Thai Journal of Mathematics : 75–86 Special Issue: Annual Meeting in Mathematics 2017

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Bi-Bases of Γ -Semigroups

Pisit Kummoon[†] and Thawhat Changphas^{†,‡,1}

[†]Department of Mathematics, Faculty of Science, Khon Kaen University Khon Kaen 40002, Thailand e-mail : pisit_2534@hotmail.com (P. Kummoon) [‡]Centre of Excellence in Mathematics, CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand e-mail : thacha@kku.ac.th (T. Changphas)

Abstract: Based on the results of bi-ideals generated by a non-empty subset of a Γ -semigroup S, we introduce in this paper the concept of bi-bases of S. Using the quasi-order on S defined by the principal bi-ideals of S we characterize when a non-empty subset of S is a bi-base of S.

Keywords : Γ-semigroup; bi-ideal; two-sided base; bi-base; quasi-order. **2010 Mathematics Subject Classification** : 20M20; 20M17.

1 Introduction and Preliminaries

Let S be a semigroup. A subset A of S is called a *two-sided base* or simply *base* of S if it satisfies the following conditions:

- (i) $S = A \cup SA \cup AS \cup SAS;$
- (ii) if B is a subset of A such that $S = B \cup SB \cup BS \cup SBS$, then B = A.

This notion was introduced and studied by Fabrici [1]. Indeed, the author described the structure of semigroups containing two-sided bases.

This is an algebraic structure, generalized the concept of semigroups, called a Γ -semigroup introduced by Sen [2]. This notion has been widely studied, see [3–18]. Let S and Γ be the set of all functions (or mappings) from $\{1, 2, 3, 4, 5\}$ into $\{6, 7, 8\}$, and from $\{6, 7, 8\}$ into $\{1, 2, 3, 4, 5\}$, respectively. It is observed that S is

Copyright 2018 by the Mathematical Association of Thailand. All rights reserved.

¹ Corresponding author.

not a semigroup under the composition of functions. Consider the operation, for $a, b \in S$ and $\alpha \in \Gamma$, by

$$(a\alpha b)(x) = a(\alpha(b(x)))$$
 for all $x \in \{1, 2, 3, 4, 5\}$

we have that

- (i) $a\alpha b \in S$ for all $a, b \in S$ and $\alpha \in \Gamma$;
- (ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Formally, let S and Γ be any two non-empty sets. Then S is called a Γ -semigroup [15] if, for any $a, b \in S$ and $\alpha \in \Gamma$, $a\alpha b$ is defined, and the following hold:

- (i) $a\alpha b \in S$ for all $a, b \in S$ and $\alpha \in \Gamma$;
- (ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Example 1.1. [19] Let S := [0, 1] be a unit interval and $\Gamma := \left\{\frac{1}{n} \mid n \text{ is a positive interval} \right\}$. Then S is a Γ consistence up denotes up denotes used prediction.

interger $\}$. Then S is a Γ -semigroup under the usual multiplication.

The purpose of this paper is to introduce the concept of bi-bases of a Γ -semigroup, and extend some of Fabrici's results.

Let S be a Γ -semigroup, and A, B non-empty subsets of S. The set product $A\Gamma B$ is defined by:

$$A\Gamma B := \{a\alpha b \mid a \in A, b \in B, \alpha \in \Gamma\}.$$

For $a \in S$, we write $B\Gamma a$ for $B\Gamma\{a\}$, and similarly for $a\Gamma B$.

A non-empty subset A of a $\Gamma\text{-semigroup}\ S$ is called a $\Gamma\text{-subsemigroup}\ [2]$ of S if

$$A\Gamma A \subseteq A$$

That is, $a\alpha a' \in A$ for all $a, a' \in A$ and $\alpha \in \Gamma$.

A Γ -subsemigroup B of a Γ -semigroup S is called a *bi*- Γ -*ideal* [19] of S if

$B\Gamma S\Gamma B\subseteq B.$

This notion generalizes the notion of one-sided and two-sided Γ -ideals of S.

Let S be a Γ -semigroup, and B_i a bi- Γ -ideal of S for all $i \in I$. It is known that if $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of S (see, [19]). Moreover, for a non-empty subset A of S, the intersection of all bi- Γ -ideals of S, denoted by $(A)_b$,

non-empty subset A of S, the intersection of all bi- Γ -ideals of S, denoted by $(A)_b$, is the smallest bi- Γ -ideal of S containing A. And it is of the form

$$(A)_b = A \cup A\Gamma A \cup A\Gamma S\Gamma A$$

(see, [19]). In particular, for $A = \{a\}$, we write $(\{a\})_b$ by $(a)_b$.

Example 1.2. [19] Let \mathbb{N} be the set of all positive integers and $\Gamma = \{5\}$. Then \mathbb{N} is a Γ -semigroup under usual addition. We have:

- (1) For $A = \{2\}, (A)_b = \{2\} \cup \{9\} \cup \{15, 16, 17, \ldots\}.$
- (2) For $B = \{3, 4\}, (B)_b = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \ldots\}.$

2 Main Results

We begin this section with the following definition of bi-bases of a Γ -semigroup.

Definition 2.1. Let S be a Γ -semigroup. A subset B of S is called a *bi-base* of S if it satisfies the following two conditions:

(i)
$$S = (B)_b$$
;

(ii) if A is a subset of B such that $S = (A)_b$, then A = B.

Example 2.2. Consider the Γ -semigroup $S = \{a, b, c, d, e\}$ with $\Gamma = \{\alpha\}$ and

α	a	b	c	d	e
a	b	a	d	c	a
b	a	b	c	d	b
c	d	c	d	c	c
d	c	d	c	d	d
e	a	b	c	d	e

Then $B = \{e\}$ is a bi-base of S. But $B' = \{b\}$ is not a bi-base of S.

Example 2.3. Consider the Γ -semigroup $S = \{a, b, c, d\}$ with $\Gamma = \{\gamma, \delta\}$ and

γ	a	b	c	d	δ	a	b	c	d
a	a	b	c	d	a	b	a	d	c
b	b	a	d	c	b	a	b	c	d
c	c	d	c	d	c	d	c	d	c
d	d	c	d	c	d	c	d	c	d

Then $B_1 = \{a\}$ and $B_2 = \{b\}$ are bi-bases of S. But $B'_2 = \{a, b\}$ is not a bi-base of S.

Lemma 2.4. Let B be a bi-base of a Γ -semigroup S. Let $a, b \in B$. If $a \in b\Gamma b \cup b\Gamma S\Gamma b$, then a = b.

Proof. Assume that $a \in b\Gamma b \cup b\Gamma S\Gamma b$, and suppose that $a \neq b$. Let

 $A := B \setminus \{a\}.$

Then $A \subset B$. Since $a \neq b, b \in A$. We will show that $(A)_b = S$. Clearly, $(A)_b \subseteq S$. We have

$$(B)_b = S.$$

Let $x \in S$. Then

 $x \in B \cup B\Gamma B \cup B\Gamma S\Gamma B.$

Case 1: $x \in B$.

Subcase 1.1: $x \neq a$. Then $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: x = a. By assumption, we have

$$x = a \in b\Gamma b \cup b\Gamma S\Gamma b \subseteq A\Gamma A \cup A\Gamma S\Gamma A \subseteq (A)_b.$$

Case 2: $x \in B\Gamma B$. Then $x = b_1 \gamma b_2$ for some $b_1, b_2 \in B$ and $\gamma \in \Gamma$.

Subcase 2.1: $b_1 = a$ and $b_2 = a$. By assumption, we have

$$\begin{aligned} x &= b_1 \gamma b_2 \quad \in \quad (b\Gamma b \cup b\Gamma S\Gamma b) \Gamma(b\Gamma b \cup b\Gamma S\Gamma b) \\ &= \quad b\Gamma b\Gamma b\Gamma b \cup b\Gamma b\Gamma b\Gamma S\Gamma b \cup b\Gamma S\Gamma b\Gamma b\Gamma b \cup b\Gamma S\Gamma b\Gamma b\Gamma b\Gamma S\Gamma b \\ &\subseteq \quad A\Gamma A\Gamma A\Gamma A \cup A\Gamma A\Gamma A\Gamma S\Gamma A \cup A\Gamma S\Gamma A\Gamma A\Gamma A \\ \quad \cup A\Gamma S\Gamma A\Gamma A\Gamma S\Gamma A \\ &\subseteq \quad A\Gamma S\Gamma A \\ &\subseteq \quad (A)_b. \end{aligned}$$

Subcase 2.2: $b_1 \neq a$ and $b_2 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 \gamma b_2 &\in (B \setminus \{a\}) \Gamma(b \Gamma b \cup b \Gamma S \Gamma b) \\ &= (B \setminus \{a\}) \Gamma b \Gamma b \cup (B \setminus \{a\}) \Gamma b \Gamma S \Gamma b \\ &\subseteq A \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 2.3: $b_1 = a$ and $b_2 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 \gamma b_2 &\in (b\Gamma b \cup b\Gamma S\Gamma b)\Gamma(B \setminus \{a\}) \\ &= b\Gamma b\Gamma(B \setminus \{a\}) \cup b\Gamma S\Gamma b\Gamma(B \setminus \{a\}) \\ &\subseteq A\Gamma A\Gamma A \cup A\Gamma S\Gamma A\Gamma A \\ &\subseteq A\Gamma S\Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 2.4: $b_1 \neq a$ and $b_2 \neq a$. From $A = B \setminus \{a\}$, hence

$$x = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(B \setminus \{a\}) = A \Gamma A \subseteq (A)_b.$$

Case 3: $x \in B\Gamma S\Gamma B$. Then $x = b_3\gamma_1s\gamma_2b_4$ for some $b_3, b_4 \in B, \gamma_1, \gamma_2 \in \Gamma$ and $s \in S$.

Subcase 3.1: $b_3 = a$ and $b_4 = a$. By assumption, we have

$$\begin{aligned} x &= b_3 \gamma_1 s \gamma_2 b_4 &\in (b\Gamma b \cup b\Gamma S\Gamma b)\Gamma S\Gamma (b\Gamma b \cup b\Gamma S\Gamma b) \\ &= b\Gamma b\Gamma S\Gamma b\Gamma b \cup b\Gamma b\Gamma S\Gamma b\Gamma S\Gamma b \cup b\Gamma S\Gamma b\Gamma S\Gamma b\Gamma b \\ \cup b\Gamma S\Gamma b\Gamma S\Gamma b\Gamma S\Gamma b \\ &\subseteq A\Gamma A\Gamma S\Gamma A\Gamma A \cup A\Gamma A\Gamma S\Gamma A\Gamma S\Gamma A \cup A\Gamma S\Gamma A\Gamma S\Gamma A\Gamma A \\ \cup A\Gamma S\Gamma A\Gamma S\Gamma A\Gamma S\Gamma A \\ &\subseteq A\Gamma S\Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 3.2: $b_3 \neq a$ and $b_4 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_3 \gamma_1 s \gamma_2 b_3 &\in (B \setminus \{a\}) \Gamma S \Gamma (b \Gamma b \cup b \Gamma S \Gamma b) \\ &= (B \setminus \{a\}) \Gamma S \Gamma b \Gamma b \cup (B \setminus \{a\}) \Gamma S \Gamma b \Gamma S \Gamma b \\ &\subseteq A \Gamma S \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 3.3: $b_3 = a$ and $b_4 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_3 \gamma_1 s \gamma_2 b_4 &\in (b \Gamma b \cup b \Gamma S \Gamma b) \Gamma S \Gamma (B \setminus \{a\}) \\ &= b \Gamma b \Gamma S \Gamma (B \setminus \{a\}) \cup b \Gamma S \Gamma b \Gamma S \Gamma (B \setminus \{a\}) \\ &\subseteq A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 3.4: $b_3 \neq a$ and $b_4 \neq a$. From $A = B \setminus \{a\}$, hence

$$x = b_3 \gamma_1 s \gamma_2 b_4 \in (B \setminus \{a\}) \Gamma S \Gamma(B \setminus \{a\}) = A \Gamma S \Gamma A \subseteq (A)_b.$$

This implies $(A)_b = S$. This is a contradiction. Therefore, a = b.

Lemma 2.5. Let B be a bi-base of a Γ -semigroup S. Let $a, b, c \in B$. If $a \in c\Gamma b \cup c\Gamma S\Gamma b$, then a = b or a = c.

Proof. Assume that $a \in c\Gamma b \cup c\Gamma S\Gamma b$, and suppose that $a \neq b$ and $a \neq c$. Let

$$A := B \setminus \{a\}.$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(A)_b = S$. Clearly, $(A)_b \subseteq S$. We have

$$(B)_b = S.$$

Let $x \in S$. Then

 $x \in B \cup B\Gamma B \cup B\Gamma S\Gamma B.$

Case 1: $x \in B$.

Subcase 1.1: $x \neq a$. Then $x \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: x = a. By assumption, we have

$$x = a \in c\Gamma b \cup c\Gamma S\Gamma b \subseteq A\Gamma A \cup A\Gamma S\Gamma A \subseteq (A)_b.$$

Case 2: $x \in B\Gamma B$. Then $x = b_1 \gamma b_2$ for some $b_1, b_2 \in B$ and $\gamma \in \Gamma$.

Subcase 2.1: $b_1 = a$ and $b_2 = a$. By assumption, we have

$$\begin{aligned} x &= b_1 \gamma b_2 \quad \in \quad (c \Gamma b \cup c \Gamma S \Gamma b) \Gamma (c \Gamma b \cup c \Gamma S \Gamma b) \\ &= \quad c \Gamma b \Gamma c \Gamma b \cup c \Gamma b \Gamma c \Gamma S \Gamma b \cup c \Gamma S \Gamma b \Gamma c \Gamma S \Gamma b \cup c \Gamma S \Gamma b \Gamma c \Gamma S \Gamma b \\ &\subseteq \quad A \Gamma A \Gamma A \Gamma A \cap A \Gamma A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma A \Gamma A \\ & \cup A \Gamma S \Gamma A \Gamma A \Gamma S \Gamma A \\ &\subseteq \quad A \Gamma S \Gamma A \\ &\subseteq \quad (A)_b. \end{aligned}$$

Subcase 2.2: $b_1 \neq a$ and $b_2 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 \gamma b_2 \quad \in \quad (B \setminus \{a\}) \Gamma(c \Gamma b \cup c \Gamma S \Gamma b) \\ &= \quad (B \setminus \{a\}) \Gamma c \Gamma b \cup (B \setminus \{a\}) \Gamma c \Gamma S \Gamma b \\ &\subseteq \quad A \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \\ &\subseteq \quad A \Gamma S \Gamma A \\ &\subseteq \quad (A)_b. \end{aligned}$$

Subcase 2.3: $b_1 = a$ and $b_2 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_1 \gamma b_2 &\in (c \Gamma b \cup c \Gamma S \Gamma b) \Gamma(B \setminus \{a\}) \\ &= c \Gamma b \Gamma(B \setminus \{a\}) \cup c \Gamma S \Gamma b \Gamma(B \setminus \{a\}) \\ &\subseteq A \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 2.4: $b_1 \neq a$ and $b_2 \neq a$. From $A = B \setminus \{a\}$, hence

$$x = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(B \setminus \{a\}) = A \Gamma A \subseteq (A)_b.$$

Case 3: $x \in B\Gamma S\Gamma B$. Then $x = b_3\gamma_1s\gamma_2b_4$ for some $b_3, b_4 \in B, \gamma_1, \gamma_2 \in \Gamma$ and $s \in S$.

Subcase 3.1: $b_3 = a$ and $b_4 = a$. By assumption, we have

$$\begin{aligned} x &= b_{3}\gamma_{1}s\gamma_{2}b_{4} \quad \in \quad (c\Gamma b \cup c\Gamma S\Gamma b)\Gamma S\Gamma(c\Gamma b \cup c\Gamma S\Gamma b) \\ &= \quad c\Gamma b\Gamma S\Gamma c\Gamma b \cup c\Gamma b\Gamma S\Gamma c\Gamma S\Gamma b \cup c\Gamma S\Gamma b\Gamma S\Gamma c\Gamma b \\ \quad \cup c\Gamma S\Gamma b\Gamma S\Gamma c\Gamma S\Gamma b \\ &\subseteq \quad A\Gamma A\Gamma S\Gamma A\Gamma A \cup A\Gamma A\Gamma S\Gamma A\Gamma S\Gamma A \cup A\Gamma S\Gamma A\Gamma S\Gamma A\Gamma A \\ \quad \cup A\Gamma S\Gamma A\Gamma S\Gamma A\Gamma S\Gamma A \\ &\subseteq \quad A\Gamma S\Gamma A \\ &\subseteq \quad (A)_{b}. \end{aligned}$$

Subcase 3.2: $b_3 \neq a$ and $b_4 = a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_3 \gamma_1 s \gamma_2 b_3 &\in (B \setminus \{a\}) \Gamma S \Gamma (c \Gamma b \cup c \Gamma S \Gamma b) \\ &= (B \setminus \{a\}) \Gamma S \Gamma c \Gamma b \cup (B \setminus \{a\}) \Gamma S \Gamma c \Gamma S \Gamma b \\ &\subseteq A \Gamma S \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 3.3: $b_3 = a$ and $b_4 \neq a$. By assumption and $A = B \setminus \{a\}$, we have

$$\begin{aligned} x &= b_3 \gamma_1 s \gamma_2 b_4 &\in (c \Gamma b \cup c \Gamma S \Gamma b) \Gamma S \Gamma (B \setminus \{a\}) \\ &= c \Gamma b \Gamma S \Gamma (B \setminus \{a\}) \cup c \Gamma S \Gamma b \Gamma S \Gamma (B \setminus \{a\}) \\ &\subseteq A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\ &\subseteq A \Gamma S \Gamma A \\ &\subseteq (A)_b. \end{aligned}$$

Subcase 3.4: $b_3 \neq a$ and $b_4 \neq a$. From $A = B \setminus \{a\}$, hence

$$x = b_3 \gamma_1 s \gamma_2 b_4 \in (B \setminus \{a\}) \Gamma S \Gamma(B \setminus \{a\}) = A \Gamma S \Gamma A \subseteq (A)_b.$$

This implies $(A)_b = S$. This is a contradiction. Therefore, a = b.

To characterised when a non-empty subset of a Γ -semigroup is a bi-base of the Γ -semigroup we need the quasi-order defined as follows:

Definition 2.6. Let S be a Γ -semigroup. Define a *quasi-order* on S by, for any $a, b \in S$,

$$a \leq_b b :\Leftrightarrow (a)_b \subseteq (b)_b.$$

The following examples show that the order \leq_b defined above is not, in general, a partial order.

Example 2.7. From Example 2.3, we have that $(a)_b \subseteq (b)_b$ (i.e., $a \leq_b b$) and $(b)_b \subseteq (a)_b$ (i.e., $b \leq_b a$), but $a \neq b$. Thus, \leq_b is not a partial order on S.

Example 2.8. Consider the Γ -semigroup $S = \{u, v, x, y, z\}$ with $\Gamma = \{\alpha, \beta\}$ and

α	u	v	x	y	z	β	u	v	x	y	
u	u	u	u	u	u	u	u	u	u	u	
v	$\mid u$	z	y	x	v	v	u	y	v	z	
x	u	y	v	z	x	x	u	v	x	y	
y	u	x	z	v	y	y	u	z	y	x	
z	u	v	x	y	z	z	u	x	z	v	

We have that $(v)_b \subseteq (x)_b$ (i.e., $v \leq_b x$) and $(x)_b \subseteq (v)_b$ (i.e., $x \leq_b v$). But $v \neq x$. Thus, \leq_b is not a partial order on S.

Lemma 2.9. Let B be a bi-base of a Γ -semigroup S. If $a, b \in B$ such that $a \neq b$, then neither $a \leq_b b$, nor $b \leq_b a$.

Proof. Assume that $a, b \in B$ such that $a \neq b$. Suppose that $a \leq_b b$; then

$$a \in (a)_b \subseteq (b)_b$$

By assumption, we have $a \neq b$, so

82

$$a \in b\Gamma b \cup b\Gamma S\Gamma b.$$

By Lamma 2.4, a = b. This is a contradiction. The case $b \leq_b a$ can be proved similarly.

Lemma 2.10. Let B be a bi-base of a Γ -semigroup S. Let $a, b, c \in B$ and $\gamma_1, \gamma_2 \in \Gamma$ and $s \in S$:

- (1) If $a \in \{b\gamma_1c\} \cup \{b\gamma_1c\} \cap \{b\gamma_1c\} \cup \{b\gamma_1c\} \cap S \cap \{b\gamma_1c\}$, then a = b or a = c.
- (2) If $a \in \{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma \{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma S \Gamma \{b\gamma_1 s \gamma_2 c\}$, then a = b or a = c.

Proof. (1) Assume that $a \in \{b\gamma_1 c\} \cup \{b\gamma_1 c\} \cup \{b\gamma_1 c\} \cup \{b\gamma_1 c\} \cap S\Gamma\{b\gamma_1 c\}$, and suppose that $a \neq b$ and $a \neq c$. Let

$$A := B \setminus \{a\}.$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_b \subseteq (A)_b$, if suffices to show that $B \subseteq (A)_b$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in (A)_b$. If x = a, then by assumption we have

$$\begin{aligned} x &= a \quad \in \quad \{b\gamma_1c\} \cup \{b\gamma_1c\} \Gamma\{b\gamma_1c\} \cup \{b\gamma_1c\} \Gamma S \Gamma\{b\gamma_1c\} \\ &\subseteq \quad A \Gamma A \cup A \Gamma A \Gamma A \Gamma A \Gamma A \cap A \Gamma A \Gamma S \Gamma A \Gamma A \\ &\subseteq \quad A \Gamma S \Gamma A \\ &\subseteq \quad (A)_b. \end{aligned}$$

Thus, $B \subseteq (A)_b$. This implies $(B)_b \subseteq (A)_b$. Since B is a bi-base of S,

$$S = (B)_b \subseteq (A)_b \subseteq S.$$

Therefore, $S = (A)_b$. This is a contradiction. (2) Assume that $a \in \{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma\{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma\{b\gamma_1 s \gamma_2 c\}$, and suppose that $a \neq b$ and $a \neq c$. Let

$$A := B \setminus \{a\}$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_b \subseteq (A)_b$, if suffices to show that $B \subseteq (A)_b$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in (A)_b$. If x = a, then by assumption we have

$$\begin{aligned} x &= a \quad \in \quad \{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma\{b\gamma_1 s \gamma_2 c\} \cup \{b\gamma_1 s \gamma_2 c\} \Gamma S \Gamma\{b\gamma_1 s \gamma_2 c\} \\ &\subseteq \quad A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \\ &\subseteq \quad A \Gamma S \Gamma A \\ &\subseteq \quad (A)_b. \end{aligned}$$

Thus, $B \subseteq (A)_b$. This implies $(B)_b \subseteq (A)_b$. Since B is a bi-base of S,

$$S = (B)_b \subseteq (A)_b \subseteq S.$$

Therefore, $S = (A)_b$. This is a contradiction.

Lemma 2.11. Let B be a bi-base of a Γ -semigroup S.

- (1) For any $a, b, c \in B$, $\gamma_1 \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \leq b \gamma_1 c$.
- (2) For any $a, b, c \in B$, $\gamma_2, \gamma_3 \in \Gamma$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not\leq_b b\gamma_2 s\gamma_3 c$.

Proof. (1) For any $a, b, c \in B$, $\gamma_1 \in \Gamma$, let $a \neq b$ and $a \neq c$. Suppose that

$$a \leq_b b\gamma_1 c$$
,

we have

$$a \in (a)_b \subseteq (b\gamma_1 c)_b = \{b\gamma_1 c\} \cup \{b\gamma_1$$

By Lamma 2.10 (1), it follows that a = b or a = c. This contradicts to assumption.

(2) For any $a, b, c \in B$, $\gamma_2, \gamma_3 \in \Gamma$ and $s \in S$, let $a \neq b$ and $a \neq c$. Suppose that

$$a \leq_b b\gamma_1 s \gamma_2 c$$
,

we have

$$a \in (a)_b \subseteq (b\gamma_1 s \gamma_2 c)_b$$

= { $b\gamma_1 s \gamma_2 c$ } \cup { $b\gamma_1 s \gamma_2 c$ } Γ { $b\gamma_1 s \gamma_2 c$ } \cup { $b\gamma_1 s \gamma_2 c$ } Γ { $b\gamma_1 s \gamma_2 c$ }

By Lamma 2.10 (2), it follows that a = b or a = c. This contradicts to assumption.

The following theorem characterizes when a non-empty subset of a Γ -semigroup S is a bi-base of S.

Theorem 2.12. A non-empty subset B of a Γ -semigroup S is a bi-base of S if and only if B satisfies the following conditions:

83

- (1) For any $x \in S$,
 - (1.a) there exists $b \in B$ such that $x \leq_b b$; or
 - (1.b) there exist $b_1, b_2 \in B$ and $\gamma \in \Gamma$ such that $x \leq b_1 \gamma b_2$; or
 - (1.c) there exist $b_3, b_4 \in B, s \in S$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \leq b b_3 \gamma_1 s \gamma_2 b_4$.
- (2) For any $a, b, c \in B$, $\gamma_1 \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \leq b \gamma_1 c$.
- (3) For any $a, b, c \in B$, $\gamma_2, \gamma_3 \in \Gamma$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \leq b \gamma_2 s \gamma_3 c$.

Proof. Assume first that B is a bi-base of S. Then

$$S = (B)_b.$$

To show that (1) holds, let $x \in S$. Then

$$x \in B \cup B\Gamma B \cup B\Gamma S\Gamma B.$$

We consider three cases:

Case 1 : $x \in B$. Then x = b for some $b \in B$. This implies $(x)_b \subseteq (b)_b$. Hence, $x \leq_b b$.

Case 2: $x \in B\Gamma B$. Then $x = b_1 \gamma b_2$ for some $b_1, b_2 \in B$ and $\gamma \in \Gamma$. This implies $(x)_b \subseteq (b_1 \gamma b_2)_b$. Hence, $x \leq b b_1 \gamma b_2$.

Case 3: $x \in B\Gamma S\Gamma B$. Then $x = b_3\gamma_1s\gamma_2b_4$ for some $b_3, b_4 \in B, s \in S$ and $\gamma_1, \gamma_2 \in \Gamma$. This implies $(x)_b \subseteq (b_3\gamma_2s\gamma_3b_4)_b$. Hence, $x \leq b_3\gamma_1s\gamma_2b_4$.

The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and Lemma 2.11 (2).

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that B is a bi-base of S. To show that $S = (B)_b$. Clearly, $(B)_b \subseteq S$. By (1),

$$S \subseteq (B)_b$$

and

$$S = (B)_b$$

It remains to show that B is a minimal subset of S with the property: $S = (B)_b$. Suppose that $S = (A)_b$ for some $A \subset B$. Since $A \subset B$, there exists $b \in B \setminus A$. Since $b \in B \subseteq S = (A)_b$ and $b \notin A$, it follows that

$$b \in A\Gamma A \cup A\Gamma S\Gamma A.$$

There are two cases to consider:

Case 1: $b \in A\Gamma A$. Then $b = a_1\gamma_1a_2$ for some $a_1, a_2 \in A$ and $\gamma_1 \in \Gamma$. We have $a_1, a_2 \in B$. Since $b \notin A$, so $b \neq a_1$ and $b \neq a_2$. Since $b = a_1\gamma_1a_2$, $(b)_b \subseteq (a_1\gamma_1a_2)_b$. Hence, $b \leq_b a_1\gamma_1a_2$. This contradicts to (2).

Case 2: $b \in A\Gamma S\Gamma A$. Then $b = a_3\gamma_2 s\gamma_3 a_4$ for some $a_3, a_4 \in A, \gamma_2, \gamma_3 \in \Gamma$ and $s \in S$. Since $b \notin A$, we have $b \neq a_3$ and $b \neq a_4$. Since $A \subset B$, $a_3, a_4 \in B$. Since $b = a_3\gamma_2 s\gamma_3 a_4$, so $(b)_b \subseteq (a_3\gamma_2 s\gamma_3 a_4)_b$. Hence, $b \leq a_3\gamma_2 s\gamma_3 a_4$. This contradicts to (3).

Therefore, B is a bi-base of S as required, and the proof is completed. \Box

Theorem 2.13. Let B be a bi-base of a Γ -semigroup S. Then B is a Γ -subsemigroup of S if and only if for any $a, b \in B$ and $\beta \in \Gamma$, $a\beta b = a$ or $a\beta b = b$.

Proof. Let $a, b \in B$ and $\beta \in \Gamma$. If B is a Γ -subsemigroup of S, then $a\beta b \in B$. Since $a\beta b \in a\Gamma b \cup a\Gamma S\Gamma b$, it follows by Lemma 2.5 that $a\beta b = a$ or $a\beta b = b$. The opposite direction is clear.

Acknowledgements : The second author is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

- I. Fabrici, Two-sided bases of semigroups, Matematický časopis 3 (2009) 181-188.
- [2] M.K. Sen, On Γ-semigroups, Algebra and Its Applications (New Delhi, 1981), Lecture Notes in Pure and Applied Mathematics 91, Decker, New York (1984), 301-308.
- [3] A. Baser, M.Y. Abbasi, On generalized bi-Γ-ideals in Γ-semigroups, Quasigroups and Related Systems 23 (2015) 181-186.
- [4] R. Chinram, On quasi-gamma-ideals in gamma-semigroups, Science Asia 32 (2006) 351-353.
- [5] A.H. Clifford, Totally ordered commutative semigroups, Bulletin of the American Mathematical Society 64 (1958) 305-316.
- [6] R.A. Good, D.R. Hughes, Associated groups for a semigroup, Bulletin of the American Mathematical Society 58 (6) (1952) 624-625.
- [7] A. Iampan, Note on bi-ideals in Γ-semigroups, International Journal of Algebra 3 (2009) 181-188.
- [8] K.M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publicationes Mathematicae Debrecen 16 (1969) 179-185.
- [9] S. Lajos, On the bi-ideals in semigroups, Proceedings of the Japan Academy 45 (1969) 710-712.
- [10] F.E. Masat, A generalization of right simple semigroups, Fundamenta Mathematicae 101 (2) (1978) 159-170.
- [11] M. Petrich, Introduction to Semigroups, Charles E Merrill Publishing Company, Ohio, 1973.
- [12] P. Petro, T. Xhillari, Green's theorem and minimal guasi-ideals in Γsemigroups, International Journal of Algebra 5 (2011) 461-470.

- Thai $J.\ M$ ath. (Special Issue, 2018)/ P. Kummoon and T. Changphas
- [13] N.K. Saha, On Γ-semigroup II, Bulletin of Calcutta Mathematical Society 79 (1987) 331-335.
- [14] N.K. Saha, On Γ-semigroups, Bulletin of Calcutta Mathematical Society 79 (1987) 331-335.
- [15] M.K. Sen, N.K. Saha, On Γ-semigroup I, Bulletin of Calcutta Mathematical Society 78 (1986) 180-186.
- [16] M. Siripitukdet, A. Iampan, On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal 48 (2008) 585-591.
- [17] O. Steinfeld, Quasi-Ideals in Rings and Semigroups, Akadémiai Kiadó, Budapest, 1978.
- [18] T. Tamura, One-sided bases and translations of a semigroup, Mathematica Japonica 3 (1955) 137-141.
- [19] R. Chinram, C. Jirojkul, On bi-Γ-ideals in Γ-semigroups, Songklanakarin Journal of Science and Technology 29 (2007) 231-231.

(Received 4 March 2017) (Accepted 30 July 2017)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th