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1 Introduction

The concept of a semiring was introduced by Vandiver [1] in 1934 as a gener-
alization of a ring. In 2011, Gan and Jiang [2] introduced the notion of an ordered
semiring as a semiring with a partially relation on its universe set such that the
relation is compatible with both operations of the semiring.

In 1934, Marty [3] gave the notion of an algebraic hyperstructure published
in the eighth congress of scandinavian mathematicians. This theory has been
studied in the following decades and nowadays by many mathematicians among
whom, for example, see [4–7]. Vougiouklis [8] generalized the concept of a hyper-
ring (R,+, ·) by droppings the reproduction axiom where + and · are associative
hyperoperations and · distributive over + and named it as a semihyperring.
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EL-hyperstructures, which were first introduced by Chvalina in [9], are hyper-
compositional structures constructed, from a partially/quasi (semi)group using a
construction known as Ending lemma or Ends lemma. In [10], Račková extended
Ends lemma to investigate transposition hypergroups. Then Novák [11] studied
a theoretical background for algebraic hyperstructures such as hypergroups and
semihypergroups using “Ends lemma”. Later, he discussed a construction of hy-
perstructures from quasi or partially ordered semigroups and studied some of their
properties, see [12]. In 2016, Ghazavi, Anvariyeh and Mirvakili [13] investigated
various kinds of ideals in a quasi-ordered semigroup and its EL-(semi)hypergroup.

The purpose of this paper is to investigate the connection between many types
of ideals in ordered semirings and hyperideals of its associated EL-semihyperrings.

2 Preliminaries

In this section, we review some definitions and some results which will be used
in the next section.

A semiring S is a nonempty set which is closed under two binary associative
operations + and · such that a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a
for all a, b, c ∈ S. A nonempty subset I of S is called a left (resp. right) ideal of S
if I is closed under addition and S · I ⊆ I (resp. I · S ⊆ I). We call I a two-sided
ideal or an ideal of S if it is both a left and a right ideal of S.

A semiring S is called simple if it does not contain proper ideals. An element e
of S is said to be an identity if x = e ·x and x = x · e for all x ∈ S. A semiring S is
called idempotent if a = a+ a and a = a · a for all a ∈ S. An ordered semiring is a
semiring S equipped with a partial order relation ≤ on S such that it is compatible
with the operations on S.

We denote [x) = {s ∈ S | x ≤ s} and also [A) =
⋃

x∈A[x). Oppositely,
(x] = {s ∈ S | s ≤ x} and (A] =

⋃
x∈A(x]. A nonempty subset A of S is called an

upper end of S if for every a ∈ A, [a) ⊆ A (i.e., [A) = A).

Remark 2.1. Let A and B be nonempty subsets of an ordered semiring (S,+, ·,≤).
Then the following statements hold:

(i) A ⊆ [A);

(ii) [[A)) = [A) (i.e., [A) is an upper end of S);

(iii) if A ⊆ B, then [A) ⊆ [B);

(iv) [A ·B) = [A) · [B).

Let (S,+, ·,≤) be an ordered semiring and a nonempty subset I of S be closed
under addition. Then

(i) I is called a left (resp. right) ideal of S if S · I ⊆ I (resp. I · S ⊆ I);

(ii) I is called a two-sided ideal or an ideal of S if it is both a left and a right
ideal of S;
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(iii) I is called a bi-ideal of S if I2 ⊆ I and I · S · I ⊆ I;

(iv) I is called an interior ideal of S if I2 ⊆ I and S · I · S ⊆ I;

(v) I is called an (m,n)-ideal of S if I2 ⊆ I and Im · S · In ⊆ I where m,n are
non-negative integers where I0 · S = S and S · I0 = S.

A left ordered ideal (resp. right ordered ideal, two-sided ordered ideal or ordered
ideal, ordered bi-ideal, ordered interior ideal, ordered (m,n)-ideal) I of an ordered
semiring S is a left ideal (resp. right ideal, two-sided ideal or ideal, bi-ideal, interior
ideal, (m,n)-ideal) of S satisfying the condition if x ∈ S such that x ≤ a for some
a ∈ I then x ∈ I (i.e., (I] = I).

Lemma 2.2. Let (S,+, ·,≤) be an ordered semiring and A be a nonempty subset
of S. If A is an ideal of S, then [A) is also an ideal of S.

Proof. Assume that A is an ideal of S. Let x, y ∈ [A) and s ∈ S. There exist
a, b ∈ A such that a ≤ x and b ≤ y. So, a+b ≤ x+y, that is, x+y ∈ [a+b) ⊆ [A).
Since a ≤ x, we have s · a ≤ s · x. Thus, s · x ∈ [s · a) ⊆ [A). Also, S · [A) ⊆ [A).
Similarly, we can show that [A) · S ⊆ [A). Hence, [A) is an ideal of S.

Let H be a nonempty set. A mapping ◦ : H × H → P∗(H), where P∗(H)
denotes the set of all nonempty subsets of H, is called a hyperoperation on H (see,
e.g., [4–7]). The structure (H, ◦) is said to be a hypergroupoid. If A and B are two
nonempty subsets of H and x ∈ H, then we denote

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for any x, y, z ∈ H, we
have (x ◦ y) ◦ z = x ◦ (y ◦ z). A semihypergroup (H, ◦) is called a hypergroup if
a ◦H = H = H ◦ a for all a ∈ S.

Vougiouklis [8] introduced the notion of a semihyperring which both the sum
and the product are hyperoperations as follows.

A structure (S,+, ·) is called a semihyperring if it satisfies the following axioms:

(i) (S,+) is a semihypergroup;

(ii) (S, ·) is a semihypergroup;

(iii) for all x, y, z ∈ S, x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.
A nonempty subset T of a semihyperring (S,+, ·) is said to be a subsemihy-

perring of S if for all x, y ∈ T , x + y ⊆ T and x · y ⊆ T . A nonempty subset I
of a semihyperring (S,+, ·) is called a left (resp. right) hyperideal of S if for every
x, y ∈ I, x + y ⊆ I and for any s ∈ S, s · x ⊆ I (resp. x · s ⊆ I). We call I a
two-sided hyperideal or a hyperideal of S if it is both a left and a right hyperideal
of S. An element e of a semihyperring (S,+, ·) is said to be an identity if x ∈ e · x
and x ∈ x · e for all x ∈ S.

The EL-heperstructures are hyperstructures constructed from quasi/partially-
ordered (semi)groups using the “Ends lemma”. The concept of Ends lemma was
introduced by Chvalina [9] as the following lemma.
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Lemma 2.3. [9] Let (S, ·,≤) be a partially-ordered semigroup. Hyperoperation
◦ : S × S → P∗(S) defined by a ◦ b = [a · b) = {x ∈ S | a · b ≤ x} is associative.
The semihypergroup (S, ◦) is commutative if and only if the semigroup (S, ·) is
commutative.

3 Hyperideals of EL-Semihyperrings

We apply the concept of “Ends lemma” to a construction of the EL - semihy-
perrings from ordered semirings and study the connection between many types of
ideals in ordered semirings and hyperideals of its associated EL-semihyperrings.

Theorem 3.1. Let (S,+, ·,≤) be an ordered semiring. Then (S,⊕,�) is a semi-
hyperring where the hyperoperations ⊕ and � are defined as follows:

a⊕ b = [a + b) = {x ∈ S | a + b ≤ x} and

a� b = [a · b) = {x ∈ S | a · b ≤ x}

for all a, b ∈ S. Moreover, the semihyperring (S,⊕,�) is commutative if and only
if the ordered semiring (S,+, ·,≤) is commutative.

Proof. By Lemma 2.3, (S,⊕) and (S,�) are semihypergroups. Now, we show
that the hyperoperation � is distributive over the hyperoperation ⊕ on S. Let
a, b, c ∈ S. We claim that a � (b ⊕ c) = [a · (b + c)). Let t ∈ a � (b ⊕ c).
Then t ∈ a � x for some x ∈ b ⊕ c. Thus, a · (b + c) ≤ a · x ≤ t, that is,
t ∈ [a · (b + c)). Hence, a � (b ⊕ c) ⊆ [a · (b + c)). Let s ∈ [a · (b + c)). Then
a · (b + c) ≤ s. So, s ∈ a � (b + c) ⊆

⋃
x∈b⊕c a � x = a � (b ⊕ c). Thus,

[a · (b + c)) ⊆ a � (b ⊕ c). It turns out a � (b ⊕ c) = [a · (b + c)). Next, we show
that (a � b) ⊕ (a � c) = [a · b + a · c). Let t ∈ (a � b) ⊕ (a � c). Then t ∈ x ⊕ y
for some x ∈ a � b and y ∈ a � c. We obtain that a · b + a · c ≤ x + y ≤ t. So
t ∈ [a · b+ a · c). Hence, (a� b)⊕ (a� c) ⊆ [a · b+ a · c). Let s ∈ [a · b+ a · c). Then
a · b + a · c ≤ s. Thus, s ∈ a · b ⊕ a · c ⊆

⋃
x∈a�b,y∈a�c x ⊕ y = (a � b) ⊕ (a � c).

Hence, [a · b+ a · c) ⊆ (a� b)⊕ (a� c). Therefore, (a� b)⊕ (a� c) = [a · b+ a · c).
Since [a · (b+ c)) = [a · b+ a · c), we have a� (b⊕ c) = (a� b)⊕ (a� c). Similarly,
we can show that (b⊕ c)� a = (b� a)⊕ (c� a). Consequently, (S,⊕,�) forms a
semihyperring. The rest of theorem is easy to verify.

The semihyperring (S,⊕,�) defined in Theorem 3.1 is called the associated
EL-semihyperring of (S,+, ·,≤).

Theorem 3.2. Let (S,+, ·,≤) be an ordered semiring and (S,⊕,�) be its associ-
ated EL-semihyperring. If A is a left (ordered) ideal of S, which is an upper end
of S, then A is a left hyperideal of (S,⊕,�). It is also true for right (ordered)
ideals.

Proof. Let A be a left (ordered) ideal of S, x, y ∈ A and s ∈ S. Since A is an
upper end of S, we have x⊕ y = [x + y) ⊆ A and s� x = [s · x) ⊆ A. Hence, A is
a left hyperideal of S.
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We apply Example 3.4 in [13] to construct an example of a semihyperring.

Example 3.3. Let S = {a, b, c, d, e} and two binary operations + and · on S be
defined as follows:

+ a b c d e
a a b c d e
b a b c d e
c a b c d e
d a b c d e
e a b c d e

· a b c d e
a a b c b b
b b b b b b
c a b c b b
d d b d b b
e e e e e e

We define an order relation ≤ on S by

≤:= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (e, b), (e, d)}.

The figure of ≤ on S is given by

e

b d

a

c

Then (S,+, ·,≤) is an ordered semiring. We obtain its associated semihyperring
(S,⊕,�) where ⊕ and � are shown as follows:

⊕ a b c d e
a {a, c} {b} {c} {d} {b, d, e}
b {a, c} {b} {c} {d} {b, d, e}
c {a, c} {b} {c} {d} {b, d, e}
d {a, c} {b} {c} {d} {b, d, e}
e {a, c} {b} {c} {d} {b, d, e}

� a b c d e
a {a, c} {b} {c} {b} {b}
b {b} {b} {b} {b} {b}
c {a, c} {b} {c} {b} {b}
d {d} {b} {d} {b} {b}
e {b, d, e} {b, d, e} {b, d, e} {b, d, e} {b, d, e}

Now, we can see that A = {b, d, e} is a right ordered ideal and B = {b, c, d, e} is a
left (not ordered) ideal of (S,+, ·,≤). Also, both of them are the upper ends of S.
It turns out that A is a right hyperideal and B is a left hyperideal of (S,⊕,�).

Corollary 3.4. Let (S,+, ·,≤) be an ordered semiring and (S,⊕,�) be its asso-
ciated EL-semihyperring. If A is an (ordered) ideal of S, which is an upper end
of S, then A is a hyperideal of (S,⊕,�).



138 Thai J. Math. (Special Issue, 2018)/ W. Nakkhasen and B. Pibaljommee

We apply Example 3.7 in [13] to construct an example of an ordered semiring
to show that the condition “upper end” is necessary.

Example 3.5. Let N0 = N ∪ {0} and S = M2(N0) denote the set of all 2 × 2
matrices over N0. Then S with usual the matrix addition and matrix multiplication
is a semiring. Define a binary relation ≤ on S by letting A,B ∈ S, A ≤ B
iff aij ≤ bij where i, j ∈ {1, 2}. Then (S,+, ·,≤) is an ordered semiring. Let

I =

{[
a 0
b 0

]
| a, b ∈ N0

}
⊆ S. Thus, I is a left ordered ideal of (S,+, ·,≤), which

is not an upper end of S. Now, I can not be a left hyperideal of (S,⊕,�), since

S � I =
⋃

A∈S,X∈I
A�X =

⋃
a,b,c,d,x,y∈N0

[[
ax + by 0 + 0
cx + dy 0 + 0

])
= S * I.

The following theorem shows that if the ordered semiring (S,+, ·,≤) contains
an identity element, then the converse of Theorem 3.2 is true.

Theorem 3.6. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then A is a left (resp. right, two-sided) ideal
of S, which is an upper end of S if and only if A is a left (resp. right, two-sided)
hyperideal of (S,⊕,�).

Proof. The proof of the necessity part follows by Theorem 3.2. For the sufficiency
part, we assume that A is a left hyperideal of S. Let x, y ∈ A and s ∈ S. We have
x+ y ∈ [x+ y) = x⊕ y ⊆ A and s · x ∈ [s · x) = s� x ⊆ A. Hence, A is a left ideal
of S. Next, suppose that A is not an upper end of S. There exists a ∈ A such that
[a) * A. Since S contains the identity element e, we have e�a = [e ·a) = [a) * A.
This is a contradiction.

Example 3.7. Let N be the set of natural numbers together with usual addition,
multiplication and ordering of numbers. Then (N,+, ·,≤) is an ordered semiring
with identity 1. Consider I = {2, 3, 4, 5, . . .}. We can see that I is a hyperideal
of (N,⊕,�) which is also an upper end of N. But, I is not an ordered ideal of
(N,+, ·,≤), since 1 < 2 but 1 6∈ I.

Theorem 3.8. Let (S,+, ·,≤) be an ordered semiring with identity e and (S,⊕,�)
be its associated EL-semihyperring. Then u is an identity of (S,⊕,�) if and only
if u ≤ e.

Proof. Assume that u is an identity of (S,⊕,�). We have e ∈ u�e = [u ·e) = [u),
implies u ≤ e. Conversely, suppose that u ≤ e. Let a ∈ S. Since e is an identity
of (S,+, ·,≤), we have a · u ≤ a · e = a and u · a ≤ e · a = a. This implies that
a ∈ a� u and a ∈ u� a. Hence, u is an identity of (S,⊕,�).

Definition 3.9. A semihyperring S is called simple if it does not contain proper
hyperideals.
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Theorem 3.10. Let (S,+, ·,≤) be an ordered semiring which (S,+, ·) is simple.
Then the associated EL-semihyperring (S,⊕,�) is simple.

Proof. Let I be an arbitrary hyperideal of (S,⊕,�). We can show that I is an
ideal of S. Since (S,+, ·) is simple, we have I = S.

The converse of Theorem 3.10 is not true, as the following example.

Example 3.11. Let S = {a, b, c} and two operations + and · on S be defined as
follows:

+ a b c
a a a a
b a b a
c a c a

· a b c
a a a a
b a b a
c a a a

We define an order relation ≤ on S by

≤:= {(a, a), (b, b), (c, c), (a, b), (a, c)}.

The figure of ≤ on S is given by

a

b c

Then (S,+, ·,≤) is an ordered semiring. Clearly, (S,+, ·) is not simple, Since {a}
and {a, b} are proper ideals of S. By Theorem 3.1, the hyperoperations ⊕ and
� of the associated EL-semihyperring (S,⊕,�) of (S,+, ·,≤) are shown as the
following tables:

⊕ a b c
a S S S
b S {b} S
c S {c} S

� a b c
a S S S
b S {b} S
c S S S

It is easy to check that (S,⊕,�) has no proper hyperideal.

A left (resp. right, two-sided) hyperideal I of a semihyperring S is called
a maximal left (resp. right, two-sided) hyperideal of S if there is no proper left
(resp. right, two-sided) hyperideal J of S such that I ⊂ J ⊂ S. A left (resp.
right, two-sided) hyperideal I of a semihyperring S is called a minimal left (resp.
right, two-sided) hyperideal of S if there is no proper left (resp. right, two-sided)
hyperideal K of S such that K ⊂ I ⊂ S.

Theorem 3.12. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is a maximal left (resp. right, two-
sided) ideal of the set of all left (resp. right, two-sided) ideals of S, which are also
upper ends of S if and only if I is a maximal left (resp. right, two-sided) hyperideal
of the set of all left (resp. right, two-sided) hyperideals of (S,⊕,�).
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Proof. Assume that I is maximal left ideal of the set of all left ideals of S, which
are also upper ends of S. Let J be a left hyperideal of S such that I ⊂ J ⊆ S. By
Theorem 3.6, J is a left ideal of S, which is also an upper end of S. By maximality
of I, we obtain that J = S. The proof of the sufficiency part is similar.

The proof of the following theorem is similar to the proof of Theorem 3.12.

Theorem 3.13. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is a minimal left (resp. right, two-
sided) ideal of the set of all left (resp. right, two-sided) ideals of S, which are also
upper ends of S if and only if I is a minimal left (resp. right, two-sided) hyperideal
of (S,⊕,�).

The statements of Theorem 3.6, Theorem 3.12 and Theorem 3.13 are not true
for the ordered ideals of (S,+, ·,≤). However, if we add some condition, then these
theorems are also true for ordered ideals.

Theorem 3.14. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is a left (resp. right, two-sided) or-
dered ideal of S, which is also an upper end of S if and only if I is a left (resp.
right, two-sided) hyperideal of (S,⊕,�) with (I] = I.

Theorem 3.15. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is a maximal left (resp. right, two-
sided) ordered ideal of the set of all left (resp. right, two-sided) ordered ideals of
S, which are also upper ends of S if and only if I is a maximal left (resp. right,
two-sided) hyperideal of the set of all left (resp. right, two-sided) hyperideals of
(S,⊕,�) with (I] = I.

Theorem 3.16. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is a minimal left (resp. right, two-
sided) ordered ideal of the set of all left (resp. right, two-sided) ordered ideals of
S, which are also upper ends of S if and only if I is a minimal left (resp. right,
two-sided) hyperideal of the set of all left (resp. right, two-sided) hyperideals of
(S,⊕,�) with (I] = I.

Definition 3.17. A nonempty subset B of a semihyperring (S,⊕,�) is said to be
a bi-hyperideal of S if B is a subsemihyperring of S and B � S �B ⊆ B.

Theorem 3.18. Let (S,⊕,�) be the associated EL-semihyperring of an ordered
semiring (S,+, ·,≤). If B is a (an ordered) bi-ideal of S, which is also an upper
end of S, then B is a bi-hyperideal of (S,⊕,�).

Proof. Since B +B ⊆ B and B ·B ⊆ B, we have B⊕B ⊆ B and B�B ⊆ B. Let
a, b ∈ B and s ∈ S. So a � s � b =

⋃
t∈a�s t � b =

⋃
t∈[a·s)[t · b). Then a · s ≤ t

implies a · s · b ≤ t · b. Since B is a bi-ideal of S, a · s · b ∈ B. Since B is an
upper end of S, t · b ∈ B. We obtain that [t · b) ⊆ B. So a � s � b ⊆ B. Hence,
B � S �B ⊆ B.
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Theorem 3.19. Let (S,+, ·,≤) be an ordered semiring, (S,⊕,�) be its associated
EL-semihyperring and B be an upper end of S. Then B is a (an ordered) bi-ideal
of S if and only if B is a bi-hyperideal of (S,⊕,�) (with (B] = B).

Definition 3.20. A subsemihyperring I of (S,⊕,�) is called an interior hyperideal
of S if S � I � S ⊆ I.

The proof of the following theorem is similar to the proof of Theorem 3.18.

Theorem 3.21. Let (S,+, ·,≤) be an ordered semiring and (S,⊕,�) be its asso-
ciated EL-semihyperring. If I is an (ordered) interior ideal of S, which is also an
upper end of S, then I is an interior hyperideal of (S,⊕,�).

Because each interior hyperideal of (S,⊕,�) is an interior ideal of (S,+, ·,≤)
but it is not necessarily an upper end of S. Then every interior hyperideal of S
need not to be an ordered interior ideal of S. But, if an ordered semiring (S,+, ·,≤)
contains an identity element, then the converse of Theorem 3.21 is true.

Theorem 3.22. Let (S,+, ·,≤) be an ordered semiring with identity and (S,⊕,�)
be its associated EL-semihyperring. Then I is an (ordered) interior ideal of S,
which is also an upper end of S if and only if I is an interior hyperideal of (S,⊕,�)
(with (I] = I).

Definition 3.23. Let (S,⊕,�) be a semihyperring. A nonempty subset A of S is
called an (m,n)-hyperideal of S if A is a subsemihyperring of S and Am�S�An ⊆
A, where m,n are non-negative integers, A0 � S = S and S �A0 = S.

Theorem 3.24. Let (S,⊕,�) be the associated EL-semihyperring of an ordered
semiring (S,+, ·,≤). If A is an (m,n)-ideal (ordered (m,n)-ideal) of S, which is
also an upper end of S, then A is an (m,n)-hyperideal of (S,⊕,�).

Proof. It is easy to show that A is a subsemihyperring of S. Let x ∈ Am�S�An.
There exist a ∈ Am, s ∈ S and b ∈ An such that x ∈ a � s � b =

⋃
t∈s�b a � t =⋃

t∈[s·b)[a · t). Then x ∈ [a · t1) for some t1 ∈ [s · b), that is, a · t1 ≤ x and s · b ≤ t1.
This implies that a · s · b ≤ a · t1 ≤ x. Since a ∈ Am and b ∈ An, we have
a ∈ x1 � x2 � · · · � xm and b ∈ y1 � y2 � · · · � yn. Thus, a ∈ [x1 · x2 · · · · · xm) and
b ∈ [y1 · y2 · · · · · yn). Also, x1 · x2 · · · · · xm · s · y1 · y2 · · · · · yn ≤ a · s · b ≤ x. So,
x ∈ [x1 · x2 · · · · · xm · s · y1 · y2 · · · · · yn), which x1 · x2 · · · · · xm · s · y1 · y2 · · · · · yn ∈
Am ·S ·An ⊆ A. Since A is an upper end of S, [x1 ·x2 · · · · ·xm ·s ·y1 ·y2 · · · · ·yn) ⊆ A.
Therefore, x ∈ A.

A hyperideal P of a semihyperring (S,⊕,�) is called semiprime if for any
hyperideal A of S, A � A ⊆ P implies A ⊆ P , and is called prime if for any
hyperideals A,B of S, A�B ⊆ P implies A ⊆ P or B ⊆ P .

Theorem 3.25. Let (S,⊕,�) be the associated EL-semihyperring of an ordered
semihyperring (S,+, ·,≤) and a nonempty subset P of S be an upper end. Then P
is a prime (ordered) ideal of S if and only if P is a prime hyperideal of (S,⊕,�)
(with (P ] = P ).
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Proof. Assume that P is a prime ideal of S. By Corollary 3.4, P is a hyperideal
of S. Let A and B be hyperideals of S such that A� B ⊆ P . We can show that
A and B are ideals of S. Now, A · B ⊆ A � B ⊆ P . This implies that A ⊆ P
or B ⊆ P . Hence, P is a prime hyperideal of S. Conversely, suppose that P is
a prime hyperideal of S. Then P is an ideal of S. Let I and J be ideals of S
such that I · J ⊆ P . By Lemma 2.2 and Remark 2.1, we have that [I) and [J) are
ideals of S which are upper ends. By Corollary 3.4, [I) and [J) are hyperideals of
S. Let x ∈ [I) and y ∈ [J). There exist u ∈ I and v ∈ J such that u ≤ x and
v ≤ y. So, u · v ≤ x · y, that is, x · y ∈ [u · v). Since P is an upper end of S,
x � y = [x · y) ⊆ [u · v) ⊆ P . Hence, [I) � [J) ⊆ P . By assumption, [I) ⊆ P or
[J) ⊆ P and then I ⊆ P or J ⊆ P . Therefore, P is a prime ideal of S.

The proof of the following theorem is similar to the proof of Theorem 3.25.

Theorem 3.26. Let (S,⊕,�) be the associated EL-semihyperring of an ordered
semihyperring (S,+, ·,≤) and a nonempty subset P of S be an upper end. Then
P is a semiprime (ordered) ideal of S if and only if P is a semiprime hyperideal
of (S,⊕,�) (with (P ] = P ).

Definition 3.27. A semihyperring (S,⊕,�) is called an idempotent semihyperring
if a ∈ a⊕ a and a ∈ a� a for all a ∈ S.

Theorem 3.28. Let (S,+, ·,≤) be an ordered semiring which (S,+, ·) is idem-
potent and (S,⊕,�) be its associated EL-semihyperring. Then (S,⊕,�) is an
idempotent semihyperring.

Proof. Let x ∈ S. Then x ∈ [x) = [x+x) = x⊕x and x ∈ [x) = [x ·x) = x�x.

The converse of Theorem 3.28 is not true as the following example.

Example 3.29. Let (S,+·,≤) be the ordered semiring defined in Example 3.11.
Since c+ c 66= c, (S,+, ·) is not idempotent, while its associated EL-semihyperring
(S,⊕,�) is idempotent.
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[10] P. Račková, Hypergroups of symmetric matrices, 10th International Congress
of Algebraic Hyperstructures and Applications, Proceeding of AHA 2008,
University of Defence, Brno (2009), 267-272.

[11] M. Novák, Some basic properties of EL-hyperstructures, European Journal
of Combinatorics 34 (2013) 446-459.

[12] M. Novák, On EL-semihypergroups, European Journal of Combinatorics 44
(2015) 274-286.

[13] S.H. Ghazavi, S.M. Anvariyeh, S. Mirvakili, Ideals in EL-semihypergroups
associated to ordered semigroups, Journal of Algebraic Systems 3 (2) (2016)
109-125.

(Received 4 April 2017)
(Accepted 30 June 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Hyperideals of EL-Semihyperrings

