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Abstract : Let TX be the full transformation semigroup on a set X and E an
arbitrary equivalence relation on X. We define a subsemigroup of TX as follows:

TSE(X) = {α ∈ TX : ∀x ∈ X, (x, xα) ∈ E}

which is called the self-E-preserving transformation semigroup onX. Then TSE(X)
becomes a regular semigroup. The purpose of this paper is to investigate Green’s
relations for TSE(X). Moreover, we characterize when certain elements of TSE(X)
are left regular, right regular and completely regular.
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1 Introduction

An element a of a semigroup S is called regular if a = axa for some x ∈ S,
left regular if a = xa2 for some x ∈ S, right regular if a = a2x for some x ∈ S
and completely regular if a = axa and ax = xa for some x ∈ S. Evidently every
completely regular element is regular, left regular and right regular. If all its
elements of S are regular we called S a regular semigroup.
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Let TX be the full transformation semigroup on a set X under usual composi-
tion of mappings. It is well known that TX is a regular semigroup. Over the last
decades, notions of regularity and Green’s relations of subsemigroups of TX have
been widely considered see [1–6]. In [1] has introduced a family of subsemigroups
of TX defined by

TE(X) = {α ∈ TX : ∀a, b ∈ X, (a, b) ∈ E ⇒ (aα, bα) ∈ E}

where E is an arbitrary equivalence relation on X. [1] has investigated regularity
and Green’s relations for TE(X).

In the rest of the paper, let E be an arbitrary equivalence relation on X. The
following a subsemigroup of TX is considered:

TSE(X) = {α ∈ TX : ∀x ∈ X, (x, xα) ∈ E}.

In [7], TSE(X) is said to be the self-E-preserving transformation semigroup on X
and TSE(X) ⊆ TE(X).

The paper is organized as follows. In section 2, we investigate Green’s relations
of TSE(X). In section 3, we show that TSE(X) is a regular semigroup and give
necessary and sufficient conditions for each element of TSE(X) when it is left
regular, right regular and completely regular.

In this introductory section, we present a number of notations and propositions
most of which will be indispensable for our research. For a set X and α ∈ TX , we
denote by π(α) the partition of X induced by α, namely,

π(α) = {yα−1 : y ∈ Xα},

and α∗ the natural bijection corresponding to α from π(α) onto Xα defined by

Pα∗ = xα for all P ∈ π(α) and all x ∈ P.

For collections of subsets A and B of X, we say that B is a refinement of A
or B refines A if ∪A = ∪B and for every B ∈ B, there exists an element A ∈ A
such that B ⊆ A.

Proposition 1.1. Let α ∈ TSE(X). If y ∈ Xα, then there exists a unique A ∈
X/E such that yα−1 ⊆ A. Hence π(α) refines X/E.

Proof. Let y ∈ Xα. Then y = xα for some x ∈ X. By X/E is a partition of X,
there exists a unique A ∈ X/E such that x ∈ A. Let z ∈ yα−1. Then zα = y.
Since α ∈ TSE(X), we have that (x, y) = (x, xα) ∈ E and (z, y) = (z, zα) ∈ E. By
transitive of E, we deduce that (x, z) ∈ E, so z ∈ A. Hence yα−1 ⊆ A for some
A ∈ X/E .

Proposition 1.2. Let α ∈ TSE(X). Then for every A ∈ X/E, Aα ⊆ A.

Proof. Let A ∈ X/E and x ∈ A. By α ∈ TSE(X), we have that (x, xα) ∈ E. This
means that xα ∈ A.
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Let α ∈ TSE(X) and A ∈ X/E. We denote

πA(α) = {P ∈ π(α) : P ∩A 6= ∅}.

Proposition 1.3. Let α ∈ TSE(X) and A ∈ X/E. Then A =
⋃
πA(α).

Proof. Let x ∈
⋃
πA(α). Then x ∈ P for some P ∈ π(α) such that P ∩A 6= ∅. By

Proposition 1.1, we deduce that P ⊆ A. Thereby
⋃
πA(α) ⊆ A. For the reverse

inclusion, let x ∈ A. By π(α) is a partition of X, we have x ∈ P for some P ∈ π(α).
This implies that P ∈ πA(α), hence x ∈

⋃
πA(α). Therefore A =

⋃
πA(α).

2 Green’s Relations for the Self-E-Preserving
Transformation Semigroups

We refer to [8, Chapter 2] for the definitions and notations of Green’s relations.
In this section, we discuss Green’s relations of TSE(X).

Theorem 2.1. Let α, β ∈ TSE(X). Then α ∈ TSE(X)β if and only if for every
A ∈ X/E,Aα ⊆ Aβ.

Proof. Suppose that α ∈ TSE(X)β. Then α = δβ for some δ ∈ TSE(X). Let
A ∈ X/E. By Proposition 1.2, we then have Aδ ⊆ A. Hence Aα = Aδβ ⊆ Aβ.

Conversely, assume that Aα ⊆ Aβ for all A ∈ X/E. For each x ∈ X, there
exists a unique A ∈ X/E such that x ∈ A. By assumption, we choose and fix
an element x′ ∈ A such that xα = x′β for all x ∈ X. Define δ : X → X by
xδ = x′ for all x ∈ X. Let x ∈ X. Since x, x′ ∈ A, (x, xδ) = (x, x′) ∈ E and
xδβ = (xδ)β = x′β = xα. These verify that δ ∈ TSE(X) and α = δβ. Hence
α ∈ TSE(X)β, as required.

Corollary 2.2. Let α, β ∈ TSE(X). Then (α, β) ∈ L if and only if Aα = Aβ for
all A ∈ X/E.

Theorem 2.3. Let α, β ∈ TSE(X). Then α ∈ βTSE(X) if and only if π(β) refines
π(α).

Proof. Assume that α ∈ βTSE(X). Then α = βδ for some δ ∈ TSE(X). Using
the fact that π(α) is a partition of X, we have ∪π(α) = ∪π(β). Let P ∈ π(β).
Hence Pβ∗ = y for some y ∈ Xβ. Thus Pα = Pβδ = {yδ} which implies that
P ⊆ yδα−1 ∈ π(α). We conclude that π(β) refines π(α).

Conversely, assume that π(β) refines π(α). For each x ∈ Xβ, there exists a
unique Px ∈ π(β) such that Pxβ∗ = x. By assumption, there exists a unique
Qx ∈ π(α) such that Px ⊆ Qx. Define δ : X → X by

xδ =

{
Qxα∗ if x ∈ Xβ;
x otherwise.
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Clearly, δ is well-defined. To show that δ ∈ TSE(X), let x ∈ X. If x 6∈ Xβ, then
(x, xδ) = (x, x) ∈ E. If x ∈ Xβ, then by the definition of δ, xδ = Qxα∗ where
Pxβ∗ = x and Px ⊆ Qx for some Px ∈ π(β) and Qx ∈ π(α). By Proposition
1.1, π(α) and π(β) refine X/E, we then have Px ⊆ A and Qx ⊆ B for some
A,B ∈ X/E. Since β ∈ TSE(X), it follows that x ∈ A. Since Px ⊆ Qx and X/E
is a partition of X, we have that A = B, so Qx ⊆ A. It follows from Proposition
1.2 that Qxα∗ ∈ Aα ⊆ A. We deduce that (x, xδ) = (x,Qxα∗) ∈ E. Therefore
δ ∈ TSE(X). Moreover, for x ∈ X,

xβδ = (xβ)δ = Qxβα∗ = xα

since x ∈ Pxβ ⊆ Qxβ where Pxβ ∈ π(β) and Qxβ ∈ π(α). Therefore α = βδ, hence
the theorem is thereby proved.

Corollary 2.4. Let α, β ∈ TSE(X). Then (α, β) ∈ R if and only if π(α) = π(β).

Since H = R ∩ L, the following corollary follows immediately from Corollary
2.2 and Corollary 2.4 .

Corollary 2.5. Let α, β ∈ TSE(X). Then (α, β) ∈ H if and only if π(α) = π(β)
and Aα = Aβ for all A ∈ X/E.

The next lemma is verified to consider the relation J .

Lemma 2.6. Let α, β, δ, γ ∈ TX . If α = δβγ, then the set A = {∪AQ : Q ∈
π(β) and Q∩Xδ 6= ∅} is a refinement of π(α) where AQ = {P ∈ π(δ) : Pδ∗ ∈ Q}.

Proof. Assume that α = δβγ. By the first part of the proof Theorem 2.3, we
have π(δ) refines π(α). Claim that ∪A = X. Let x ∈ X. Then x ∈ P for some
P ∈ π(δ). We note that xδβ ∈ Xβ, so xδβ = Qβ∗ for some Q ∈ π(β). Then
Pδ∗ = xδ ∈ Q and hence Q ∩Xδ 6= ∅. Thus P ∈ AQ and x ∈ P ⊆ ∪AQ ⊆ ∪A.
Hence we have the claim. This means that ∪A = ∪π(α). Let Q ∈ π(β) be such
that Q ∩ Xδ 6= ∅. To show that there exists P̃ ∈ π(α) such that ∪AQ ⊆ P̃ , let
x ∈ Q ∩Xδ. Then there exists an element x′ ∈ X such that x′δ = x. Since π(δ)
is a partition of X, x′ ∈ P for some P ∈ π(δ) and Pδ∗ = x′δ. Since π(δ) refines
π(α), P ⊆ P̃ for some P̃ ∈ π(α). Let y ∈ ∪AQ. Then y ∈ P ′ for some P ′ ∈ AQ.
By the definition of AQ, P ′δ∗ ∈ Q. Hence yδβ = P ′δ∗β = Qβ∗ = xβ = x′δβ.

Since x′ ∈ P ⊆ P̃ , x′α = P̃α∗. Thus

yα = yδβγ = x′δβγ = x′α = P̃α∗

which implies that y ∈ P̃ , hence ∪AQ ⊆ P̃ . This proves that A refines π(α), as
required.

Theorem 2.7. Let α, β ∈ TSE(X). Then α ∈ TSE(X)βTSE(X) if and only if
there exists a refinement A of π(α) and ϕ : A → π(β) such that ϕ is an injection
and for every P ∈ A, P, Pϕ ⊆ A for some A ∈ X/E.
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Proof. Assume that α ∈ TSE(X)βTSE(X). Then α = δβγ for some δ, γ ∈ TSE(X).
Let A = {∪AQ : Q ∈ π(β) and Q ∩ Xδ 6= ∅} where AQ = {P ∈ π(α) : Pδ∗ ∈
Q}. Then by Lemma 2.6, A is a refinement of π(α). Define ϕ : A → π(β) by
(∪AQ)ϕ = Q. It is clear that ϕ is well-defined. Suppose that (∪AQ)ϕ = (∪AQ′)ϕ.
By the definition of ϕ, Q = Q′. Thus AQ = AQ′ and so ϕ is an injection. Let
∪AQ ∈ A where Q ∈ π(β). Since π(β) refines X/E, Q ⊆ A for some A ∈ X/E.
For each P ∈ AQ, we have Pδ∗ ∈ Q and so Pδ∗ ∈ A. Hence P ⊆ A because
δ ∈ TSE(X). Thus ∪AQ ⊆ A, hence (∪AQ)ϕ = Q ⊆ A.

Conversely, suppose that ϕ : A → π(β) is an injection where A is a refinement
of π(α) and for every P ∈ A, P, Pϕ ⊆ A for some A ∈ X/E. Let x ∈ X.
Then x ∈ P for some P ∈ A, we choose and fix an element x̃ ∈ Pϕ. We define
δ : X → X by xδ = x̃ for all x ∈ X. By assumption, there exists A ∈ X/E such
that P, Pϕ ⊆ A which implies that δ ∈ TSE(X). Since β∗ : π(β) → Xβ is an
injection and by assumption, ϕβ∗ : A → Xβ is an injection. For each x ∈ Aϕβ∗,
there exists a unique Px ∈ A such that x = Pxϕβ∗. We fix x′ ∈ Px. Define
γ : X → X by

xγ =

{
x′α if x ∈ Aϕβ∗;
x otherwise.

Let x ∈ X. If x 6∈ Aϕβ∗, then (x, xγ) = (x, x) ∈ E. If x ∈ Aϕβ∗, then x = Pxϕβ∗
for some Px ∈ A. By Proposition 1.1, there is A ∈ X/E such that Pxϕ ⊆ A. It
follows from assumption that Px ⊆ A. We conclude that x = Pxϕβ∗ ∈ Aβ ⊆ A
by Proposition 1.2. From (x′, x′α) ∈ E and x′ ∈ A, we then have x′α ∈ A. Thus
(x, xγ) = (x, x′α) ∈ E. This shows that γ ∈ TSE(X). We show that α = δβγ.
Let x ∈ X. Then x ∈ P for some P ∈ A. Since x̃β = Pϕβ∗ ⊆ Aϕβ∗, we conclude
that Pϕβ∗ = x̃β = Px̃βϕβ∗. It follows from ϕβ∗ is injective that P = Px̃β . Hence
x, (x̃β)′ ∈ P . Since A is a refinement of π(α), there exists P ′ ∈ π(α) such that
P ⊆ P ′. Thus x, (x̃β)′ ∈ P ′ which implies that xα = (x̃β)′α. It would follow that

xδβγ = x̃βγ = (x̃β)′α = xα.

Therefore, the theorem is completely proved.

Corollary 2.8. Let α, β ∈ TSE(X). Then α ∈ TSE(X)βTSE(X) if and only if
there exists an injection ϕ′ : π(α)→ π(β) such that for every P ∈ π(α), P, Pϕ′ ⊆
A for some A ∈ X/E.

Proof. Assume that α ∈ TSE(X)βTSE(X). By Theorem 2.7 that there exist a
refinement A of π(α) and ϕ : A → π(β) such that ϕ is an injection and for every
P ∈ A, P, Pϕ ⊆ A for some A ∈ X/E. For each P ∈ π(α), we choose and fix
P ′ ∈ A such that P ′ ⊆ P . Define ϕ′ : π(α)→ π(β) by

Pϕ′ = P ′ϕ for all P ∈ π(α).

It is easy to see that ϕ is well-defined. Let P,Q ∈ π(α) be such that Pϕ′ = Qϕ′.
Hence P ′ϕ = Q′ϕ. By ϕ is injective, P ′ = Q′. Since π(α) is a partition of X,
P = Q. Thus ϕ′ is injective. Let P ∈ π(α). We then have P ′, P ′ϕ ⊆ A for some



122 Thai J. Math. (Special Issue, 2018)/ C. Namnak

A ∈ X/E by Theorem 2.7, whence P ∩ A 6= ∅. From Proposition 1.1, we deduce
that P, Pϕ′ ⊆ A, as required.

Corollary 2.9. Let α, β ∈ TSE(X). Then (α, β) ∈ J if and only if there exist
injections ψ : π(α) → π(β) and ψ′ : π(β) → π(α) such that for every P ∈ π(α)
and Q ∈ π(β), P, Pψ ⊆ A and Q,Qψ′ ⊆ A′ for some A,A′ ∈ X/E.

The remaining matter is only to consider the relation D.

Lemma 2.10. Let α, β ∈ TSE(X) and A ∈ X/E. If ϕ : πA(β) → πA(α) is a
bijection, then there exists δA : A→ X satisfies π(δA) = πA(β) and AδA = Aα.

Proof. Assume that ϕ : πA(β) → πA(α) is bijective. Let x ∈ A. By Proposition
1.3, there exists Px ∈ πA(β) such that x ∈ Px. We define δA : A→ X by

xδA = (Pxϕ)α∗ for all x ∈ A.

It is clear that δA is well-defined. We then have ∪πA(β) = A = ∪π(δA) by
Proposition 1.3. Claim that πA(β) = π(δA). From the definition of δA, we note
that for every P ∈ πA(β), PδA = {Pϕα∗}, hence P ⊆ Q for some Q ∈ π(δA). For
each Q ∈ π(δA), QδA∗ = Pϕα∗ for some P ∈ πA(β). Next, to show Q ⊆ P , let x ∈
Q. Then there exists Px ∈ πA(β) such that x ∈ Px. Hence QδA∗ = xδA = Pxϕα∗,
we deduce that Pϕα∗ = Pxϕα∗. Since ϕα∗ is a bijection, P = Px. Hence x ∈ P ,
so Q ⊆ P . Therefore we conclude that πA(β) = π(δA). To show that AδA = Aα,
let x ∈ A. Then x ∈ Px for some Px ∈ πA(β), whence xδA = Pxϕα∗ ∈ Aα. Thus
AδA ⊆ Aα. For the reverse inclusion, let y ∈ A. Since yα ∈ Aα, yα = Pα∗ for
some P ∈ πA(α). Since ϕ is bijective, there exists a unique P ′ ∈ πA(β) such that
P ′ϕ = P . Choose z ∈ P ′, we have that zδA = P ′ϕα∗ = Pα∗ = yα which implies
that yα ∈ AδA. Hence Aα ⊆ AδA as we wished to show.

Theorem 2.11. Let α, β ∈ TSE(X). Then (α, β) ∈ D if and only if for every
A ∈ X/E, there exists a bijection ϕA : πA(β)→ πA(α).

Proof. Suppose that (α, β) ∈ D. Then there exists δ ∈ TSE(X) such that (α, δ) ∈
L and (δ, β) ∈ R. Let A ∈ X/E. For each P ∈ πA(β), we then have P ∈ π(β) and
P ∩A 6= ∅. By Corollary 2.4, we have π(δ) = π(β), so P ∈ π(δ). Since π(δ) refines
X/E and P ∩A 6= ∅, we deduce that P ⊆ A, hence Pδ∗ ∈ Aδ. From Corollary 2.2,
we obtain that Aα = Aδ, that is Pδ∗ ∈ Aα ⊆ Xα. Then there exists QP ∈ π(α)
such that QPα∗ = Pδ∗. Since QPα∗ ∈ A and α ∈ TSE(X), QP ⊆ A. Then
QP ∈ πA(α). Define ϕA : πA(β)→ πA(α) by

PϕA = QP for all P ∈ πA(β).

If Q′ ∈ πA(α) is such that Q′α∗ = Pδ∗, then QP = Q′ because QPα∗ = Q′α∗.
This shows that ϕA is well-defined. Suppose that PϕA = P ′ϕA. Then QP = QP ′ ,
hence Pδ∗ = QPα∗ = QP ′α∗ = P ′δ∗ which implies that P = P ′. Therefore ϕ
is an injection. Claim that ϕA is onto, let Q ∈ πA(α). Then Qα∗ ∈ Aα = Aδ.
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Thus there exists P ∈ π(δ) such that Pδ∗ = Qα∗. Since δ ∈ TSE(X), P ⊆ A. By
π(δ) = π(β), we have P ∈ π(β) and so P ∈ πA(β). Thus PϕA = Q, so we have
the claim. Therefore ϕA is bijective, as required.

Conversely, for every A ∈ X/E, there exists a bijection ϕA : πA(β) → πA(α).
It follows from Lemma 2.10 that there exists δA : A → X corresponding to A ∈
X/E such that πA(β) = π(δA) and AδA = Aα. Thus we define δ : X → X by
δ|A = δA for all A ∈ X/E. Since X/E is a partition of X, δ is well-defined.
We note that for each A ∈ X/E, Aδ = AδA = Aα ⊆ A by α ∈ TSE(X), hence
δ ∈ TSE(X). Finally, we can see that

π(β) =
⋃

A∈X/E

πA(β) =
⋃

A∈X/E

π(δA) =
⋃

A∈X/E

πA(δ) = π(δ),

it follows by Corollary 2.4 that (δ, β) ∈ R. Since Aδ = Aδ|A = AδA = Aα, we
deduce that (α, δ) ∈ L by Corollary 2.2. Therefore (α, β) ∈ L ◦ R = D.

Hence the theorem is completely proved.

3 Regularity for the Self-E-Order Preserving
Transformation Semigroups

Proposition 3.1. The semigroup TSE(X) is a regular semigroup.

Proof. Let α ∈ TSE(X). Then for each x ∈ Xα, there exists Px ∈ π(α) such that
Pxα∗ = x. We choose an element x′ ∈ Px, whence x′α = x for all x ∈ Xα. Define
β : X → X by

xβ =

{
x′ if x ∈ Xα;
x otherwise.

Let x ∈ X. If x 6∈ Xα, then (x, xβ) = (x, x) ∈ E. If x ∈ Xα, then (x, xβ) =
(x, x′) = (x′α, x′) ∈ E. We also have that

xαβα = (xα)βα = (xα)′α = xα.

These show that β ∈ TSE(X) and α = αβα, respectively. Therefore α is a regular
element of TSE(X).

Theorem 3.2. Let α ∈ TSE(X). Then α is left regular if and only if for every
P ∈ π(α), P ∩Xα 6= ∅.

Proof. Assume that α is a left regular element of TSE(X). Then α = βα2 for some
β ∈ TSE(X). Let P ∈ π(α). Then Pα∗ = y for some y ∈ Xα. For each x ∈ P , we
have that xα = y. Hence

y = xα = xβα2 = (xβα)α.

This implies that xβα ∈ yα−1 = P and xβα ∈ Xα. Therefore P ∩Xα 6= ∅.
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Conversely, suppose that P ∩Xα 6= ∅ for all P ∈ π(α). For each x ∈ X, there
exists P ∈ π(α) such that x ∈ P . By assumption, we choose and fix yx ∈ P ∩Xα.
So xα = yxα. Since yx ∈ Xα, we can fix y′x ∈ X such that y′xα = yx. Define
β : X → X by

xβ = y′x for all x ∈ X.

Since π(α) is a partition of X, β is well-defined. To show that β ∈ TSE(X),
let x ∈ X. Since (x, xα), (yx, yxα) ∈ E and E is transitive, (x, yx) ∈ E. Since
(y′x, yx) = (y′x, y

′
xα) ∈ E, it then follows by transitive of E that, (x, xβ) = (x, y′x) ∈

E. Hence β ∈ TSE(X). And

xβα2 = y′xα
2 = (y′xα)α = yxα = xα.

Thus α is a left regular element of TSE(X).

Theorem 3.3. Let α ∈ TSE(X). Then α is right regular if and only if α|Xα is
an injection.

Proof. Assume that α is a right regular element of TSE(X). Then α = α2β for
some β ∈ TSE(X). Let x, y ∈ Xα be such that xα = yα. Since x, y ∈ Xα, x = x′α
and y = y′α for some x′, y′ ∈ X. Hence

x = x′α = x′α2β = (x′α)αβ = (xα)β = (yα)β = (y′α)αβ = y′α2β = y′α = y.

This proves that α|Xα is injective.
For the converse, assume that α|Xα is an injection. We construct β ∈ TSE(X)

such that α = α2β. For any x ∈ Xα2, we choose x′ ∈ Xα such that x = x′α.
Define β : X → X by

xβ =

{
x′ if x ∈ Xα2;
x otherwise.

It is easy to verify that β ∈ TSE(X). Let x ∈ X. Then xα = y for some y ∈ Xα
and yα ∈ Xα2. Then there exists (yα)′ ∈ Xα such that (yα)′α = yα. It follows
by assumption that (yα)′ = y. Thus xα2β = (xα)αβ = (yα)β = (yα)′ = y = xα.
Hence α is a right regular element of TSE(X).

Theorem 3.4. Let α ∈ TSE(X). Then α is completely regular if and only if for
every P ∈ π(α), |P ∩Xα| = 1.

Proof. Suppose that α is a completely regular element of TSE(X). Then α is left
regular and right regular. By Theorem 3.2, P ∩Xα 6= ∅. It follows from Theorem
3.3, |P ∩Xα| = 1.

Conversely, assume that |P ∩Xα| = 1 for all P ∈ π(α). For each P ∈ π(α), by
assumption, there exists a unique xP ∈ P ∩Xα. Since xP ∈ Xα, P ′α∗ = xP for
some P ′ ∈ π(α). Similarly, there is a unique xP ′ ∈ P ′∩Xα and hence xP ′α = xP .
Define β : X → X by

xβ = xP ′ for all x ∈ P and for each P ∈ π(α).
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Then β ∈ TX . To show that β ∈ TSE(X), let x ∈ X. Thus x ∈ P for some P ∈
π(α). By assumption xα = xPα where xP ∈ P ∩Xα, so (x, xPα) = (x, xα) ∈ E.
Since (x, xPα), (xP , xPα) ∈ E, (x, xP ) ∈ E by transitive of E. Then we obtain
that (x, xP ) = (x, xP ′α). Since (xP ′ , xP ′α) ∈ E, it follows that (x, xP ′) ∈ E. We
deduce that (x, xβ) = (x, xP ′) ∈ E. Thus β ∈ TSE(X). Finally, to show that
α = αβα and αβ = βα, let x ∈ X. Hence xα = xP for some xP ∈ P ∩Xα where
P ∈ π(α). Then xαβα = xPβα = xP ′α = xP = xα. Moreover, we get x ∈ P ′
where P ′ ∈ π(α) and P ′α∗ = xP . Then there exists a unique xP ′′ ∈ P ′′∩Xα where
P ′′ ∈ π(α) and xP ′′α = xP ′ . By the definition of β, we have xβ = xP ′′ . Also, we
have that xαβ = xPβ = xP ′ == xP ′′α = xβα. These mean that α = αβα and
αβ = βα. Therefore α is completely regular of TSE(X).
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