and choose unk
∈ T (xnk

) so that d(v, unk
) = dist(v, T (xnk

)).
From (3.1) and (3.3) we have

d(x, v) ≤ d(x, xnk
) + d(xnk

, ynk
) + d(ynk

, unk
) + d(unk

, v)

≤ d(x, xnk
) + dist(xnk

, T (xnk
)) + diam(T (xnk

)) +H(T (xnk
), T (x))→ 0

as k →∞. Hence v = x for all v ∈ T (x). Therefore, x ∈ End(T ).



164 Thai J. Math. (Special Issue, 2018)/ A. Kudtha and B. Panyanak

Case 2. There exists n0 ∈ N such that 1
2d(xn, yn) ≤ d(xn, x) for all n ≥ n0.

This implies that 1
2dist(xn, T (xn)) ≤ d(xn, x) and so H(T (xn), T (x)) ≤ d(xn, x).

For each n ∈ N, select zn ∈ T (x) so that d(yn, zn) = dist(yn, T (x)). Since T (x) is
compact, there exists a subsequence {znj} of {zn} such that znj → w ∈ T (x). For
j sufficiently large, we have

d(xnj , w) ≤ d(xnj , ynj ) + d(yj , znj ) + d(znj , w)

≤ d(xnj , ynj ) +H(T (xnj ), T (x)) + d(znj , w)

≤ dist(xnj , T (xnj )) + d(xnj , x) + d(znj , w).

This implies by the regularity of {xn} that lim sup
j→∞

d(xnj , w) ≤ lim sup
j→∞

d(xnj , x) =

r. Hence w ∈ A(E, {xnj
}) = {x}. Therefore x = w ∈ T (x). Let v ∈ T (x) and

choose unj ∈ T (xnj ) so that d(v, unj ) = dist(v, T (xnj )). Thus

d(xnj , v) ≤ d(xnj , ynj ) + d(ynj , unj ) + d(unj , v)

≤ d(xnj , ynj ) + diam(T (xnj )) +H(T (x), T (xnj ))

≤ dist(xnj , T (xnj )) + diam(T (xnj )) + d(xnj , x).

It follows from (3.1) that lim sup
j→∞

d(xnj , v) ≤ lim sup
j→∞

d(xnj , x) = r. Hence v ∈

A(E, {xnj
}) = {x}, and so v = x for all v ∈ T (x). Therefore, x ∈ End(T ).

Finally, we prove the existence of common endpoints for a commuting pair
of single-valued and multivalued Suzuki mappings in uniformly convex hyperbolic
spaces. Here KC(E) denotes the family of nonempty compact convex subsets of
E.

Theorem 3.2. Let E be a nonempty bounded closed convex subset of X, t : E → E
be a single-valued mapping and T : E → KC(E) be a multivalued mapping. Sup-
pose that t and T are Suzuki commuting mappings such that T has an approximate
endpoint sequence in End(t). Then t and T have a common endpoint in E.

Proof. This proof is patterned after the proof of Theorem 3.1 in [32]. Let A =
End(t). By Lemma 2.6 (i), A is nonempty closed and convex. Since t and T are
commuting mappings,

t(T (x)) ⊆ T (x) for all x ∈ A. (3.4)

Again by Lemma 2.6 (i), T (x) ∩ A 6= ∅ for all x ∈ A. Therefore, the mapping
F (·) := T (·) ∩ A : A → KC(A) is well defined. Let x, y ∈ A and z be the
unique point in T (y) such that d(x, z) = dist(x, T (y)). It follows from (3.4) that
t(z) ∈ T (y). By Lemma 2.6 (ii),

d(x, t(z)) ≤ d(x, z) = dist(x, T (y)).



Common Endpoints for Suzuki Mappings ... 165

By the uniqueness of z we have z ∈ A. This implies that

dist(x, T (y)) = dist(x, F (y)) for all x, y ∈ A. (3.5)

Since T has an approximate endpoint sequence in A, F has the approximate end-
point property. Next, we show that F is a Suzuki mapping. Let x, y ∈ A be such
that 1

2dist(x, F (x)) ≤ d(x, y). Thus 1
2dist(x, T (x)) ≤ d(x, y) and hence

H(T (x), T (y)) ≤ d(x, y). (3.6)

From (3.5) and (3.6) we have

H(F (x), F (y)) = max

{
sup

u∈F (x)

dist(u, F (y)), sup
v∈F (y)

dist(v, F (x))

}

= max

{
sup

u∈F (x)

dist(u, T (y)), sup
v∈F (y)

dist(v, T (x))

}

≤ max

{
sup

u∈T (x)

dist(u, T (y)), sup
v∈T (y)

dist(v, T (x))

}
= H(T (x), T (y))

≤ d(x, y).

Therefore, F is a Suzuki mapping. By Theorem 3.1, F has an endpoint in A which
in turn implies that t and T have a common endpoint in E.

In Theorem 3.2, the condition that “T has an approximate endpoint sequence
in End(t)” seems to be strong but the following example shows that it is necessary.
Notice also that this condition cannot be replaced by “T has an approximate
endpoint sequence in E”.

Example 3.3. Let X = R, E = [0, 1] and t : E → E be defined by

t(x) =
x

2
for all x ∈ E.

Let T : E → KC(E) be defined by

T (x) = [x, 1] for all x ∈ E.

Then t and T are Suzuki commuting mappings. Notice that T does not have an
approximate endpoint sequence in End(t). Since End(t) = {0} and End(T ) = {1},
t and T do not have a common endpoint in E.
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