Thai Journal of Mathematics : 97–108 Special Issue: Annual Meeting in Mathematics 2017

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Natural Partial Order on the Semigroups of Partial Isometries of a Finite Chain

Chaiwat Namnak, Ekkachai Laysirikul¹ and Nares Sawatraksa

Department of Mathematics, Faculty of Science, Naresuan University Phitsanulok 65000, Thailand e-mail: chaiwatn@nu.ac.th (C. Namnak) ekkachail@nu.ac.th (E. Laysirikul) naress58@nu.ac.th (N. Sawatraksa)

Abstract: Let I_n denote the 1-1 partial transformation semigroup on a set $\{1, 2, \ldots, n\}$ and let $DP_n = \{\alpha \in I_n : \forall x, y \in Dom \alpha, |x\alpha - y\alpha| = |x - y|\}$ and $ODP_n = \{\alpha \in DP_n : \forall x, y \in Dom \alpha, x \leq y \Rightarrow x\alpha \leq y\alpha\}$. Then DP_n and ODP_n are subsemigroups of I_n . The purpose of this research, we study the natural partial orders on DP_n and ODP_n and characterize when two elements of DP_n and ODP_n are related under this partial order. Moreover, we give a necessary and sufficient conditions for elements in DP_n and ODP_n to be maximal or minimal elements.

Keywords : natural partial order; partial isometry; transformation semigroup. **2010 Mathematics Subject Classification :** 20M20.

1 Introduction

Let X be a set. A partial transformation on X is a map from a subset of X into X. The empty transformation is the partial transformation 0 with empty domain. Let I_X be the set of all 1-1 partial transformations on X. For $\alpha \in I_X$, let $Dom \alpha$ and $Im \alpha$ denote respectively the domain and the image of α . Then I_X becomes a semigroup under the composition of maps, that is, for $\alpha, \beta \in I_X$,

 $Dom \alpha\beta = \{x \in Dom \alpha : x\alpha \in Dom \beta\}$ and

Copyright 2018 by the Mathematical Association of Thailand. All rights reserved.

¹ Corresponding author.

$$x(\alpha\beta) = (x\alpha)\beta$$
 for all $x \in Dom \alpha\beta$.

We call I_X the 1-1 partial transformation semigroup on X. This was introduced in [1] that I_X is an inverse semigroup (that is, for every $\alpha \in I_X$ there exists a unique $\beta \in I_X$ such that $\alpha = \alpha \beta \alpha$ and $\beta = \beta \alpha \beta$). The study of inverse semigroups has many features in common with the theory of groups, and one of the earliest results was a representation theorem to effect that every inverse semigroup has a faithful representation as an inverse semigroup of 1 - 1 partial mappings as the Vagner-Preston Theorem in [2].

Given a positive integer n, let $[n] = \{1, 2, ..., n\}$ ordered in the standard way. Denote I_n the 1-1 partial transformation semigroup on [n]. We call $\alpha \in I_n$ is order-preserving (order-reversing) if for every $x, y \in Dom \alpha, x \leq y$ implies $x\alpha \leq y\alpha \ (x\alpha \geq y\alpha)$ and α is isometry if for every $x, y \in Dom \alpha, |x\alpha-y\alpha| = |x-y|$. Kehinde and Umar [3] have introduced families of subsemigroups of I_n defined as follow:

$$DP_n = \{ \alpha \in I_n : \forall x, y \in Dom \, \alpha, |x\alpha - y\alpha| = |x - y| \}$$

and

$$ODP_n = \{ \alpha \in DP_n : \forall x, y \in Dom \, \alpha, x \le y \text{ implies } x\alpha \le y\alpha \}.$$

Then DP_n and ODP_n are subsemigroups of I_n which are called the semigroup of partial isometries of an *n*-chain and the semigroup of partial order-preserving isometries of an *n*-chain, respectively. Green's relations on DP_n and ODP_n have been investigated by Kehinde and Umar [3] and the order of the set of idempotent elements of DP_n has been discussed by Kehinde and Adeshola [4].

As one can easily see, the following lemma holds:

Lemma 1.1. [3] DP_n and ODP_n are inverse semigroups.

In 1952, Vagner [2] defined a partial order relation on an inverse semigroup S in a natural way as follows: for $a, b \in S$,

$$a \leq b$$
 if and only if $a = be$ for some $e \in E(S)$

where $E(S) = \{x \in S : x^2 = x\}$. Of course, this relation is indeed a partial order which is called the natural partial order on an inverse semigroup S. Also, the order relation \leq is in fact compatible with multiplication of S, in the sense that

$$a \leq b$$
 and $c \in S$ imply that $ac \leq bc$ and $ca \leq cb$.

It was proved very useful in the theory of inverse semigroups.

The purpose of this paper, we discuss the natural partial orders on both inverse semigroups, namely, DP_n and ODP_n and characterize when two elements of DP_n and ODP_n are related under this partial order. Also, their maximal and minimal elements of each semigroup are described.

Throughout of this paper, let $[n] = \{1, 2, ..., n\}$ ordered in the standard way and for any $x, y \in [n]$ with $x \leq y$, the set $[x, y] = \{z \in [n] : x \leq z \leq y\}$ is called a *closed interval* of [n].

2 Main Results

In this section, we present the characterization of the natural partial orders on DP_n and ODP_n , respectively. Let S be any one of I_n , DP_n and ODP_n . Since S is an inverse semigroup, the natural partial order on S are defined by

 $\alpha \leq \beta$ if and only if $\alpha = \beta \mu$ for some $\mu \in E(S)$

for all $\alpha, \beta \in S$.

We first need the following result is quoted.

Theorem 2.1. [5] Let $\alpha \in I_n$. Then α is an idempotent if and only if $Im \alpha \subseteq Dom \alpha$ and the restriction $\alpha|_{Im \alpha}$ is the identity transformation on $Im \alpha$.

The following theorem investigates the condition when $\alpha \leq \beta$ for $\alpha, \beta \in S$ where S is any one of I_n , DP_n and ODP_n .

Theorem 2.2. Let S be any one of I_n , DP_n and ODP_n . Then $\alpha \leq \beta$ on S if and only if $\alpha \subseteq \beta$.

Proof. Suppose that $\alpha \leq \beta$ on S. Then there exists $\mu \in E(S)$ such that $\alpha = \beta \mu$. Thus $Im \alpha \subseteq Im \mu$. To verify that $\alpha \subseteq \beta$, let $(x, y) \in \alpha$. Then $y = x\alpha \in Im \alpha \subseteq Im \mu$. Since $\mu \in E(S)$, we deduce that $y\mu = y$ by Theorem 2.1. Hence $y\mu = y = x\alpha = x\beta\mu$. Since μ is 1 - 1, it follows that $x\beta = y$ and hence $(x, y) \in \beta$ as required.

Conversely, assume that $\alpha \subseteq \beta$. Then $x\alpha = x\beta$ for all $x \in Dom \alpha$. Define $\mu : Im \alpha \to [n]$ by $x\mu = x$ for all $x \in Im \alpha$. Obviously, $\mu \in S$ and μ is an idempotent by Theorem 2.1. By assumption and β is 1-1, we obtain that

 $Dom(\beta\mu) = (Im \beta \cap Dom \mu)\beta^{-1} = (Im \beta \cap Im \alpha)\beta^{-1} = Dom \alpha.$

Let $x \in Dom \alpha$. Then $x\alpha \in Im \alpha = Dom \mu$ and $x\alpha = x\beta$. Thus $x\alpha = x\alpha\mu = x\beta\mu$. This proves that $\alpha = \beta\mu$ and consequently $\alpha \leq \beta$.

Next, we investigate the condition under which an element of DP_n and ODP_n to be maximal and minimal with respect to the natural partial order. For convenience, we quote the following result.

Lemma 2.3. [2] Let $\alpha \in DP_n$. Then α is either order-preserving or orderreversing.

By the above lemma, we get the following results immediately.

Lemma 2.4. Let $\alpha \in DP_n$ and $x, y \in Im \alpha$.

- 1. If α is order-preserving and x < y, then $x\alpha^{-1} < y\alpha^{-1}$.
- 2. If α is order-reversing and x < y, then $x\alpha^{-1} > y\alpha^{-1}$.

Lemma 2.5. Let $\alpha \in DP_n$. Then either

 $(\min(Dom \alpha))\alpha = \min(Im \alpha)$ and $(\max(Dom \alpha))\alpha = \max(Im \alpha)$ or

 $(\min(Dom \alpha))\alpha = \max(Im \alpha) \text{ and } (\max(Dom \alpha))\alpha = \min(Im \alpha).$

As above result motivates the following theorem.

Proposition 2.6. Let $\alpha \in DP_n$. If $|Dom \alpha| = n$, then α is either the identity mapping or $x\alpha = n + 1 - x$ for all $x \in Dom \alpha$.

Proof. Suppose that $|Dom \alpha| = n$. Then $Im \alpha = Dom \alpha = [n]$. By Lemma 2.5, we deduce that either $n\alpha = n$ or $n\alpha = 1$.

Case 1. $n\alpha = 1$. Let $x \in [n]$. Since α is isometry, we have that

 $x\alpha - n\alpha = |x\alpha - n\alpha| = |x - n| = n - x.$

Therefore $x\alpha = n - x + n\alpha = n - x + 1$ for all $x \in [n]$.

Case 2. $n\alpha = n$. Let $x \in [n]$. Since α is isometry, we obtain that

$$|n\alpha - x\alpha| = |n\alpha - x\alpha| = |n - x| = n - x = n\alpha - x$$

Therefore $x\alpha = x$ for all $x \in [n]$.

Before we state our main result, it pays to prove the following lemma.

Lemma 2.7. Let $\alpha \in DP_n$. If $Dom \alpha$ is a closed interval, then $Im \alpha$ is also closed.

Proof. Suppose that $Dom \alpha$ is a closed interval of [n]. Then $Dom \alpha = [k, k+t]$ for some $k \in [n]$ and $0 \leq t \leq n-k$. If t = 0, then $Im \alpha$ is closed. Suppose that t > 0. Since α is 1-1, we have $|Im \alpha| = |Dom \alpha| = t+1$. By Lemma 2.3, α is order-preserving or α is order-reversing. If α is order-preserving, then $k\alpha < (k+1)\alpha < \ldots < (k+t)\alpha$. Since $\alpha \in DP_n$, for each $i \in [1, t]$,

$$(k+i)\alpha - k\alpha = |(k+i)\alpha - k\alpha| = |(k+i) - k| = i.$$

Thus $(k+i)\alpha = k\alpha + i$ for all $i \in [1, t]$. Therefore, $Im \alpha = [k\alpha, k\alpha + t]$ as required. Similarly, we can show that $Im \alpha = [(k+t)\alpha, (k+t)\alpha + t]$ by using the fact that α is order-reversing.

Now coming back to our purpose.

Theorem 2.8. Let $\alpha \in DP_n$. If $|Dom \alpha| = n$, then α is maximal.

Proof. Suppose that $|Dom \alpha| = n$. Then $Dom \alpha = [n]$. Let $\beta \in DP_n$ be such that $\alpha \leq \beta$. By Theorem 2.2, we have that $\alpha \subseteq \beta$ and hence $Dom \beta = [n]$. By assumption and α is 1-1, we deduce that $\alpha = \beta$. Hence α is a maximal element of DP_n as desired.

100

Theorem 2.9. Let $\alpha \in DP_n$ and $|Dom \alpha| < n$. Then α is maximal if and only if $Dom \alpha$ is closed and one of the following occurs:

- 1. $1 \in Dom \alpha, 1 \in Im \alpha \text{ and } 1\alpha \neq 1.$
- 2. $1 \in Dom \alpha, n \in Im \alpha \text{ and } 1\alpha \neq n.$
- 3. $n \in Dom \alpha$, $1 \in Im \alpha$ and $n\alpha \neq 1$.
- 4. $n \in Dom \alpha, n \in Im \alpha \text{ and } n\alpha \neq n$.

Proof. Assume that α is a maximal element in DP_n . Suppose that $Dom \alpha$ is not closed. Then there exists $a \in [\min(Dom \alpha), \max(Dom \alpha)] \setminus Dom \alpha$. Without loss of generality, we may assume that α is order-preserving.

Let $k = \max(Dom \alpha) - a$. By Lemma 2.5, we have that

$$k < \max(Dom \alpha) - \min(Dom \alpha)$$

= $|\max(Dom \alpha) - \min(Dom \alpha)|$
= $|(\max(Dom \alpha))\alpha - (\min(Dom \alpha))\alpha|$
= $(\max(Dom \alpha))\alpha - (\min(Dom \alpha))\alpha$
= $(\max(Dom \alpha))\alpha - \min(Im \alpha).$

Hence $\min(Im \alpha) < (\max(Dom \alpha))\alpha - k < \max(Im \alpha)$. Let $b = (\max(Dom \alpha))\alpha - k$. Then $b \in [\min(Im \alpha), \max(Im \alpha)]$ and

$$|\max(Dom \alpha) - a| = |(\max(Dom \alpha))\alpha - b|.$$

To show that $b \notin Im \alpha$, suppose not. Then there exists $x \in Dom \alpha$ such that $x\alpha = b$. Since $\alpha \in DP_n$, we have that

$$\max(Dom \alpha) - x = |\max(Dom \alpha) - x|$$

= $|(\max(Dom \alpha))\alpha - b|$
= $|\max(Dom \alpha) - a| = \max(Dom \alpha) - a.$

We infer that x = a, a contradiction. Hence $b \notin Im \alpha$.

Define $\beta : Dom \alpha \cup \{a\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ b & \text{if } x = a. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$. This is a contradiction since α is maximal. Hence $Dom \alpha$ is a closed subset of [n]. Similarly, we can prove that the domain of an order reversing mapping is a closed inteval of [n].

If $1, n \in Dom \alpha$, then $Dom \alpha = [n]$ which is a contradiction. Hence $1 \notin Dom \alpha$ or $n \notin Dom \alpha$. We will verify that either $1 \in Dom \alpha$ or $n \in Dom \alpha$.

Suppose that 1, $n \notin Dom \alpha$. Since $\alpha \in DP_n$, we have that 1 and n are not all elements in $Im \alpha$.

Case 1. $1 \notin Im \alpha$ and $n \in Im \alpha$.

Subcase 1.1. $(\max(Dom \alpha))\alpha = n$. Define $\beta : Dom \alpha \cup \{1\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ n - (\max(Dom \, \alpha) - 1) & \text{if } x = 1. \end{cases}$$

Since $1 \notin Dom \alpha$, we obtain that $n - (\max(Dom \alpha) - 1) \notin Im \alpha$. For each $x \in Dom \alpha$, we deduce $x\alpha - n = x - \max(Dom \alpha)$. Hence $|x\beta - 1\beta| = |x - 1|$ for all $x \in Dom \alpha$. Then $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Subcase 1.2. $(\min(Dom \alpha))\alpha = n$. Define $\beta : Dom \alpha \cup \{n\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ \min(Dom \, \alpha) & \text{if } x = n. \end{cases}$$

Since $n \notin Dom \alpha$, we then have $\min(Dom \alpha) \notin Im \alpha$. Each $x \in Dom \alpha$, we get $n - x\alpha = x - \min(Dom \alpha)$. Then we can show that $|x\beta - n\beta| = |x - n|$ for all $x \in Dom \alpha$, hence $\beta \in DP_n$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Case 2. $1 \in Im \alpha$ and $n \notin Im \alpha$.

Subcase 2.1. $(\max(Dom \alpha))\alpha = 1$. Define $\beta : Dom \alpha \cup \{1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha \\ \max(Dom \, \alpha) & \text{if } x = 1. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Subcase 2.2. $(\min(Dom \alpha))\alpha = 1$. Define $\beta : Dom \alpha \cup \{n\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ n - \min(Dom \, \alpha) + 1 & \text{if } x = n. \end{cases}$$

Similarly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Case 3. $1 \notin Im \alpha$ and $n \notin Im \alpha$. Then $\min(Im \alpha) - 1 \ge 1$ and $\max(Im \alpha) + 1 \le n$.

Subcase 3.1. $(\max(Dom \alpha))\alpha = \max(Im \alpha)$. Since $n \notin Dom \alpha$, we have $\max(Dom \alpha) + 1 \leq n$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ (\max(Dom \, \alpha))\alpha + 1 & \text{if } x = \max(Dom \, \alpha) + 1. \end{cases}$$

Similarly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Subcase 3.2. $(\max(Dom \alpha))\alpha = \min(Im \alpha)$. We note that $\max(Dom \alpha) + 1 \le n$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \,\alpha, \\ (\max(Dom \,\alpha))\alpha - 1 & \text{if } x = \max(Dom \,\alpha) + 1 \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Hence, either $1 \in Dom \alpha$ or $n \in Dom \alpha$.

Assume that $1 \in Dom \alpha$ but $n \notin Dom \alpha$. Since $\alpha \in DP_n$, we obtain that $1 \notin Im \alpha$ or $n \notin Im \alpha$.

Suppose that $1, n \notin Im \alpha$. Since $n \notin Dom \alpha$, it follows that $\max(Dom \alpha) + 1 \leq n$. By Lemma 2.5, we obtain that either $1\alpha = \min(Im \alpha)$ or $1\alpha = \max(Im \alpha)$.

Case 1. $1\alpha = \min(Im \alpha)$. Since $n \notin Im \alpha$, we have that $(\max(Dom \alpha))\alpha + 1 \leq n$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ (\max(Dom \, \alpha))\alpha + 1 & \text{if } x = \max(Dom \, \alpha) + 1 \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Case 2. $1\alpha = \max(Im \alpha)$. Since $1 \notin Im \alpha$, we have that $(\max(Dom \alpha))\alpha - 1 \ge 1$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \,\alpha, \\ (\max(Dom \,\alpha))\alpha - 1 & \text{if } x = \max(Dom \,\alpha) + 1 \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Hence, either $1 \in Im \alpha$ or $n \in Im \alpha$.

By using the similar proof as above for $n \in Dom \alpha$ but $1 \notin Dom \alpha$, we obtain that either $1 \in Im \alpha$ or $n \in Im \alpha$. Next, the proof falls into four cases as follow.

Case 1. $1 \in Dom \alpha$ and $1 \in Im \alpha$. Suppose that $1\alpha = 1$. It follows that $Dom \alpha = Im \alpha$. Since $|Dom \alpha| < n$, there exists $a \in [n]$ such that $a \notin Dom \alpha = Im \alpha$.

Define $\beta : Dom \alpha \cup \{a\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ a & \text{if } x = a. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $1\alpha \neq 1$.

Case 2. $1 \in Dom \alpha$ and $n \in Im \alpha$. Suppose that $1\alpha = n$. Since $|Dom \alpha| < n$, there exists $a \in [n]$ and $a \notin Dom \alpha$. Let b = n - a + 1. Then $b \ge 1$ and $|1\alpha - b| = |n - (n - a + 1)| = |1 - a|$. To show that $b \notin Im \alpha$, suppose that

 $b \in Im \alpha$. Then there exists $x \in Dom \alpha$ such that $x\alpha = b$. Since $\alpha \in DP_n$, we have that

$$x - 1 = |x - 1| = |x\alpha - 1\alpha| = |b - 1\alpha| = |1 - a| = a - 1.$$

Therefore x = a which is a contradiction. Hence $b \notin Im \alpha$.

Define $\beta : Dom \alpha \cup \{a\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ b & \text{if } x = a. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $1\alpha \neq n$.

Case 3. $n \in Dom \alpha$ and $1 \in Im \alpha$. Suppose that $n\alpha = 1$. Since $|Dom \alpha| < n$, there exists $a \in [n]$ and $a \notin Dom \alpha$. Let b = n - a + 1. Then $b \ge 1$ and $|n\alpha - b| = |1 - (n - a + 1)| = |a - n|$. To show that $b \notin Im \alpha$, suppose that $b \in Im \alpha$. Then there exists $x \in Dom \alpha$ such that $x\alpha = b$. Since $\alpha \in DP_n$, we have

$$n - x = |n - x| = |n\alpha - x\alpha| = |n\alpha - b| = |a - n| = n - a.$$

Therefore x = a which is a contradiction. Hence $b \notin Im \alpha$. Define $\beta : Dom \alpha \cup \{a\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \\ b & \text{if } x = a. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $n\alpha \neq 1$.

 α ,

Case 4. $n \in Dom \alpha$ and $n \in Im \alpha$. Suppose that $n\alpha = n$. Then $Dom \alpha = Im \alpha$. Since $|Dom \alpha| < n$, there exists $a \in [n]$ such that $a \notin Dom \alpha = Im \alpha$.

Define $\beta : Dom \alpha \cup \{a\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ a & \text{if } x = a. \end{cases}$$

Clearly, $\beta \in DP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $n\alpha \neq n$.

Conversely, suppose that the converse conditions hold and $\alpha \leq \beta$ for some $\beta \in DP_n$. Then $\alpha \subseteq \beta$. Thus $x\alpha = x\beta$ for all $x \in Dom \alpha$. To show that $\alpha = \beta$, suppose not. Then there exists $(x, y) \in \beta \setminus \alpha$ and hence $x\beta = y$.

Case 1. Suppose that $1 \in Dom \alpha$. Since $Dom \alpha$ is closed and $|Dom \alpha| < n$, we have $n \notin Dom \alpha$. Then there exists $k \in [1, n - 1]$ such that $Dom \alpha = [1, k]$. This implies that $x \notin [1, k]$ via $\alpha \subseteq \beta$. Then $k < x \leq n$.

Subcase 1.1. $1 \in Im \alpha$ and $1\alpha \neq 1$. Since $\alpha \in DP_n$ and $Dom \alpha$ is closed, by Lemma 2.7, we get that $Im \alpha$ is also closed. Note that $1 \in Im \alpha$ and

 $Dom \alpha = [1, k]$, we obtain that $Im \alpha = [1, k]$. By Lemma 2.5, we have that $1\alpha = k$ and $k\alpha = 1$. Since $\beta \in DP_n$, we have

$$x - k = |x - k| = |x\beta - k\beta| = |y - 1| = y - 1.$$

Since β is injective and $\alpha \subseteq \beta$, we obtain that $k < y \leq n$, so that

$$x - 1 = |x - 1| = |x\beta - 1\beta| = |y - k| = y - k.$$

This implies that k = x - y + 1 = y - x + 1. Thus x = y and so y - 1 = y - k. Therefore k = 1 which leads to a contradiction.

Subcase 1.2. $n \in Im \alpha$ and $1\alpha \neq n$. Since $\alpha \in DP_n$ and $Dom \alpha$ is closed, by Lemma 2.7, we get that $Im \alpha$ is also closed. Note that $n \in Im \alpha$ and $Dom \alpha = [1, k]$, we obtain that $Im \alpha = [n - k + 1, n]$. By Lemma 2.5, we have that $1\alpha = n - k + 1$ or $1\alpha = n$. Thus $1\alpha = n - k + 1$ and $k\alpha = n$. Since $\beta \in DP_n$, we have

$$|x - k| = |x - k| = |x\beta - k\beta| = |y - n| = n - y.$$

Since $\alpha \subseteq \beta$ and β is injective, we get that $y \notin Im \alpha$, that is $1 \leq y < n - k + 1$. Thus

$$x - 1 = |x - 1| = |x\beta - 1\beta| = |y - (n - k + 1)| = n - k + 1 - y.$$

Therefore k = n - y + 1 - x + 1 = x - k + 2 - x = 2 - k. Thus k = 1, a contradiction.

Case 2. Suppose that $n \in Dom \alpha$. Since $Dom \alpha$ is closed and $|Dom \alpha| < n$, we have $1 \notin Dom \alpha$. Then there exists $k \in [2, n]$ such that $Dom \alpha = [k, n]$. This implies that $x \notin [k, n]$. Then $1 \le x < k$.

Subcase 2.1. $1 \in Im \alpha$ and $n\alpha \neq 1$. Since $\alpha \in DP_n$ and $Dom \alpha$ is closed, by Lemma 2.7, we get that $Im \alpha$ is also closed. Note that $1 \in Im \alpha$ and $Dom \alpha = [k, n]$, we obtain that $Im \alpha = [1, n - k + 1]$. Since $n\alpha \neq 1$ and Lemma 2.5, we conclude that $n\alpha = n - k + 1$ and $k\alpha = 1$. Since $\beta \in DP_n$, we have

$$|k - x| = |k - x| = |k\beta - x\beta| = |1 - y| = y - 1$$

Since β is injective and $\alpha \subseteq \beta$, we get that $n - k + 1 < y \leq n$, so that

$$n - x = |n - x| = |n\beta - x\beta| = |n - k + 1 - y| = y - (n - k + 1).$$

Therefore k = y + x - 1 = 2n - k + 1 - 1 = 2n - k. Thus k = n, a contradiction.

Subcase 2.2. $n \in Im \alpha$ and $n\alpha \neq n$. Since $\alpha \in DP_n$ and $Dom \alpha$ is closed, by Lemma 2.7, we get that $Im \alpha$ is also closed. Note that $n \in Im \alpha$ and $Dom \alpha = [k, n]$, we obtain that $Im \alpha = [k, n]$. By Lemma 2.5, we have $n\alpha = k$ or $n\alpha = n$. Thus $n\alpha = k$ and $k\alpha = n$. Since $\beta \in DP_n$, we have

$$|k - x| = |k - x| = |k\beta - x\beta| = |n - y| = n - y.$$

Since β is injective and $\alpha \subseteq \beta$, we deduce that $1 \leq y < k$, so that

$$|n - x| = |n - x| = |n\beta - x\beta| = |k - y| = k - y.$$

Therefore y = n - k + x = (k - y + x) - k + x = 2x - y and so x = y. We infer that k = n which leads to a contradiction.

The proof of the theorem is now complete.

Now, we aim to prove an analogue results for ODP_n and this result is a similar for DP_n .

Theorem 2.10. Let α be an element in ODP_n . Then α is maximal if and only if $Dom \alpha$ is closed such that $1 \in Dom \alpha$ or $n \in Dom \alpha$ and

- 1. if $1 \in Dom \alpha$, then $n \in Im \alpha$ or
- 2. if $n \in Dom \alpha$, then $1 \in Im \alpha$.

Proof. Assume that α is a maximal element in ODP_n . The proof is essentially the same as the proof of Theorem 2.9. We then have that $Dom \alpha$ is closed.

Suppose that $1, n \notin Dom \alpha$. Since $\alpha \in ODP_n$, we get that 1 and n are not all elements in $Im \alpha$. Next, we consider three possible cases as following.

Case 1. $1 \notin Im \alpha$ and $n \in Im \alpha$. Then we have $(\max(Dom \alpha))\alpha = n$. Define $\beta : Dom \alpha \cup \{1\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ n - (\max(Dom \, \alpha) - 1) & \text{if } x = 1. \end{cases}$$

Clearly, $\beta \in ODP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Case 2. $1 \in Im \alpha$ and $n \notin Im \alpha$. Then we have $(\min(Dom \alpha))\alpha = 1$. Define $\beta : Dom \alpha \cup \{n\} \to [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ n - \min(Dom \, \alpha) + 1 & \text{if } x = n. \end{cases}$$

Since $n \notin Dom \alpha$, we obtain that $n - \min(Dom \alpha) + 1 \notin Im \alpha$. Thus $\beta \in ODP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Case 3. $1 \notin Im \alpha$ and $n \notin Im \alpha$. Then $\max(Im \alpha) + 1 \leq n$. Since $\alpha \in ODP_n$, we get that $(\max(Dom \alpha))\alpha = \max(Im \alpha)$. Since $n \notin Dom \alpha$, we have $\max(Dom \alpha) + 1 \leq n$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ (\max(Dom \, \alpha))\alpha + 1 & \text{if } x = \max(Dom \, \alpha) + 1 \end{cases}$$

Clearly, $\beta \in ODP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction.

Therefore, three cases imply that $1 \in Dom \alpha$ or $n \in Dom \alpha$. We now consider two cases.

Case 1. $1 \in Dom \alpha$. Suppose that $n \notin Im \alpha$. Then $(\max(Dom \alpha))\alpha + 1 \leq n$. Since $\alpha \in ODP_n$, we have that $n \notin Dom \alpha$. Thus $\max(Dom \alpha) + 1 \leq n$. Define $\beta : Dom \alpha \cup \{\max(Dom \alpha) + 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \,\alpha, \\ (\max(Dom \,\alpha))\alpha + 1 & \text{if } x = \max(Dom \,\alpha) + 1. \end{cases}$$

Clearly, $\beta \in ODP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $n \in Im \alpha$.

Case 2. $n \in Dom \alpha$. Suppose that $1 \notin Im \alpha$. Then $(\min(Dom \alpha))\alpha - 1 \ge 1$. Since $\alpha \in ODP_n$, we have that $1 \notin Dom \alpha$. Thus $\min(Dom \alpha) - 1 \ge 1$. Define $\beta : Dom \alpha \cup \{\min(Dom \alpha) - 1\} \rightarrow [n]$ by

$$x\beta = \begin{cases} x\alpha & \text{if } x \in Dom \, \alpha, \\ (\min(Dom \, \alpha))\alpha - 1 & \text{if } x = \min(Dom \, \alpha) - 1. \end{cases}$$

Clearly, $\beta \in ODP_n$, $\alpha \subseteq \beta$ and $\alpha \neq \beta$. By Theorem 2.2, we have that $\alpha \leq \beta$ which is a contradiction. Hence $1 \in Im \alpha$.

Conversely, assume that $Dom \alpha$ is closed such that $1 \in Dom \alpha$ or $n \in Dom \alpha$. Suppose that $\alpha \leq \beta$ for some $\beta \in ODP_n$. Then $\alpha \subseteq \beta$. Thus $x\alpha = x\beta$ for all $x \in Dom \alpha$.

Suppose that $1 \in Dom \alpha$. Thus $n \in Im \alpha$. Let $(x, y) \in \beta$. Then $x\beta = y$. Since $Dom \alpha$ is closed and $1 \in Dom \alpha$, there exists $k \in [n]$ such that $Dom \alpha = [1, k]$ and by Lemma 2.7, $Im \alpha$ is also closed. We get that $Im \alpha = [n - k + 1, n]$ and so and $k\alpha = n$.

Since $\alpha \subseteq \beta$, we have $k\beta = n$. We obtain from $x\beta \leq n$ that $x \leq k$. This implies that $x \in Dom \alpha$ and thus $(x, y) \in \alpha$ via $\alpha \subseteq \beta$. Therefore $\beta \subseteq \alpha$.

Similarly, we can prove that $\beta \subseteq \alpha$ by using the fact that $n \in Dom \alpha$. Consequently, $\alpha = \beta$ and our proof is complete.

Since 0 is the minimum element of DP_n and ODP_n . The following theorems determine minimal elements in $DP_n \setminus \{0\}$ and $ODP_n \setminus \{0\}$ with respect to this order.

Theorem 2.11. Let α be an element in $DP_n \setminus \{0\}$, then α is minimal if and only if $|Dom \alpha| = 1$.

Proof. Suppose that $|Dom \alpha| \geq 2$. Then there are distinct elements $u, v \in Dom \alpha$. Define $\beta : \{u\} \to [n]$ by $u\beta = u\alpha$. Thus $\beta \in DP_n$, $\beta \neq \alpha$ and $\beta \subseteq \alpha$. By Theorem 2.2, we have $\beta \leq \alpha$. This shows that α is not minimal.

The sufficiency of the theorem is obvious.

The next theorem is proved essentially the same as the proof of Theorem 2.11.

Theorem 2.12. Let α be an element in $ODP_n \setminus \{0\}$, then α is minimal if and only if $|Dom \alpha| = 1$.

Acknowledgement(s) : The authors are grateful to the referees for their careful reading of the manuscript and their useful comments.

References

- J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press Inc., New York, 1995.
- [2] V. Vagner, Generalized groups, Doklady Akademiĭ Nauk SSSR 84 (1952) 1119-1122.
- [3] R. Kehinde, A. Umar, On the semigroup of partial isometries of a finite chain, http://arXiv:1101.0049v1 [math.GR] 2 (December 30, 2010).
- [4] R. Kehinde, A. Adeshola, The order of the set of idempotent elements of semigroup of partial isometries of a finite chain, Int. J. Sci. Research 2 (2013) 291-292.
- [5] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.

(Received 4 March 2017) (Accepted 17 June 2017)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th