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Abstract : Let Tx be the full transformation semigroup on a set X and E an
arbitrary equivalence relation on X. We define a subsemigroup of T'x as follows:

Tsp(X)={aeTx :Vr € X, (z,za) € E}

which is called the self-E-preserving transformation semigroup on X. Then Tsg(X)
becomes a regular semigroup. The purpose of this paper is to investigate Green’s
relations for Tsg(X). Moreover, we characterize when certain elements of Ts g (X)
are left regular, right regular and completely regular.
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1 Introduction

An element a of a semigroup S is called regular if a = axa for some x € S,
left regular if a = za® for some x € S, right reqular if a = a’x for some z € S
and completely reqular if a = axa and ax = xa for some x € S. Evidently every
completely regular element is regular, left regular and right regular. If all its
elements of S are regular we called S a regular semigroup.
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Let T'x be the full transformation semigroup on a set X under usual composi-
tion of mappings. It is well known that T'x is a regular semigroup. Over the last
decades, notions of regularity and Green’s relations of subsemigroups of Tx have
been widely considered see [1H6]. In [1] has introduced a family of subsemigroups
of Tx defined by

Tg(X)={a€Tx :Va,be X,(a,b) € E = (ac,ba) € E}

where E is an arbitrary equivalence relation on X. [1] has investigated regularity
and Green’s relations for Tg(X).

In the rest of the paper, let E be an arbitrary equivalence relation on X. The
following a subsemigroup of T’x is considered:

TSE(X) = {OL eTx :Vre X, (I’,J}Oz) S E}

In 7], Tsg(X) is said to be the self-E-preserving transformation semigroup on X

The paper is organized as follows. In section 2, we investigate Green’s relations
of Tsg(X). In section 3, we show that Tsr(X) is a regular semigroup and give
necessary and sufficient conditions for each element of Tsg(X) when it is left
regular, right regular and completely regular.

In this introductory section, we present a number of notations and propositions
most of which will be indispensable for our research. For a set X and a € T'x, we
denote by m(a) the partition of X induced by «, namely,

m(a) = {ya™t 1y € Xa},
and a, the natural bijection corresponding to « from 7(a) onto X« defined by
Pa, =xza forall P € n(a) and all z € P.

For collections of subsets A and B of X, we say that B is a refinement of A
or B refines A if UA = UB and for every B € B, there exists an element A € A
such that B C A.

Proposition 1.1. Let o € Tsp(X). If y € Xa, then there exists a unique A €
X/E such that ya=* C A. Hence 7(a) refines X/E.

Proof. Let y € Xa. Then y = x« for some € X. By X/FE is a partition of X,
there exists a unique A € X/FE such that z € A. Let z € ya~!. Then za = y.
Since a € Tsg(X), we have that (z,y) = (z,za) € F and (z,y) = (2,2a) € E. By
transitive of E, we deduce that (x,2) € E, so z € A. Hence ya~—! C A for some
Ae X/E . O

Proposition 1.2. Let o € Tsg(X). Then for every A € X/E, Aa C A.

Proof. Let A€ X/E and z € A. By a € Tsg(X), we have that (z,z«) € E. This
means that za € A. O
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Let o € Tsp(X) and A € X/E. We denote
mala) ={P en(a): PNA#0}.
Proposition 1.3. Let a € Tsg(X) and A€ X/E. Then A=Jma(c).

Proof. Let x € |Uma(a). Then z € P for some P € 7(«) such that PN A # (). By
Proposition we deduce that P C A. Thereby |J7a(a) C A. For the reverse
inclusion, let z € A. By w(«) is a partition of X, we have x € P for some P € 7(«).
This implies that P € m4(«), hence x € |Jma (). Therefore A = |Jma(a). O

2 Green’s Relations for the Self-E-Preserving
Transformation Semigroups

We refer to [8, Chapter 2] for the definitions and notations of Green’s relations.
In this section, we discuss Green’s relations of Tsg(X).

Theorem 2.1. Let o, € Tsp(X). Then o € Tsp(X)B if and only if for every
Ae X/E, Aa C ApB.

Proof. Suppose that a € Tsg(X)B. Then a = 64 for some 6 € Tsp(X). Let
A € X/E. By Proposition we then have Ad C A. Hence Aa = AjB C AS.
Conversely, assume that Aa C Af for all A € X/E. For each x € X, there
exists a unique A € X/F such that z € A. By assumption, we choose and fix
an element ' € A such that xa = 2’8 for all x € X. Define § : X — X by
xd =o' for all z € X. Let x € X. Since z,2' € A, (z,2d) = (x,2') € E and
20 = (x6)B = 2’8 = xa. These verify that § € Tgg(X) and a = §5. Hence
a € Tsp(X)pB, as required. O

Corollary 2.2. Let o, € Tsg(X). Then (o, 8) € L if and only if Ao = AB for
all A€ X/E.

Theorem 2.3. Let o, B € Tsp(X). Then a € fTsg(X) if and only if m(B) refines
(o).

Proof. Assume that a € fTsp(X). Then oo = 86 for some 6 € Tsp(X). Using
the fact that m(«) is a partition of X, we have Ur(a) = Um(B). Let P € w(p).
Hence PB, = y for some y € XB3. Thus Pa = PB6 = {yd} which implies that
P C yéa~! € m(a). We conclude that 7(3) refines 7(c).

Conversely, assume that 7(8) refines (). For each x € X[, there exists a

unique P, € w(8) such that P,8. = z. By assumption, there exists a unique
Q. € 7(«a) such that P, C Q.. Define § : X — X by

x5={ Qo fzxe Xp;

T otherwise.
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Clearly, § is well-defined. To show that § € Tsg(X), let x € X. If z € X3, then
(z,26) = (x,z) € E. If x € X3, then by the definition of §, 26 = Q.a, where
P.B. = x and P, C Q, for some P, € n(8) and Q, € w(«). By Proposition
m(a) and 7(pB) refine X/E, we then have P, C A and @, C B for some
A,B € X/E. Since f € Tsg(X), it follows that € A. Since P, C Q, and X/E
is a partition of X, we have that A = B, so ), C A. It follows from Proposition
that Qo € Aa € A. We deduce that (x,20) = (z,Qra) € E. Therefore
d € Tsp(X). Moreover, for z € X,

B = (2B) = Qupas = zav

since € Pyg C Qqp where Pyg € () and Q3 € m(a). Therefore a = 36, hence
the theorem is thereby proved. O

Corollary 2.4. Let o, 8 € Tsp(X). Then (a, 8) € R if and only if m(a) = 7(f).

Since H = R N L, the following corollary follows immediately from Corollary

2:2) and Corollary 24] .

Corollary 2.5. Let o, 8 € Tsp(X). Then (o, 8) € H if and only if 7(a) = 7(B)
and Ao = AB for all A€ X/E.

The next lemma is verified to consider the relation J.

Lemma 2.6. Let o, 3,0,y € Tx. If a = 08y, then the set A = {UAg : Q €
7(B) and QN X3 # 0} is a refinement of w(a) where Ag = {P € 7(d) : P4, € Q}.

Proof. Assume that o = §Bv. By the first part of the proof Theorem we
have 7(0) refines m(a). Claim that UA = X. Let # € X. Then z € P for some
P € 7©(§). We note that 268 € X, so 263 = Qp, for some Q € 7(8). Then
Pé, = x6 € Q and hence QN X0 # 0. Thus P € Ag and z € P C UAg C UA.
Hence we have the claim. This means that UA = Ur(a). Let @ € 7(8) be such
that Q@ N Xd # (). To show that there exists P € m(a) such that UAg C P, let
x € QN X0. Then there exists an element 2’ € X such that 2’ = z. Since 7(d)
is a partition of X, z’ € P for some P € 7(d) and P, = z'd. Since 7(0) refines
7(a), P C P for some P € m(a). Let y € UAg. Then y € P’ for some P’ € Ag.
By the definition of Ag, P, € Q. Hence y6f8 = P'6,6 = QB = zf = /8.
Since ' € P C P, 2’a = Pa,. Thus

yo = ydBy = 2'68y = 2'a = Pa,

which implies that y € P, hence UAg C P. This proves that A refines m(a), as
required. O

Theorem 2.7. Let o, € Tsp(X). Then o € Tsg(X)BTsp(X) if and only if
there exists a refinement A of w(a) and ¢ : A — w(5) such that ¢ is an injection
and for every P € A, P,Pp C A for some A € X/E.
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Proof. Assume that o € Tsg(X)BTsg(X). Then o = 65 for some 4,y € Tsg(X).
Let A ={UAg : Q € n(B) and Q N X§ # 0} where Ag = {P € 7w(a) : Pé, €
Q@}. Then by Lemma A is a refinement of m(«). Define ¢ : A — 7(8) by
(UAQ)p = Q. It is clear that ¢ is well-defined. Suppose that (UAg)p = (UAg)e.
By the definition of ¢, @ = Q. Thus Ag = Ag and so ¢ is an injection. Let
UAg € A where Q € w(8). Since 7(S) refines X/E, Q C A for some A € X/E.
For each P € Ag, we have Pd, € @ and so P§, € A. Hence P C A because
§ € Tgp(X). Thus UAg C A, hence (UAg)p =Q C A.
Conversely, suppose that ¢ : A — 7(f) is an injection where 4 is a refinement
of m(a) and for every P € A, P,Pp C A for some A € X/E. Let z € X.
Then x € P for some P € A, we choose and fix an element & € Py. We define
d:X — X by xd = & for all z € X. By assumption, there exists A € X/FE such
that P, Po C A which implies that § € Tsg(X). Since B, : w(8) — X3 is an
injection and by assumption, @8, : A — X is an injection. For each z € App,,
there exists a unique P, € A such that x = P,pB8,. We fix ' € P,. Define
v: X — X by
! 3 .
517’Y{ o if r € Apfy;

T otherwise.

Let z € X. If © € AppB, then (z,27) = (z,z) € E. If x € AppB,, then z = P,pSx
for some P, € A. By Proposition there is A € X/E such that P,p C A. It
follows from assumption that P, C A. We conclude that z = P,pf8, € A C A
by Proposition From (2/,2'a) € F and 2’ € A, we then have ’a € A. Thus
(z,27v) = (x,2’a) € E. This shows that v € Tsg(X). We show that a = 087.
Let x € X. Then x € P for some P € A. Since 28 = Ppf, C AppS,, we conclude
that PpfB. = & = PzapPs. 1t follows from ¢p, is injective that P = Pzg. Hence
x,(£8)" € P. Since A is a refinement of m(«a), there exists P’ € m(«) such that
P C P’. Thus z,(28)" € P’ which implies that za = (Z8)'a. It would follow that

2Py = 2By = (28) a = za.
Therefore, the theorem is completely proved. O

Corollary 2.8. Let a,8 € Tsg(X). Then a € Tsp(X)BTse(X) if and only if
there exists an injection ¢’ : w(a) — w(B) such that for every P € w(«), P, Py’ C
A for some A € X/E.

Proof. Assume that a € Tsg(X)8Tsg(X). By Theorem that there exist a
refinement A of 7(«) and ¢ : A — w(8) such that ¢ is an injection and for every
P e A P,Pp C A for some A € X/E. For each P € m(«), we choose and fix
P’ € A such that P’ C P. Define ¢ : n(a) — 7(8) by

Py’ =Py for all P € 7(a).
It is easy to see that ¢ is well-defined. Let P, @ € 7(«) be such that Py’ = Qy'.

Hence P'p = Q'¢. By ¢ is injective, P’ = @'. Since 7(«) is a partition of X,
P = Q. Thus ¢’ is injective. Let P € 7(a). We then have P, P'¢ C A for some
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A € X/E by Theorem 2.7} whence PN A # . From Proposition we deduce
that P, Py’ C A, as required. O

Corollary 2.9. Let o, € Tsp(X). Then (o,8) € J if and only if there exist
injections ¥ : w(a) — w(B) and ¥’ : w(B) — w(a) such that for every P € w(«)
and Q € ©(B), P,PyY C A and Q,Qvy’ C A’ for some A, A" € X/E.

The remaining matter is only to consider the relation D.

Lemma 2.10. Let o, € Tsp(X) and A € X/E. If ¢ : ma(B) — 7a(a) is a
bijection, then there exists 04 : A — X satisfies m(04) = 7a(B8) and Ads = Aa.

Proof. Assume that ¢ : m4(8) — ma(a) is bijective. Let € A. By Proposition
there exists P, € m4(8) such that € P,. We define §4 : A — X by

xda = (Pyp)a, for all z € A.

It is clear that d4 is well-defined. We then have Urys(8) = A = Un(da) by
Proposition Claim that 74(8) = 7(d4). From the definition of d4, we note
that for every P € ma(8), Pda = {Pya.}, hence P C Q for some Q € 7(d4). For
each @ € m(04), Qda, = Ppa, for some P € 4(8). Next, to show Q C P, let x €
Q. Then there exists P, € m4(8) such that x € P,. Hence Qda, = xd4 = Prpa,
we deduce that Ppa, = Pypa,. Since pa, is a bijection, P = P,. Hence = € P,
so @@ C P. Therefore we conclude that m4(8) = m(d4). To show that Ads = Ac,
let z € A. Then x € P, for some P, € m4(8), whence 264 = Prpa, € Aa. Thus
Ad4 C Aa. For the reverse inclusion, let y € A. Since ya € Aa, ya = Pa, for
some P € w4 (). Since ¢ is bijective, there exists a unique P’ € w4 () such that
P'p = P. Choose z € P', we have that 204 = P'pa, = Pa, = ya which implies
that ya € Ad4. Hence Aa C Ad4 as we wished to show. O

Theorem 2.11. Let o, € Tsg(X). Then («,8) € D if and only if for every
A€ X/E, there exists a bijection pa : wa(8) = ma(a).

Proof. Suppose that (o, 3) € D. Then there exists § € Tsg(X) such that (a,d) €
L and (6,8) € R. Let A € X/E. For each P € 74(8), we then have P € w(8) and
PN A# (. By Corollary 2.4 we have m(6§) = 7(8), so P € m(5). Since 7(J) refines
X/E and PN A # (), we deduce that P C A, hence Pd, € Ad. From Corollary
we obtain that Aa = Ad, that is Pd, € Aa C Xa. Then there exists Qp € m(«)
such that Qpa, = Pd.. Since Qpa, € A and a € Tgp(X), Qp C A. Then
Qp € ma(a). Define 4 : m4(8) = ma(a) by

Pposa=Qp forall Pems(p).

If @' € ma(a) is such that Q' = Pd,, then Qp = Q' because Qpa, = Q..
This shows that ¢4 is well-defined. Suppose that Pps = P'¢4. Then Qp = Qpr,
hence P, = Qpa, = Qpra, = P'S, which implies that P = P’. Therefore ¢
is an injection. Claim that @4 is onto, let @ € ma(«). Then Qa, € Aa = AJ.
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Thus there exists P € 7(d) such that Pd, = Q.. Since § € Tgg(X), P C A. By
m(6) = w(B), we have P € w(8) and so P € wa(8). Thus Ppa = @, so we have
the claim. Therefore 4 is bijective, as required.

Conversely, for every A € X/E, there exists a bijection ¢4 : ma(8) = ma().
It follows from Lemma that there exists d4 : A — X corresponding to A €
X/FE such that m4(8) = 7(da) and Ads = Aa. Thus we define § : X — X by
d|la = 64 for all A € X/E. Since X/FE is a partition of X, § is well-defined.
We note that for each A € X/FE, Aj = Ads = Aa C A by a € Tsg(X), hence
0 € Tsp(X). Finally, we can see that

mB) = U )= U 76a)= [J ma(8) =n(),

AEX/E AEX/E AeX/E

it follows by Corollary that (6,8) € R. Since Ad = Ad|4 = Ads = Aa, we
deduce that («,d) € L by Corollary Therefore (o, ) € Lo R =D.
Hence the theorem is completely proved. O

3 Regularity for the Self-E-Order Preserving
Transformation Semigroups

Proposition 3.1. The semigroup Tsg(X) is a reqular semigroup.

Proof. Let o € Tsp(X). Then for each x € X, there exists P, € 7(a) such that
P.a, = x. We choose an element 2’ € P, whence 2’ = x for all z € Xa. Define
B8:X — X by

2f = o ifreXo
| * otherwise.
Let z € X. If & Xa, then (z,28) = (x,2) € E. If z € Xa, then (z,zf) =
(z,2") = (¢’a,2’) € E. We also have that

rafBa = (za)Ba = (ra) a = za.

These show that 8 € Tsg(X) and a = afa, respectively. Therefore « is a regular
element of Tog(X). O

Theorem 3.2. Let o € Tsgp(X). Then a is left reqular if and only if for every
Pern(a), PN Xa #0.

Proof. Assume that « is a left regular element of Tsg(X). Then o = Sa? for some
B € Tsg(X). Let P € w(a). Then Pa, =y for some y € Xa. For each x € P, we
have that za = y. Hence

y = za = zfa’® = (zfa)a.

This implies that z3a € ya~! = P and zBa € Xa. Therefore PN Xa # ().
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Conversely, suppose that PN X« # () for all P € m(«). For each x € X, there
exists P € w(«) such that € P. By assumption, we choose and fix y, € PN Xa.
So za = yya. Since y, € Xa, we can fix y,, € X such that y,a = y,. Define
B8:X — X by

=y, forallzeX.

Since m(«) is a partition of X, g is well-defined. To show that 8 € Tsgp(X),
let x € X. Since (x,2a), (Yz, yz) € E and E is transitive, (z,y,) € E. Since
(Y%, yz) = (Y., ¥, ) € E, it then follows by transitive of F that, (z,z8) = (z,y.,) €
E. Hence f € Tsg(X). And

2l = o = (fa)a = ya = za.
Thus « is a left regular element of Tgg(X). O

Theorem 3.3. Let a € Tsp(X). Then « is right reqular if and only if a|xq is
an injection.

Proof. Assume that « is a right regular element of Tsg(X). Then o = o?f for
some 3 € Tsp(X). Let z,y € Xa be such that za = ya. Since z,y € Xa, z = 7'«
and y = ¢« for some ',y € X. Hence

z=d'a=2'a’f = (d/a)af = (za)f = (ya)B = (y'a)af = y'a’f = y'a =y.

This proves that a|x, is injective.

For the converse, assume that ax,, is an injection. We construct 5 € Tsp(X)
such that @ = a?3. For any € Xa?, we choose 2’ € Xa such that z = z’a.
Define g : X — X by

' if x € Xa?;
zfp = .
x  otherwise.

It is easy to verify that § € Tsg(X). Let © € X. Then za = y for some y € X«
and ya € Xa?. Then there exists (ya)’ € Xa such that (ya)'a = ya. It follows
by assumption that (ya)’ = y. Thus za?8 = (za)af = (ya)8 = (ya) =y = za.
Hence « is a right regular element of Tgg(X). O

Theorem 3.4. Let o € Tsg(X). Then « is completely reqular if and only if for
every P € m(a),|PNXa|=1.

Proof. Suppose that « is a completely regular element of Tsg(X). Then « is left
regular and right regular. By Theorem [3.2] PN Xa # 0. It follows from Theorem
|[PNXal=1.

Conversely, assume that |[PNXa| =1 for all P € 7(a). For each P € 7(«), by
assumption, there exists a unique zp € PN Xa. Since zp € Xa, P'a,, = xp for
some P’ € w(a). Similarly, there is a unique xpr € P'N X« and hence zpra = zp.
Define 8 : X — X by

xf =xp forall z € P and for each P € w(w).
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Then 5 € Tx. To show that 8 € Tsg(X), let € X. Thus z € P for some P €
m(«). By assumption za = zpa where zp € PN Xa, so (x,zpa) = (z,za) € E.
Since (z,zpa), (zp,xzpa) € E, (z,zp) € E by transitive of E. Then we obtain
that (z,zp) = (z,zpra). Since (xp,xp ) € E, it follows that (z,zp/) € E. We
deduce that (z,28) = (z,zp/) € E. Thus f € Tgp(X). Finally, to show that
a = afa and aff = Pa, let x € X. Hence zav = xp for some zp € PN Xa where
P € w(a). Then zafa = xpfa = rpra = xp = xa. Moreover, we get x € P’
where P’ € 7(a) and P’ = zp. Then there exists a unique zp» € PN Xa where
P" € n(a)) and zpra = xpr. By the definition of 3, we have 8 = zpr. Also, we
have that zaf = xp8 = xpr == xpra = xfa. These mean that a = afa and
af = Ba. Therefore « is completely regular of Tsp(X). O
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