E-Inversive Elements in Some Semigroups of Transformations that Preserve Equivalence

Nares Sawatraksa, Punyapat Kammoo and Chaiwat Namnak ${ }^{1}$
Department of Mathematics, Faculty of Science, Naresuan University Phitsanulok 65000, Thailand
e-mail : naress58@nu.ac.th (N. Sawatraksa)
punyapatk59@nu.ac.th (P. Kammoo) chaiwatn@nu.ac.th (C. Namnak)

$$
\begin{aligned}
& \text { Abstract : Let } X \text { be a nonempty set and } T(X) \text { the full transformation semigroup } \\
& \text { on a set } X \text {. For an equivalence relation } E \text { on } X \text { and a cross-section } R \text { of the } \\
& \text { partition } X / E \text { induced by } E \text {, let } \\
& \qquad T_{E^{*}}(X)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Leftrightarrow(x \alpha, y \alpha) \in E\} \text { and } \\
& \qquad T_{E}(X, R)=\{\alpha \in T(X): R \alpha=R \text { and } \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in E\} .
\end{aligned}
$$

Then $T_{E^{*}}(X)$ and $T_{E}(X, R)$ are subsemigroups of $T(X)$. In this paper, we describe the E-inversive elements of $T_{E^{*}}(X)$ and $T_{E}(X, R)$. We also show that $T_{E^{*}}(X)$ and $T_{E}(X, R)$ are E-inversive semigroups in terms of the cardinality of X / E and R, respectively.

Keywords : transformation semigroup; equivalence relation; E-inversive element; E-inversive semigroup.
2010 Mathematics Subject Classification : 20M20.

1 Introduction

An element a of a semigroup S is called E-inversive if there exists x in S such that $a x$ is idempotent of S. A semigroup S is called an E-inversive semigroup if
${ }^{1}$ Corresponding author.
Copyright (c) 2018 by the Mathematical Association of Thailand. All rights reserved.
every element of S is E-inversive. Clearly, regular semigroups, finite semigroups and eventually regular semigroups are E-inversives. Basic properties of E-inversive semigroups were given by Catino and Miccoli 1], Mitsch [2] and Mitsch and Petrich [3, 4] and Gigoń [5].

The full transformation semigroup on a nonempty set X is denoted by $T(X)$, that is, $T(X)$ is the semigroup of all mappings $\alpha: X \rightarrow X$ under composition. The semigroup $T(X)$ is known to be regular [6]. Hence $T(X)$ is an E-inversive semigroup.

Let E be an equivalence relation on X. Pei 7 has introduced a family of subsemigroups of $T(X)$ defined by

$$
T_{E}(X)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in E\}
$$

and call it the semigroup of transformations that preserve an equivalence on X. He has studied Green's relations and regularity on $T_{E}(X)$. Recently, Deng, Zeng and Xu [8] introduced the subsemigroup of $T_{E}(X)$ as follows:

$$
T_{E^{*}}(X)=\{\alpha \in T(X): \forall x, y \in X,(x, y) \in E \Leftrightarrow(x \alpha, y \alpha) \in E\}
$$

The authors considered regularity of elements and Green's relations for $T_{E^{*}}(X)$.
Let R be a cross-section of the partition X / E induced by E. In 9], Araújo and Konieczny defined a subsemigroup of $T(X)$ as follows:

$$
T(X, E, R)=\{\alpha \in T(X): R \alpha \subseteq R \text { and } \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in E\}
$$

Clearly, $T(X, E, R) \subseteq T_{E}(X)$. They have been proved that the semigroups $T(X, E, R)$ are precisely the centralizers of idempotents of $T(X)$. After year, they discussed regularity of elements and Green's relations for $T(X, E, R)$ in 10 . Now, we consider the following subset of $T_{E}(X)$:

$$
T_{E}(X, R)=\{\alpha \in T(X): R \alpha=R \text { and } \forall x, y \in X,(x, y) \in E \Rightarrow(x \alpha, y \alpha) \in E\}
$$

Then $T_{E}(X, R)$ is a subsemigroup of $T(X, E, R)$.
The aim of this paper is to give necessary and sufficient condition for the elements of $T_{E^{*}}(X)$ and $T_{E}(X, R)$ are E-inversives. Moreover, a necessary and sufficient condition for $T_{E^{*}}(X)$ and $T_{E}(X, R)$ to be an E-inversive semigroup is given in terms of $|X / E|$ and $|R|$, respectively.

In the remainder, let E be an equivalence relation on a set X and R a crosssection of the partition X / E. Denote by X / E the quotient set.

2 Main Results

We denote composition of two mappings obtained by performing first α and then β. We first provide that $T_{E}(X)$ and $T(X, E, R)$ are E-inversive semigroups. We remark that in view of this fact, if S is any one of $T_{E}(X)$ and $T(X, E, R)$, then S contains a constant mapping. It thus follows that every $\alpha \in S$ and a constant mapping β of $S, \alpha \beta$ is also constant and hence $\alpha \beta$ is an idempotent element of S. We immediately obtain:

Proposition 2.1. The semigroups $T_{E}(X)$ and $T(X, E, R)$ are E-inversive semigroups.

We have mentioned that every regular element is E-inversive. But there exists an E-inversive element of a semigroup S which is not regular as shown in the following example.

Example 2.2. Let $X=\{1,2,3,4,5,6,7\}$ and $X / E=\{\{1,2,3\},\{4,5\},\{6,7\}\}$. Define $\alpha \in T(X)$ by

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 7 & 6 & 3 & 3 & 2 & 1
\end{array}\right) .
$$

Then $\alpha \in T_{E}(X)$, hence α is E-inversive. Suppose that α is regular. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in T_{E}(X)$. Since $1=7 \alpha=7 \alpha \beta \alpha=1 \beta \alpha$ and $3=4 \alpha=$ $4 \alpha \beta \alpha=3 \beta \alpha$, we obtain that $1 \beta=7$ and $3 \beta \in\{4,5\}$. Since $(1,3) \in E$ and $\beta \in T_{E}(X),(1 \beta, 3 \beta) \in E$ which is a contradiction. Hence α is not a regular element of $T_{E}(X)$.

To prove the main theorem, the following lemma is needed.
Lemma 2.3. Let $\alpha \in T_{E^{*}}(X)$. If α is idempotent, then $A \alpha \subseteq A$ for all $A \in X / E$.
Proof. Suppose that α is idempotent. Then $\alpha^{2}=\alpha$. Let $A \in X / E$ and $a \in A$. Then $a \alpha^{2}=a \alpha$ and hence $(a \alpha,(a \alpha) \alpha) \in E$. Since $\alpha \in T_{E^{*}}(X)$, it follows that $(a, a \alpha) \in E$. From $a \in A$, we deduce that $a \alpha \in A$. Therefore, $A \alpha \subseteq A$.

The nature of regular elements in $T_{E^{*}}(X)$ and condition under which $T_{E^{*}}(X)$ is regular were considered in 8].

Theorem 2.4. 8, Theorem 3.1] Let $\alpha \in T_{E^{*}}(X)$. Then α is regular if and only if $A \cap X \alpha \neq \emptyset$ for all $A \in X / E$.

Theorem 2.5. [8, Theorem 3.2] $T_{E^{*}}(X)$ is a regular semigroup if and only if $|X / E|$ is finite.

Theorem 2.6. Let $\alpha \in T_{E^{*}}(X)$. Then α is E-inversive if and only if $A \cap X \alpha \neq \emptyset$ for all $A \in X / E$.

Proof. Suppose that α is E-inversive. Then there exists $\beta \in T_{E^{*}}(X)$ such that $\alpha \beta$ is idempotent. Let $A \in X / E$. Then $A \beta \subseteq B$ for some $B \in X / E$. By Lemma 2.3 , we deduce that $B \alpha \beta \subseteq B$. Let $b \in B$. Then $b \alpha \beta \in B$. If $a \in A$, then $a \beta \in B$ and so $(b \alpha \beta, a \beta) \in E$. Since $\beta \in T_{E^{*}}(X)$, it follows that $(b \alpha, a) \in E$. Thus $b \alpha \in A$. Hence $B \alpha \subseteq A$. Consequently, $A \cap X \alpha \neq \emptyset$.

Conversely, it follows from Theorem 2.4 and the fact that every regular element is E-inversive.

The next result follows immediately from Theorem 2.4 and Theorem 2.6 .

Corollary 2.7. Let $\alpha \in T_{E^{*}}(X)$. Then the following statements are equivalent.
(1) α is a regular element.
(2) α is an E-inversive element.
(3) $A \cap X \alpha \neq \emptyset$ for all $A \in X / E$.

Corollary 2.7 and Theorem 2.5 can be summarized as follows:
Corollary 2.8. The following statements are equivalent.
(1) $T_{E^{*}}(X)$ is a regular semigroup.
(2) $T_{E^{*}}(X)$ is an E-inversive semigroup.
(3) $|X / E|$ is finite.

The following theorem characterizes the regular elements of $T_{E}(X, R)$. Denote E_{r} the E-class containing r for all $r \in R$.

Theorem 2.9. Let $\alpha \in T_{E}(X, R)$. Then α is regular if and only if $\left.\alpha\right|_{R}$ is an injection.

Proof. Suppose that α is regular. Then there exists $\beta \in T_{E}(X, R)$ such that $\alpha=\alpha \beta \alpha$. Let $r, s \in R$ be such that $r \alpha=s \alpha$. Since $\beta \in T_{E}(X, R), R \beta=R$ and hence $r=r^{\prime} \beta$ and $s=s^{\prime} \beta$ for some $r^{\prime}, s^{\prime} \in R$. Since $R \alpha=R$, there exist $r^{\prime \prime}, s^{\prime \prime} \in R$ such that $r^{\prime}=r^{\prime \prime} \alpha$ and $s^{\prime}=s^{\prime \prime} \alpha$. We have that

$$
r^{\prime}=r^{\prime \prime} \alpha=r^{\prime \prime} \alpha \beta \alpha=r^{\prime} \beta \alpha=r \alpha=s \alpha=s^{\prime} \beta \alpha=s^{\prime \prime} \alpha \beta \alpha=s^{\prime \prime} \alpha=s^{\prime} .
$$

This implies that $r=r^{\prime} \beta=s^{\prime} \beta=s$. Hence $\left.\alpha\right|_{R}$ is an injection, as required.
Conversely, assume that $\left.\alpha\right|_{R}$ is an injection. Claim that for every $r \in R$, there exists $r^{\prime} \in R$ such that $E_{r} \cap X \alpha=E_{r^{\prime}} \alpha$. Let $r \in R$. Since $R \alpha=R$, there is $r^{\prime} \in R$ such that $r=r^{\prime} \alpha$. Since $\alpha \in T_{E}(X)$, it then follows that $E_{r^{\prime}} \alpha \subseteq E_{r} \cap X \alpha$. For the reverse inclusion, if $y \in E_{r} \cap X \alpha$, then $y=x \alpha$ for some $x \in X$. This implies that $x \in E_{s}$ for some $s \in R$ and so $s \alpha=r$. By assumption and $s \alpha=r^{\prime} \alpha$, we have $s=r^{\prime}$. Hence $y \in E_{r^{\prime}} \alpha$. This shows that $E_{r} \cap X \alpha=E_{r^{\prime}} \alpha$. So we have the claim.

For each $r \in R$, we choose $a_{r} \in R$ such that $E_{r} \cap X \alpha=E_{a_{r}} \alpha$. Thus $r=a_{r} \alpha$. For each $y \in\left(E_{r} \cap X \alpha\right) \backslash\{r\}$, we choose $a_{y} \in E_{a_{r}}$ such that $a_{y} \alpha=y$. Define $\beta_{r}: E_{r} \rightarrow E_{a_{r}}$ by

$$
x \beta_{r}= \begin{cases}a_{x} & \text { if } x \in X \alpha, \\ a_{r} & \text { otherwise } .\end{cases}
$$

Then β_{r} is well-defined, $E_{r} \beta_{r} \subseteq E_{a_{r}}$ and $r \beta_{r}=a_{r} \in R$. Let $\beta: X \rightarrow X$ be defined by $\left.\beta\right|_{E_{r}}=\beta_{r}$ for all $r \in R$. Since R is a cross-section of the partition X / E induced by E, β is well-defined. Obviously, $\beta \in T_{E}(X)$ and $R \beta \subseteq R$. Let $r \in R$. Then $r \alpha=s$ for some $s \in R$. Thus $s \beta_{s}=a_{s}$ for some $a_{s} \in R$ with $a_{s} \alpha=s$. Therefore, $a_{s} \alpha=r \alpha$. By assumption, we have that $a_{s}=r$ and thus
$s \beta=\left.s \beta\right|_{E_{s}}=s \beta_{s}=a_{s}=r$. It follows that $R \beta=R$ and therefore $\beta \in T_{E}(X, R)$. Let $x \in X$. Then $x \alpha \in E_{r}$ for some $r \in R$. Thus

$$
x \alpha \beta \alpha=\left.(x \alpha) \beta\right|_{E_{r}} \alpha=(x \alpha) \beta_{r} \alpha=a_{x \alpha} \alpha=x \alpha
$$

and therefore $\alpha=\alpha \beta \alpha$. Hence α is regular.
We also have the following theorem for which characterizes when $T_{E}(X, R)$ is a regular semigroup.

Theorem 2.10. $T_{E}(X, R)$ is a regular semigroup if and only if $|R|$ is finite.
Proof. Suppose that R is an infinite set. Let $r \in R$. Then $R \backslash\{r\}$ is also infinite and $|R \backslash\{r\}|=|R|$. Thus there exists a bijection $\varphi: R \backslash\{r\} \rightarrow R$. Choose and fix $r^{\prime} \in R \backslash\{r\}$. Define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}r^{\prime} & \text { if } x \in E_{r} \\ s \varphi & \text { if } x \in E_{s}\end{cases}
$$

Then $\alpha \in T_{E}(X)$. Since $r \alpha=r^{\prime}$ and $\varphi: R \backslash\{r\} \rightarrow R$, we get that $R \alpha \subseteq R$. Let $s \in R$. Since φ is surjective, $s=t \varphi$ for some $t \in R \backslash\{r\}$. Since $t \neq r$, it follows that $t \alpha=t \varphi=s$. Therefore $R \subseteq R \alpha$. Hence $\alpha \in T_{E}(X, R)$. Since $r^{\prime} \in R, r^{\prime}=r^{\prime \prime} \varphi$ for some $r^{\prime \prime} \in R \backslash\{r\}$. This implies that $r^{\prime \prime} \neq r$ and $r^{\prime \prime} \alpha=r^{\prime \prime} \varphi=r^{\prime}=r \alpha$. Consequently, $\left.\alpha\right|_{R}$ is not injective. By Theorem 2.9, we have that α is not regular. Hence $T_{E}(X)$ is not a regular semigroup.

Conversely, suppose that R is finite. Let $\alpha \in T_{E}(X, R)$. Then $R \alpha=R$ and so $\left.\alpha\right|_{R}: R \rightarrow R$ is a surjection. By the finiteness of $R,\left.\alpha\right|_{R}$ is injective. From Theorem $2.9, \alpha$ is regular. We conclude that $T_{E}(X, R)$ is a regular semigroup.

The next thorem use [6, page 4] that if $\alpha \in T(X)$ and $\alpha^{2}=\alpha$, then $x \alpha=x$ for all $x \in X \alpha$.

Theorem 2.11. Let $\alpha \in T_{E}(X, R)$. Then α is E-inversive if and only if $\left.\alpha\right|_{R}$ is an injection.

Proof. Suppose that α is E-inversive. Then there exists $\beta \in T_{E}(X, R)$ such that $\alpha \beta$ is idempotent. Let $r, s \in R$ be such that $r \alpha=s \alpha$. Since $\alpha \beta \in T_{E}(X, R)$, we have $R \alpha \beta=R$. Thus $r, s \in X \alpha \beta$. Since $\alpha \beta$ is idempotent and $r \alpha=s \alpha$, we deduce that $r=r \alpha \beta=s \alpha \beta=s$. Thereby $\left.\alpha\right|_{R}$ is an injection.

Conversely, if $\left.\alpha\right|_{R}$ is injective, then α is regular by Theorem 2.9. Therefore α is E-inversive.

As a consequence of Theorems 2.9 and 2.11 are useful to obtain this result.
Corollary 2.12. Let $\alpha \in T_{E}(X, R)$. Then the following statements are equivalent.
(1) α is a regular element.
(2) α is an E-inversive element.
(3) $\left.\alpha\right|_{R}$ is an injection.

As a consequence of Corollary 2.12 and Theorem 2.10, the following result follows readily.
Corollary 2.13. The following statements are equivalent.
(1) $T_{E}(X, R)$ is a regular semigroup.
(2) $T_{E}(X, R)$ is an E-inversive semigroup.
(3) $|R|$ is finite.

Acknowledgements : The authors are grateful to the referees for their careful reading of the manuscript and their useful comments.

References

[1] F. Catino, M.M. Miccoli, On semidirect product of semigroups*, Note di Mathematica 9 (1989) 189-194.
[2] H. Mitsch, Subdirect product of E-inversive semigroups, J. Austral. Math. Soc. 48 (1990) 66-78.
[3] H. Mitsch, M. Petrich, Basic properties of E-inversive semigroups, Comm. Algebra 28 (2000) 5169-5182.
[4] H. Mitsch, M. Petrich, Restricting idempotents in E-inversive semigroups, Acta. Sci. Math. (Szeged) 67 (2001) 555-570.
[5] R.S. Gigoń, Some results on E-inversive semigroups, Quasigroup and Related Systems 20 (2012) 53-60.
[6] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, Math. Surveys of the American Mathematical Society, Rhode Island, 1961.
[7] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005) 109-118.
[8] L. Deng, J. Zeng, B. Xu, Green's relations and regularity for semigroups of transformations that preserve double direction equivalence, Semigroup Forum 80 (2010) 416-425.
[9] J. Araújo, J. Konieczny, Automorphism groups of centralizers of idempotents, J. Algebra 269 (2003) 227-239.
[10] J. Araújo, J. Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra 32 (2004) 1917-1935.
(Received 2 March 2017)
(Accepted 16 June 2017)
Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

