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Abstract : Let In denote the 1 − 1 partial transformation semigroup on a set
{1, 2, . . . , n} and let DPn = {α ∈ In : ∀x, y ∈ Domα, |xα − yα| = |x − y|} and
ODPn = {α ∈ DPn : ∀x, y ∈ Domα, x ≤ y ⇒ xα ≤ yα}. Then DPn and ODPn
are subsemigroups of In. The purpose of this research, we study the natural partial
orders on DPn and ODPn and characterize when two elements of DPn and ODPn
are related under this partial order. Moreover, we give a necessary and sufficient
conditions for elements in DPn and ODPn to be maximal or minimal elements.
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1 Introduction

Let X be a set. A partial transformation on X is a map from a subset of
X into X. The empty transformation is the partial transformation 0 with empty
domain. Let IX be the set of all 1− 1 partial transformations on X. For α ∈ IX ,
let Domα and Imα denote respectively the domain and the image of α. Then IX
becomes a semigroup under the composition of maps, that is, for α, β ∈ IX ,

Domαβ = {x ∈ Domα : xα ∈ Domβ} and
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x(αβ) = (xα)β for all x ∈ Domαβ.

We call IX the 1− 1 partial transformation semigroup on X. This was introduced
in [1] that IX is an inverse semigroup (that is, for every α ∈ IX there exists a
unique β ∈ IX such that α = αβα and β = βαβ). The study of inverse semigroups
has many features in common with the theory of groups, and one of the earliest
results was a representation theorem to effect that every inverse semigroup has a
faithful representation as an inverse semigroup of 1 − 1 partial mappings as the
Vagner-Preston Theorem in [2].

Given a positive integer n, let [n] = {1, 2, . . . , n} ordered in the standard way.
Denote In the 1 − 1 partial transformation semigroup on [n]. We call α ∈ In
is order-preserving (order-reversing) if for every x, y ∈ Domα, x ≤ y implies
xα ≤ yα (xα ≥ yα) and α is isometry if for every x, y ∈ Domα, |xα−yα| = |x−y|.
Kehinde and Umar [3] have introduced families of subsemigroups of In defined as
follow:

DPn = {α ∈ In : ∀x, y ∈ Domα, |xα− yα| = |x− y|}

and
ODPn = {α ∈ DPn : ∀x, y ∈ Domα, x ≤ y implies xα ≤ yα}.

Then DPn and ODPn are subsemigroups of In which are called the semigroup
of partial isometries of an n-chain and the semigroup of partial order-preserving
isometries of an n-chain, respectively. Green’s relations on DPn and ODPn have
been investigated by Kehinde and Umar [3] and the order of the set of idempotent
elements of DPn has been discussed by Kehinde and Adeshola [4].

As one can easily see, the following lemma holds:

Lemma 1.1. [3] DPn and ODPn are inverse semigroups.

In 1952, Vagner [2] defined a partial order relation on an inverse semigroup S
in a natural way as follows: for a, b ∈ S,

a ≤ b if and only if a = be for some e ∈ E(S)

where E(S) = {x ∈ S : x2 = x}. Of course, this relation is indeed a partial order
which is called the natural partial order on an inverse semigroup S. Also, the
order relation ≤ is in fact compatible with multiplication of S, in the sense that

a ≤ b and c ∈ S imply that ac ≤ bc and ca ≤ cb.

It was proved very useful in the theory of inverse semigroups.
The purpose of this paper, we discuss the natural partial orders on both inverse

semigroups, namely, DPn and ODPn and characterize when two elements of DPn
and ODPn are related under this partial order. Also, their maximal and minimal
elements of each semigroup are described.

Throughout of this paper, let [n] = {1, 2, . . . , n} ordered in the standard way
and for any x, y ∈ [n] with x ≤ y, the set [x, y] = {z ∈ [n] : x ≤ z ≤ y} is called a
closed interval of [n].
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2 Main Results

In this section, we present the characterization of the natural partial orders
on DPn and ODPn, respectively. Let S be any one of In, DPn and ODPn. Since
S is an inverse semigroup, the natural partial order on S are defined by

α ≤ β if and only if α = βµ for some µ ∈ E(S)

for all α, β ∈ S.
We first need the following result is quoted.

Theorem 2.1. [5] Let α ∈ In. Then α is an idempotent if and only if Imα ⊆
Domα and the restriction α|Imα is the identity transformation on Imα.

The following theorem investigates the condition when α ≤ β for α, β ∈ S
where S is any one of In, DPn and ODPn.

Theorem 2.2. Let S be any one of In, DPn and ODPn. Then α ≤ β on S if
and only if α ⊆ β.

Proof. Suppose that α ≤ β on S. Then there exists µ ∈ E(S) such that α = βµ.
Thus Imα ⊆ Imµ. To verify that α ⊆ β, let (x, y) ∈ α. Then y = xα ∈
Imα ⊆ Imµ. Since µ ∈ E(S), we deduce that yµ = y by Theorem 2.1. Hence
yµ = y = xα = xβµ. Since µ is 1− 1, it follows that xβ = y and hence (x, y) ∈ β
as required.

Conversely, assume that α ⊆ β. Then xα = xβ for all x ∈ Domα. Define
µ : Imα → [n] by xµ = x for all x ∈ Imα. Obviously, µ ∈ S and µ is an
idempotent by Theorem 2.1. By assumption and β is 1− 1, we obtain that

Dom (βµ) = (Imβ ∩Domµ)β−1 = (Imβ ∩ Imα)β−1 = Domα.

Let x ∈ Domα. Then xα ∈ Imα = Domµ and xα = xβ. Thus xα = xαµ = xβµ.
This proves that α = βµ and consequently α ≤ β.

Next, we investigate the condition under which an element of DPn and ODPn
to be maximal and minimal with respect to the natural partial order. For conve-
nience, we quote the following result.

Lemma 2.3. [2] Let α ∈ DPn. Then α is either order-preserving or order-
reversing.

By the above lemma, we get the following results immediately.

Lemma 2.4. Let α ∈ DPn and x, y ∈ Imα.

1. If α is order-preserving and x < y, then xα−1 < yα−1.

2. If α is order-reversing and x < y, then xα−1 > yα−1.
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Lemma 2.5. Let α ∈ DPn. Then either

(min(Domα))α = min(Imα) and (max(Domα))α = max(Imα) or

(min(Domα))α = max(Imα) and (max(Domα))α = min(Imα).

As above result motivates the following theorem.

Proposition 2.6. Let α ∈ DPn. If |Domα| = n, then α is either the identity
mapping or xα = n+ 1− x for all x ∈ Domα.

Proof. Suppose that |Domα| = n. Then Imα = Domα = [n]. By Lemma 2.5,
we deduce that either nα = n or nα = 1.

Case 1. nα = 1. Let x ∈ [n]. Since α is isometry, we have that

xα− nα = |xα− nα| = |x− n| = n− x.

Therefore xα = n− x+ nα = n− x+ 1 for all x ∈ [n].
Case 2. nα = n. Let x ∈ [n]. Since α is isometry, we obtain that

nα− xα = |nα− xα| = |n− x| = n− x = nα− x.

Therefore xα = x for all x ∈ [n].

Before we state our main result, it pays to prove the following lemma.

Lemma 2.7. Let α ∈ DPn. If Domα is a closed interval, then Imα is also
closed.

Proof. Suppose that Domα is a closed interval of [n]. Then Domα = [k, k + t]
for some k ∈ [n] and 0 ≤ t ≤ n − k. If t = 0, then Imα is closed. Suppose
that t > 0. Since α is 1 − 1, we have |Imα| = |Domα| = t + 1. By Lemma
2.3, α is order-preserving or α is order-reversing. If α is order-preserving, then
kα < (k + 1)α < . . . < (k + t)α. Since α ∈ DPn, for each i ∈ [1, t],

(k + i)α− kα = |(k + i)α− kα| = |(k + i)− k| = i.

Thus (k+ i)α = kα+ i for all i ∈ [1, t]. Therefore, Imα = [kα, kα+ t] as required.
Similarly, we can show that Imα = [(k + t)α, (k + t)α+ t] by using the fact that
α is order-reversing.

Now coming back to our purpose.

Theorem 2.8. Let α ∈ DPn. If |Domα| = n, then α is maximal.

Proof. Suppose that |Domα| = n. Then Domα = [n]. Let β ∈ DPn be such
that α ≤ β. By Theorem 2.2, we have that α ⊆ β and hence Domβ = [n]. By
assumption and α is 1− 1, we deduce that α = β. Hence α is a maximal element
of DPn as desired.
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Theorem 2.9. Let α ∈ DPn and |Domα| < n. Then α is maximal if and only if
Domα is closed and one of the following occurs:

1. 1 ∈ Domα, 1 ∈ Imα and 1α 6= 1.

2. 1 ∈ Domα, n ∈ Imα and 1α 6= n.

3. n ∈ Domα, 1 ∈ Imα and nα 6= 1.

4. n ∈ Domα, n ∈ Imα and nα 6= n.

Proof. Assume that α is a maximal element in DPn. Suppose that Domα is not
closed. Then there exists a ∈ [min(Domα),max(Domα)] \Domα. Without loss
of generality, we may assume that α is order-preserving.

Let k = max(Domα)− a. By Lemma 2.5, we have that

k < max(Domα)−min(Domα)

= |max(Domα)−min(Domα)|
= |(max(Domα))α− (min(Domα))α|
= (max(Domα))α− (min(Domα))α

= (max(Domα))α−min(Imα).

Hence min(Imα) < (max(Domα))α−k < max(Imα). Let b = (max(Domα))α−
k. Then b ∈ [min(Imα),max(Imα)] and

|max(Domα)− a| = |(max(Domα))α− b|.

To show that b /∈ Imα, suppose not. Then there exists x ∈ Domα such that
xα = b. Since α ∈ DPn, we have that

max(Domα)− x = |max(Domα)− x|
= |(max(Domα))α− b|
= |max(Domα)− a| = max(Domα)− a.

We infer that x = a, a contradiction. Hence b /∈ Imα.
Define β : Domα ∪ {a} → [n] by

xβ =

{
xα if x ∈ Domα,

b if x = a.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β.
This is a contradiction since α is maximal. Hence Domα is a closed subset of [n].
Similarly, we can prove that the domain of an order reversing mapping is a closed
inteval of [n].

If 1, n ∈ Domα, then Domα = [n] which is a contradiction. Hence 1 /∈ Domα
or n /∈ Domα. We will verify that either 1 ∈ Domα or n ∈ Domα.
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Suppose that 1, n /∈ Domα. Since α ∈ DPn, we have that 1 and n are not all
elements in Imα.

Case 1. 1 /∈ Imα and n ∈ Imα.
Subcase 1.1. (max(Domα))α = n. Define β : Domα ∪ {1} → [n] by

xβ =

{
xα if x ∈ Domα,

n− (max(Domα)− 1) if x = 1.

Since 1 6∈ Domα, we obtain that n − (max(Domα) − 1) /∈ Imα. For each
x ∈ Domα, we deduce xα− n = x−max(Domα). Hence |xβ − 1β| = |x− 1| for
all x ∈ Domα. Then β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that
α ≤ β which is a contradiction.

Subcase 1.2. (min(Domα))α = n. Define β : Domα ∪ {n} → [n] by

xβ =

{
xα if x ∈ Domα,

min(Domα) if x = n.

Since n /∈ Domα, we then have min(Domα) /∈ Imα. Each x ∈ Domα, we get
n − xα = x − min(Domα). Then we can show that |xβ − nβ| = |x − n| for all
x ∈ Domα, hence β ∈ DPn and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction.

Case 2. 1 ∈ Imα and n /∈ Imα.
Subcase 2.1. (max(Domα))α = 1. Define β : Domα ∪ {1} → [n] by

xβ =

{
xα if x ∈ Domα,

max(Domα) if x = 1.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction.

Subcase 2.2. (min(Domα))α = 1. Define β : Domα ∪ {n} → [n] by

xβ =

{
xα if x ∈ Domα,

n−min(Domα) + 1 if x = n.

Similarly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction.

Case 3. 1 /∈ Imα and n /∈ Imα. Then min(Imα)− 1 ≥ 1 and max(Imα) +
1 ≤ n.

Subcase 3.1. (max(Domα))α = max(Imα). Since n /∈ Domα, we have
max(Domα) + 1 ≤ n. Define β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α+ 1 if x = max(Domα) + 1.

Similarly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction.



Natural Partial Order on the Semigroups of Partial Isometries ... 103

Subcase 3.2. (max(Domα))α = min(Imα). We note that max(Domα)+
1 ≤ n. Define β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α− 1 if x = max(Domα) + 1.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction.

Hence, either 1 ∈ Domα or n ∈ Domα.
Assume that 1 ∈ Domα but n /∈ Domα. Since α ∈ DPn, we obtain that

1 /∈ Imα or n /∈ Imα.
Suppose that 1, n /∈ Imα. Since n /∈ Domα, it follows that max(Domα)+1 ≤

n. By Lemma 2.5, we obtain that either 1α = min(Imα) or 1α = max(Imα).
Case 1. 1α = min(Imα). Since n /∈ Imα, we have that (max(Domα))α+1 ≤

n. Define β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α+ 1 if x = max(Domα) + 1.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction.

Case 2. 1α = max(Imα). Since 1 /∈ Imα, we have that (max(Domα))α −
1 ≥ 1. Define β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α− 1 if x = max(Domα) + 1.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction.

Hence, either 1 ∈ Imα or n ∈ Imα.
By using the similar proof as above for n ∈ Domα but 1 /∈ Domα, we obtain

that either 1 ∈ Imα or n ∈ Imα. Next, the proof falls into four cases as follow.
Case 1. 1 ∈ Domα and 1 ∈ Imα. Suppose that 1α = 1. It follows that

Domα = Imα. Since |Domα| < n, there exists a ∈ [n] such that a /∈ Domα =
Imα.

Define β : Domα ∪ {a} → [n] by

xβ =

{
xα if x ∈ Domα,

a if x = a.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction. Hence 1α 6= 1.

Case 2. 1 ∈ Domα and n ∈ Imα. Suppose that 1α = n. Since |Domα| < n,
there exists a ∈ [n] and a /∈ Domα. Let b = n − a + 1. Then b ≥ 1 and
|1α − b| = |n − (n − a + 1)| = |1 − a|. To show that b /∈ Imα, suppose that
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b ∈ Imα. Then there exists x ∈ Domα such that xα = b. Since α ∈ DPn, we
have that

x− 1 = |x− 1| = |xα− 1α| = |b− 1α| = |1− a| = a− 1.

Therefore x = a which is a contradiction. Hence b /∈ Imα.
Define β : Domα ∪ {a} → [n] by

xβ =

{
xα if x ∈ Domα,

b if x = a.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction. Hence 1α 6= n.

Case 3. n ∈ Domα and 1 ∈ Imα. Suppose that nα = 1. Since |Domα| < n,
there exists a ∈ [n] and a /∈ Domα. Let b = n − a + 1. Then b ≥ 1 and
|nα − b| = |1 − (n − a + 1)| = |a − n|. To show that b /∈ Imα, suppose that
b ∈ Imα. Then there exists x ∈ Domα such that xα = b. Since α ∈ DPn, we
have

n− x = |n− x| = |nα− xα| = |nα− b| = |a− n| = n− a.

Therefore x = a which is a contradiction. Hence b /∈ Imα.
Define β : Domα ∪ {a} → [n] by

xβ =

{
xα if x ∈ Domα,

b if x = a.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction. Hence nα 6= 1.

Case 4. n ∈ Domα and n ∈ Imα. Suppose that nα = n. Then Domα =
Imα. Since |Domα| < n, there exists a ∈ [n] such that a /∈ Domα = Imα.

Define β : Domα ∪ {a} → [n] by

xβ =

{
xα if x ∈ Domα,

a if x = a.

Clearly, β ∈ DPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which
is a contradiction. Hence nα 6= n.

Conversely, suppose that the converse conditions hold and α ≤ β for some
β ∈ DPn. Then α ⊆ β. Thus xα = xβ for all x ∈ Domα. To show that α = β,
suppose not. Then there exists (x, y) ∈ β \ α and hence xβ = y.

Case 1. Suppose that 1 ∈ Domα. Since Domα is closed and |Domα| < n,
we have n /∈ Domα. Then there exists k ∈ [1, n − 1] such that Domα = [1, k].
This implies that x /∈ [1, k] via α ⊆ β. Then k < x ≤ n.

Subcase 1.1. 1 ∈ Imα and 1α 6= 1. Since α ∈ DPn and Domα is
closed, by Lemma 2.7, we get that Imα is also closed. Note that 1 ∈ Imα and
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Domα = [1, k], we obtain that Imα = [1, k]. By Lemma 2.5, we have that 1α = k
and kα = 1. Since β ∈ DPn, we have

x− k = |x− k| = |xβ − kβ| = |y − 1| = y − 1.

Since β is injective and α ⊆ β, we obtain that k < y ≤ n, so that

x− 1 = |x− 1| = |xβ − 1β| = |y − k| = y − k.

This implies that k = x − y + 1 = y − x + 1. Thus x = y and so y − 1 = y − k.
Therefore k = 1 which leads to a contradiction.

Subcase 1.2. n ∈ Imα and 1α 6= n. Since α ∈ DPn and Domα is
closed, by Lemma 2.7, we get that Imα is also closed. Note that n ∈ Imα and
Domα = [1, k], we obtain that Imα = [n − k + 1, n]. By Lemma 2.5, we have
that 1α = n− k+ 1 or 1α = n. Thus 1α = n− k+ 1 and kα = n. Since β ∈ DPn,
we have

x− k = |x− k| = |xβ − kβ| = |y − n| = n− y.

Since α ⊆ β and β is injective, we get that y /∈ Imα, that is 1 ≤ y < n − k + 1.
Thus

x− 1 = |x− 1| = |xβ − 1β| = |y − (n− k + 1)| = n− k + 1− y.

Therefore k = n−y+1−x+1 = x−k+2−x = 2−k. Thus k = 1, a contradiction.
Case 2. Suppose that n ∈ Domα. Since Domα is closed and |Domα| < n,

we have 1 /∈ Domα. Then there exists k ∈ [2, n] such that Domα = [k, n]. This
implies that x /∈ [k, n]. Then 1 ≤ x < k.

Subcase 2.1. 1 ∈ Imα and nα 6= 1. Since α ∈ DPn and Domα is
closed, by Lemma 2.7, we get that Imα is also closed. Note that 1 ∈ Imα and
Domα = [k, n], we obtain that Imα = [1, n − k + 1]. Since nα 6= 1 and Lemma
2.5, we conclude that nα = n− k + 1 and kα = 1. Since β ∈ DPn, we have

k − x = |k − x| = |kβ − xβ| = |1− y| = y − 1.

Since β is injective and α ⊆ β, we get that n− k + 1 < y ≤ n, so that

n− x = |n− x| = |nβ − xβ| = |n− k + 1− y| = y − (n− k + 1).

Therefore k = y + x− 1 = 2n− k + 1− 1 = 2n− k. Thus k = n, a contradiction.
Subcase 2.2. n ∈ Imα and nα 6= n. Since α ∈ DPn and Domα is

closed, by Lemma 2.7, we get that Imα is also closed. Note that n ∈ Imα and
Domα = [k, n], we obtain that Imα = [k, n]. By Lemma 2.5, we have nα = k or
nα = n. Thus nα = k and kα = n. Since β ∈ DPn, we have

k − x = |k − x| = |kβ − xβ| = |n− y| = n− y.

Since β is injective and α ⊆ β, we deduce that 1 ≤ y < k, so that

n− x = |n− x| = |nβ − xβ| = |k − y| = k − y.
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Therefore y = n − k + x = (k − y + x) − k + x = 2x − y and so x = y. We infer
that k = n which leads to a contradiction.

The proof of the theorem is now complete.

Now, we aim to prove an analogue results for ODPn and this result is a similar
for DPn.

Theorem 2.10. Let α be an element in ODPn. Then α is maximal if and only
if Domα is closed such that 1 ∈ Domα or n ∈ Domα and

1. if 1 ∈ Domα, then n ∈ Imα or

2. if n ∈ Domα, then 1 ∈ Imα.

Proof. Assume that α is a maximal element in ODPn. The proof is essentially
the same as the proof of Theorem 2.9. We then have that Domα is closed.

Suppose that 1, n /∈ Domα. Since α ∈ ODPn, we get that 1 and n are not all
elements in Imα. Next, we consider three possible cases as following.

Case 1. 1 /∈ Imα and n ∈ Imα. Then we have (max(Domα))α = n. Define
β : Domα ∪ {1} → [n] by

xβ =

{
xα if x ∈ Domα,

n− (max(Domα)− 1) if x = 1.

Clearly, β ∈ ODPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction.

Case 2. 1 ∈ Imα and n /∈ Imα. Then we have (min(Domα))α = 1. Define
β : Domα ∪ {n} → [n] by

xβ =

{
xα if x ∈ Domα,

n−min(Domα) + 1 if x = n.

Since n /∈ Domα, we obtain that n−min(Domα) + 1 /∈ Imα. Thus β ∈ ODPn,
α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β which is a contradiction.

Case 3. 1 /∈ Imα and n /∈ Imα. Then max(Imα) + 1 ≤ n. Since α ∈
ODPn, we get that (max(Domα))α = max(Imα). Since n /∈ Domα, we have
max(Domα) + 1 ≤ n. Define β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α+ 1 if x = max(Domα) + 1.

Clearly, β ∈ ODPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction.

Therefore, three cases imply that 1 ∈ Domα or n ∈ Domα. We now consider
two cases.
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Case 1. 1 ∈ Domα. Suppose that n /∈ Imα. Then (max(Domα))α+ 1 ≤ n.
Since α ∈ ODPn, we have that n /∈ Domα. Thus max(Domα) + 1 ≤ n. Define
β : Domα ∪ {max(Domα) + 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(max(Domα))α+ 1 if x = max(Domα) + 1.

Clearly, β ∈ ODPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction. Hence n ∈ Imα.

Case 2. n ∈ Domα. Suppose that 1 /∈ Imα. Then (min(Domα))α− 1 ≥ 1.
Since α ∈ ODPn, we have that 1 /∈ Domα. Thus min(Domα) − 1 ≥ 1. Define
β : Domα ∪ {min(Domα)− 1} → [n] by

xβ =

{
xα if x ∈ Domα,

(min(Domα))α− 1 if x = min(Domα)− 1.

Clearly, β ∈ ODPn, α ⊆ β and α 6= β. By Theorem 2.2, we have that α ≤ β
which is a contradiction. Hence 1 ∈ Imα.

Conversely, assume that Domα is closed such that 1 ∈ Domα or n ∈ Domα.
Suppose that α ≤ β for some β ∈ ODPn. Then α ⊆ β. Thus xα = xβ for all
x ∈ Domα.

Suppose that 1 ∈ Domα. Thus n ∈ Imα. Let (x, y) ∈ β. Then xβ = y. Since
Domα is closed and 1 ∈ Domα, there exists k ∈ [n] such that Domα = [1, k] and
by Lemma 2.7, Imα is also closed. We get that Imα = [n− k + 1, n] and so and
kα = n.

Since α ⊆ β, we have kβ = n. We obtain from xβ ≤ n that x ≤ k. This
implies that x ∈ Domα and thus (x, y) ∈ α via α ⊆ β. Therefore β ⊆ α.

Similarly, we can prove that β ⊆ α by using the fact that n ∈ Domα. Conse-
quently, α = β and our proof is complete.

Since 0 is the minimum element of DPn and ODPn. The following theorems
determine minimal elements in DPn \ {0} and ODPn \ {0} with respect to this
order.

Theorem 2.11. Let α be an element in DPn \ {0}, then α is minimal if and only
if |Domα| = 1.

Proof. Suppose that |Domα| ≥ 2. Then there are distinct elements u, v ∈ Domα.
Define β : {u} → [n] by uβ = uα. Thus β ∈ DPn, β 6= α and β ⊆ α. By Theorem
2.2, we have β ≤ α. This shows that α is not minimal.

The sufficiency of the theorem is obvious.

The next theorem is proved essentially the same as the proof of Theorem 2.11.

Theorem 2.12. Let α be an element in ODPn \ {0}, then α is minimal if and
only if |Domα| = 1.
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