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1 Introduction

In theoretical computer science, automata and languages theory are the very
important role in this field. The study of mathematical properties of such au-
tomata is automata theory. Tree transducers are generalization of automata
and tree transformations defined by hypersubstitutions can be realized by tree
transducers. The composition of tree transformations is used in computer sci-
ence to translate a formal language into another one, step by step, with some
language in between. Languages are sets of words. What is the word? Let
Xn := {x1, x2, . . . , xn} be an n-elements set of letters. We think of Xn as an
alphabet. Then a word over the alphabet Xn is any letter or any finite string of
letters. We can write this definition inductively:

(i) Each letter xi ∈ Xn is a word over Xn.

(ii) If t is a word over Xn and xj is in Xn, then both xjt and txj are words over
Xn.
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The next, we will give this language in the general setting. Let n ∈ N and
Xn := {x1, x2, . . . , xn} be an n-elements set. The set Xn is called an alphabet
and its elements are called variables. We also need a set {fi | i ∈ I} of operation
symbols of type τ , indexed by the set I. The set Xn and {fi | i ∈ I} have to be
disjoint. An n-ary term of type τ is defined inductively by

(i) Every xi ∈ Xn is an n-ary term of type τ .

(ii) If t1, t2, . . . , tni
are n-ary terms of type τ , then fi(t1, t2, . . . , tni

) is an n-ary
term of type τ .

We denote the smallest set of which contains x1, . . . , xn and is closed under finite
number of applications of (ii) by Wτ (Xn) and let Wτ (X) :=

⋃∞
n=1Wτ (Xn) be the

set of all terms of type τ . The useful of terms not only allows us to use concepts
and results from semigroup theory to study algebraic structures properties of hy-
persubstitutions but also use to study especially automata and languages in com-
puter science theory. Sequences of tree transformations offer a convenient method
to describe various manipilations that are commonly performed by compilers and
language-based editors. If the considered tree transformations are described by
certain mappings defined on the set of all terms, then the sequences of tree trans-
formations can be described by products of such mappings. We can consider tree
transformation by using of hypersubstitutions and generalized hypersubstitutions.
This allows us to describe algebraic properties of set of tree transformations by
algebraic properties of the set of all generalized hypersubstitutions.

In 2000, S. Leeratanavalee and K. Denecke [1] generalized the concepts of
hypersubstitutions, hyperidentities to generalized hypersubstitutions, strong hy-
peridentities and studied its algebraic properties. The set of all generalized hy-
persubstitutions of type τ forms a monoid. In 2014, W. Wonpinit and S. Leer-
atanavalee [2] determined all maximal idempotent submonoids of HypG(2). In this
work, we determine all maximal submonoids of special regular classes of HypG(2).

2 Preliminaries

Our basic concept is the concept of a generalized hypersubstitution. A gener-
alized hypersubstitution of type τ is a mapping σ from the set {fi | i ∈ I} into the
set Wτ (X) which does not necessarily preserve the arity. The set of all generalized
hypersubstitutions of type τ is denoted by HypG(τ). To define a binary operation
on HypG(τ), we need the concept of a generalized superposition of terms which is
a mapping Sm : Wτ (X)m+1 −→Wτ (X) defined by the following steps:

(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj ,

(ii) if t = xj ,m < j ∈ N, then Sm(xj , t1, . . . , tm) := xj ,

(iii) if t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).
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Then the generalized hypersubstitution σ can be extended to a mapping σ̂ :
Wτ (X) −→Wτ (X) by the following steps:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi where σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then, the binary operation of two generalized hypersubstitutions σ1, σ2 is
defined by σ1 ◦G σ2 := σ̂1 ◦σ2 where ◦ denotes the usual composition of mappings.
It turns out that HypG(τ) is a monoid under ◦G and the identity element σid
which σid(fi) = fi(x1, . . . , xni

), see [1].

Proposition 2.1. [1] For arbitrary t, t1, t2, . . . , tn ∈Wτ (X) and for any general-
ized hypersubstitution σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

3 Main Results

Let S be any semigroup. Recall that an element a in a semigroup S is called
regular if there exists b ∈ S such that a = aba. A semigroup S is called regular
if every its element is regular. An element a ∈ S is called idempotent if aa = a.
We denote the set of all idempotent elements of a semigroup S by E(S). It’s
easy to see that all idempotent element is regular element. We will introduce
definition of some special regular classes of regular semigroup. A semigroup S is
called coregular if for each a ∈ S, a = aba = bab for some b ∈ S; S is anti-regular if
aba = b and bab = a for some b ∈ S; S is completely-regular if a = aba and ab = ba
for some b ∈ S; S is left (right) regular if ba2 = a(a2b = a) for some b ∈ S; and S
is intra-regular if a ∈ Sa2S. Throughout this paper, let f be a binary operation
symbol of type τ = (2). By σt we denote a generalized hypersubstitution which
maps f to the term t ∈ W(2)(X). For t ∈ W(2)(X) we introduce the following
notation :

(i) leftmost(t) := the first variable (from the left) occurring in t,

(ii) rightmost(t) := the last variable occurring in t,

(iii) var(t) := the set of all variables occurring in t.

Let σt ∈ HypG(2), we denote
R1 := {σt|t = f(x1, t

′) where t′ ∈ W(2)(X) and x2 /∈ var(t′)}, R2 := {σt|t =
f(t′, x2) where t′ ∈ W(2)(X) and x1 /∈ var(t′)}, R3 := {σt|t ∈ {x1, x2, f(x1, x2)}}
and R4 := {σt|var(t) ∩ {x1, x2} = ∅}.

In 2010, W. Puninagool and S. Leeratanavalee [3] proved that :

4⋃
i=1

Ri =

E(HypG(2)).
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Let σt ∈ HypG(2), we denote
R′

1 := {σt|t = f(x1, t
′) where t′ ∈ W(2)(X), x2 /∈ var(t′) and rightmost(t′) 6= x1}

and R′
2 := {σt|t = f(t′, x2) where t′ ∈ W(2)(X), x1 /∈ var(t′) and leftmost(t′) 6=

x2}.
And denote (MI)HypG(2) = R′

1∪R′
2∪R3∪R4, (MI1)HypG(2) = R1∪R3∪R4,

(MI2)HypG(2) = R2 ∪R3 ∪R4 and (MSR)HypG(2) = {σf(x1,x1), σf(x2,x2),
σf(x2,x1)} ∪R3 ∪R4.

In 2014, W. Wonpinit and S. Leeratanavalee [2] determined that the set
(MI)HypG(2), (MI1)HypG(2) and (MI2)HypG(2) are all of maximal idempo-
tent submonoids of HypG(2). In 2014, W. Wongpinit and S. Leeratanavalee
[4] proved that E(HypG(2))∪{σf(x2,x1)} is the set of all coregular elements,
anti-regular elements, completely-regular elements, left regular elements,
right regular elements, and intra-regular elements in HypG(2). Let S be
any semigroup. A nonempty subset T of S is called a subsemigroup of S
if T 2 ⊆ T . A subsemigroup T of S is called a regular subsemigroup if,
for any element a ∈ T , there exists b ∈ T such that a = aba. The next
results describe the great important relationship between special regular
subsemigroups of HypG(2).

Lemma 3.1. [4] Let R be a subsemigroups of HypG(2). Then the following
conditions are equivalent:

(a) R is coregular,

(b) R is anti-regular,

(c) R is completely-regular,

(d) R is left regular,

(e) R is right regular,

(f) R is intra-regular.

Using these facts and for convenient, the classes coregular, anti-
regular, completely regular, left regular, right regular, and intra-regular
are called the special regular classes of HypG(2). So we are able to prove
the following propositions of special regular on the monoid HypG(2).

Proposition 3.2. (MI)HypG(2), (MI1)HypG(2) and (MI2)HypG(2) are the
maximal submonoids of the special regular classes of HypG(2).
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Proof. Since the set (MI)HypG(2), (MI1)HypG(2) and (MI2)HypG(2) are the
set of idempotent submonoids of HypG(2), we obtain that they are the
submonoids of the special regular classes of HypG(2). We will show that
(MI)HypG(2), (MI1)HypG(2) and (MI2)HypG(2) are the maximal submonoids.

Case (MI)HypG(2): Let K be a proper submonoid of HypG(2) such that
(MI)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Suppose that σf(x2,x1) ∈ K,
choose t = f(x1, t

′) where t′ ∈W(2)(X) such that x1, x2 /∈ var(t′). Consider

(σt ◦G σf(x2,x1))(f) = σ̂t[f(x2, x1)]

= S2(f(x1, t
′), x2, x1)

= f(x2, t
′) where x1, x2 /∈ var(t′).

Then σt ◦G σs /∈ K which is a contradiction. So σf(x2,x1) /∈ K. There-
fore (MI)HypG(2) = K is a maximal submonoids of coregular, anti-regular,
completely-regular, left regular, right regular, and intra-regular ofHypG(2).

Case (MI1)HypG(2): Let K be a proper submonoid of HypG(2) such
that (MI1)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Suppose that σf(x2,x1) ∈
K, choose t = f(x1, t

′) where t′ ∈ W(2)(X) such that x1, x2 /∈ var(t′).
Consider

(σt ◦G σf(x2,x1))(f) = σ̂t[f(x2, x1)]

= S2(f(x1, t
′), x2, x1)

= f(x2, t
′) where x1, x2 /∈ var(t′).

Then σt ◦G σs /∈ K which is a contradiction. So σf(x2,x1) /∈ K. Therefore
(MI1)HypG(2) = K is a maximal submonoids of coregular, anti-regular,
completely-regular, left regular, right regular, and intra-regular ofHypG(2).

Case (MI2)HypG(2) can be proved similarly as Case (MI1)HypG(2).

Corollary 3.3. Every maximal idempotent submonoids of HypG(2) is the
maximal submonoids of the special regular classes of HypG(2).

Next, we will show that the converse of Corollary 3.3 is not true in
general.

Proposition 3.4. (MSR)HypG(2) is a maximal submonoid of the special
regular classes of HypG(2).

Proof. We will show that the set (MSR)HypG(2) is a submonoid of HypG(2).
Since σid ∈ (MSR)HypG(2), {σf(x1,x1), σf(x2,x2), σf(x2,x1)}(MSR)HypG(2)

⊆ (MSR)HypG(2) and (R3 ∪ R4)(MSR)HypG(2) ⊆ (MSR)HypG(2), we have
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that (MSR)2HypG(2) ⊆ (MSR)HypG(2). So (MSR)HypG(2) is a submonoid

of HypG(2). We will show that (MSR)HypG(2) is a maximal submonoid
of HypG(2). Let K be a proper submonoid of the special regular classes
of HypG(2) such that (MSR)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. If
σt ∈ R2 such that t = f(t′, x2) 6= f(x2, x2) where x1 /∈ var(t′). Consider
(σf(x2,x1) ◦G σt)(f) = σ̂f(x2,x1)[f(t′, x2)] = S2(f(x2, x1), σ̂f(x2,x1)[t

′], x2) =
f(x2, σ̂f(x2,x1)[t

′]) 6= f(x2, x2). So σf(x2,x1)◦Gσt is not closed which is a con-
tradiction. so t = f(x2, x2). If σt ∈ R1 such that t = f(x1, t

′) 6= f(x1, x1)
where x2 /∈ var(t′). Consider (σf(x2,x1) ◦G σt)(f) = σ̂f(x2,x1)[f(x1, t

′)] =
S2(f(x2, x1), x1, σ̂f(x2,x1)[t

′]) = f(σ̂f(x2,x1)[t
′], x1) 6= f(x1, x1). We obtain

σf(x2,x1) ◦G σt is not closed which is a contradiction. Hence t = f(x1, x1).
Therefore, K = (MSR)HypG(2).

Theorem 3.5. The set (MSR)HypG(2), (MI)HypG(2), (MI1)HypG(2) and
(MI2)HypG(2) are all maximal submonoids of the special regular classes of
HypG(2).

Proof. Let M be any maximal submonoid of the special regular classes of
HypG(2). We consider into two cases.

Case 1: σf(x2,x1) /∈M . Then M is a maximal idempotent submonoid of
HypG(2). By using Corollay 3.3 we have M ∈ {(MI)HypG(2), (MI1)HypG(2),
(MI2)HypG(2)}.

Case 2: σf(x2,x1) ∈ M . Let σt ∈ M \ {σf(x2,x1)} ∪ R3 ∪ R4. If σt ∈ R2

such that t = f(t′, x2) where x1 /∈ var(t′). Consider

(σf(x2,x1) ◦G σt)(f) = σ̂f(x2,x1)[f(t′, x2)]

= S2(f(x2, x1), σ̂f(x2,x1)[t
′], x2)

= f(x2, σ̂f(x2,x1)[t
′]) ∈M.

So t = f(x2, x2). If σt ∈ R1 such that t = f(x1, t
′) where x2 /∈ var(t′).

Consider

(σf(x2,x1) ◦G σt)(f) = σ̂f(x2,x1)[f(x1, t
′)]

= S2(f(x2, x1), x1, σ̂f(x2,x1)[t
′])

= f(σ̂f(x2,x1)[t
′], x1) ∈M.

So that t = f(x1, x1). Therefore, σt ∈ (MSR)HypG(2) and then M ⊆
(MSR)HypG(2). Since M is a maximal submonoid of coregular, anti-regular,
completely-regular, left regular, right regular, and intra-regular ofHypG(2),
we obtain that M = (MSR)HypG(2). By Case 1 and Case 2, we get that
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(MSR)HypG(2), (MI)HypG(2), (MI1)HypG(2) and (MI2)HypG(2) are all maxi-
mal submonoids of the special regular classes of HypG(2).
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