Bi-Bases of Γ-Semigroups

Pisit Kummoon ${ }^{\dagger}$ and Thawhat $^{\text {Changphas }}{ }^{\dagger, \ddagger \uparrow 1}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Khon Kaen University
Khon Kaen 40002, Thailand
e-mail : pisit_2534@hotmail.com (P. Kummoon)
${ }^{\ddagger}$ Centre of Excellence in Mathematics, CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand
e-mail : thacha@kku.ac.th (T. Changphas)

Abstract

Based on the results of bi-ideals generated by a non-empty subset of a Γ-semigroup S, we introduce in this paper the concept of bi-bases of S. Using the quasi-order on S defined by the principal bi-ideals of S we characterize when a non-empty subset of S is a bi-base of S.

Keywords : Γ-semigroup; bi-ideal; two-sided base; bi-base; quasi-order.
2010 Mathematics Subject Classification : 20M20; 20M17.

1 Introduction and Preliminaries

Let S be a semigroup. A subset A of S is called a two-sided base or simply base of S if it satisfies the following conditions:
(i) $S=A \cup S A \cup A S \cup S A S$;
(ii) if B is a subset of A such that $S=B \cup S B \cup B S \cup S B S$, then $B=A$.

This notion was introduced and studied by Fabrici [1]. Indeed, the author described the structure of semigroups containing two-sided bases.

This is an algebraic structure, generalized the concept of semigroups, called a Γ-semigroup introduced by Sen [2]. This notion has been widely studied, see [3-18]. Let S and Γ be the set of all functions (or mappings) from $\{1,2,3,4,5\}$ into $\{6,7,8\}$, and from $\{6,7,8\}$ into $\{1,2,3,4,5\}$, respectively. It is observed that S is

[^0]not a semigroup under the composition of functions. Consider the operation, for $a, b \in S$ and $\alpha \in \Gamma$, by
$$
(a \alpha b)(x)=a(\alpha(b(x))) \text { for all } x \in\{1,2,3,4,5\}
$$
we have that
(i) $a \alpha b \in S$ for all $a, b \in S$ and $\alpha \in \Gamma$;
(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Formally, let S and Γ be any two non-empty sets. Then S is called a Γ semigroup 15 if, for any $a, b \in S$ and $\alpha \in \Gamma$, $a \alpha b$ is defined, and the following hold:
(i) $a \alpha b \in S$ for all $a, b \in S$ and $\alpha \in \Gamma$;
(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Example 1.1. 19 Let $S:=[0,1]$ be a unit interval and $\Gamma:=\left\{\left.\frac{1}{n} \right\rvert\, n\right.$ is a positive interger $\}$. Then S is a Γ-semigroup under the usual multiplication.

The purpose of this paper is to introduce the concept of bi-bases of a Γ semigroup, and extend some of Fabrici's results.

Let S be a Γ-semigroup, and A, B non-empty subsets of S. The set product $A \Gamma B$ is defined by:

$$
A \Gamma B:=\{a \alpha b \mid a \in A, b \in B, \alpha \in \Gamma\}
$$

For $a \in S$, we write $B \Gamma a$ for $B \Gamma\{a\}$, and similarly for $a \Gamma B$.
A non-empty subset A of a Γ-semigroup S is called a Γ-subsemigroup [2] of S if

$$
A \Gamma A \subseteq A
$$

That is, $a \alpha a^{\prime} \in A$ for all $a, a^{\prime} \in A$ and $\alpha \in \Gamma$.
A Γ-subsemigroup B of a Γ-semigroup S is called a bi- Γ-ideal 19 of S if

$$
B \Gamma S \Gamma B \subseteq B
$$

This notion generalizes the notion of one-sided and two-sided Γ-ideals of S.
Let S be a Γ-semigroup, and B_{i} a bi- Γ-ideal of S for all $i \in I$. It is known that if $\bigcap_{i \in I} B_{i} \neq \emptyset$, then $\bigcap_{i \in I} B_{i}$ is a bi- Γ-ideal of S (see, 19). Moreover, for a non-empty subset A of S, the intersection of all bi- Γ-ideals of S, denoted by $(A)_{b}$, is the smallest bi- Γ-ideal of S containing A. And it is of the form

$$
(A)_{b}=A \cup A \Gamma A \cup A \Gamma S \Gamma A
$$

(see, 19). In particular, for $A=\{a\}$, we write $(\{a\})_{b}$ by $(a)_{b}$.
Example 1.2. 19] Let \mathbb{N} be the set of all positive integers and $\Gamma=\{5\}$. Then \mathbb{N} is a Γ-semigroup under usual addition. We have:
(1) For $A=\{2\},(A)_{b}=\{2\} \cup\{9\} \cup\{15,16,17, \ldots\}$.
(2) For $B=\{3,4\},(B)_{b}=\{3,4\} \cup\{11,12,13\} \cup\{17,18,19, \ldots\}$.

2 Main Results

We begin this section with the following definition of bi-bases of a Γ-semigroup.
Definition 2.1. Let S be a Γ-semigroup. A subset B of S is called a bi-base of S if it satisfies the following two conditions:
(i) $S=(B)_{b}$;
(ii) if A is a subset of B such that $S=(A)_{b}$, then $A=B$.

Example 2.2. Consider the Γ-semigroup $S=\{a, b, c, d, e\}$ with $\Gamma=\{\alpha\}$ and

α	a	b	c	d	e
a	b	a	d	c	a
b	a	b	c	d	b
c	d	c	d	c	c
d	c	d	c	d	d
e	a	b	c	d	e

Then $B=\{e\}$ is a bi-base of S. But $B^{\prime}=\{b\}$ is not a bi-base of S.
Example 2.3. Consider the Γ-semigroup $S=\{a, b, c, d\}$ with $\Gamma=\{\gamma, \delta\}$ and

γ	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	c	d
d	d	c	d	c

δ	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	d	c
d	c	d	c	d

Then $B_{1}=\{a\}$ and $B_{2}=\{b\}$ are bi-bases of S. But $B_{2}^{\prime}=\{a, b\}$ is not a bi-base of S.

Lemma 2.4. Let B be a bi-base of $a \Gamma$-semigroup S. Let $a, b \in B$. If $a \in$ $b \Gamma b \cup b \Gamma S \Gamma b$, then $a=b$.

Proof. Assume that $a \in b \Gamma b \cup b \Gamma S \Gamma b$, and suppose that $a \neq b$. Let

$$
A:=B \backslash\{a\}
$$

Then $A \subset B$. Since $a \neq b, b \in A$. We will show that $(A)_{b}=S$. Clearly, $(A)_{b} \subseteq S$. We have

$$
(B)_{b}=S
$$

Let $x \in S$. Then

$$
x \in B \cup B \Gamma B \cup B \Gamma S \Gamma B .
$$

Case 1: $x \in B$.
Subcase 1.1: $x \neq a$. Then $x \in B \backslash\{a\}=A \subseteq(A)_{b}$.

Subcase 1.2: $x=a$. By assumption, we have

$$
x=a \in b \Gamma b \cup b \Gamma S \Gamma b \subseteq A \Gamma A \cup A \Gamma S \Gamma A \subseteq(A)_{b}
$$

Case 2: $x \in B \Gamma B$. Then $x=b_{1} \gamma b_{2}$ for some $b_{1}, b_{2} \in B$ and $\gamma \in \Gamma$.
Subcase 2.1: $b_{1}=a$ and $b_{2}=a$. By assumption, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(b \Gamma b \cup b \Gamma S \Gamma b) \Gamma(b \Gamma b \cup b \Gamma S \Gamma b) \\
& =b \Gamma b \Gamma b \Gamma b \cup b \Gamma b \Gamma b \Gamma S \Gamma b \cup b \Gamma S \Gamma b \Gamma b \Gamma b \cup b \Gamma S \Gamma b \Gamma b \Gamma S \Gamma b \\
& \subseteq A \Gamma A \Gamma A \Gamma A \cup A \Gamma A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma A \Gamma A \\
& \cup A \Gamma S \Gamma A \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b}
\end{aligned}
$$

Subcase 2.2: $b_{1} \neq a$ and $b_{2}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(B \backslash\{a\}) \Gamma(b \Gamma b \cup b \Gamma S \Gamma b) \\
& =(B \backslash\{a\}) \Gamma b \Gamma b \cup(B \backslash\{a\}) \Gamma b \Gamma S \Gamma b \\
& \subseteq A \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.3: $b_{1}=a$ and $b_{2} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(b \Gamma b \cup b \Gamma S \Gamma b) \Gamma(B \backslash\{a\}) \\
& =b \Gamma b \Gamma(B \backslash\{a\}) \cup b \Gamma S \Gamma b \Gamma(B \backslash\{a\}) \\
& \subseteq A \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.4: $b_{1} \neq a$ and $b_{2} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{1} \gamma b_{2} \in(B \backslash\{a\}) \Gamma(B \backslash\{a\})=A \Gamma A \subseteq(A)_{b}
$$

Case 3: $x \in B \Gamma S \Gamma B$. Then $x=b_{3} \gamma_{1} s \gamma_{2} b_{4}$ for some $b_{3}, b_{4} \in B, \gamma_{1}, \gamma_{2} \in \Gamma$ and $s \in S$.

Subcase 3.1: $b_{3}=a$ and $b_{4}=a$. By assumption, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} \in & (b \Gamma b \cup b \Gamma S \Gamma b) \Gamma S \Gamma(b \Gamma b \cup b \Gamma S \Gamma b) \\
= & b \Gamma b \Gamma S \Gamma b \Gamma b \cup b \Gamma b \Gamma S \Gamma b \Gamma S \Gamma b \cup b \Gamma S \Gamma b \Gamma S \Gamma b \Gamma b \\
& \cup b \Gamma S \Gamma b \Gamma S \Gamma b \Gamma S \Gamma b \\
\subseteq & A \Gamma A \Gamma S \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma A \\
& \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \\
\subseteq & A \Gamma S \Gamma A \\
\subseteq & (A)_{b} .
\end{aligned}
$$

Subcase 3.2: $b_{3} \neq a$ and $b_{4}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{3} & \in(B \backslash\{a\}) \Gamma S \Gamma(b \Gamma b \cup b \Gamma S \Gamma b) \\
& =(B \backslash\{a\}) \Gamma S \Gamma b \Gamma b \cup(B \backslash\{a\}) \Gamma S \Gamma b \Gamma S \Gamma b \\
& \subseteq A \Gamma S \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.3: $b_{3}=a$ and $b_{4} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} & \in(b \Gamma b \cup b \Gamma S \Gamma b) \Gamma S \Gamma(B \backslash\{a\}) \\
& =b \Gamma b \Gamma S \Gamma(B \backslash\{a\}) \cup b \Gamma S \Gamma b \Gamma S \Gamma(B \backslash\{a\}) \\
& \subseteq A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b}
\end{aligned}
$$

Subcase 3.4: $b_{3} \neq a$ and $b_{4} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} \in(B \backslash\{a\}) \Gamma S \Gamma(B \backslash\{a\})=A \Gamma S \Gamma A \subseteq(A)_{b}
$$

This implies $(A)_{b}=S$. This is a contradiction. Therefore, $a=b$.
Lemma 2.5. Let B be a bi-base of a Γ-semigroup S. Let $a, b, c \in B$. If $a \in$ $c \Gamma b \cup c \Gamma S \Gamma b$, then $a=b$ or $a=c$.

Proof. Assume that $a \in c \Gamma b \cup c \Gamma S \Gamma b$, and suppose that $a \neq b$ and $a \neq c$. Let

$$
A:=B \backslash\{a\}
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(A)_{b}=S$. Clearly, $(A)_{b} \subseteq S$. We have

$$
(B)_{b}=S
$$

Let $x \in S$. Then

$$
x \in B \cup B \Gamma B \cup B \Gamma S \Gamma B
$$

Case 1: $x \in B$.
Subcase 1.1: $x \neq a$. Then $x \in B \backslash\{a\}=A \subseteq(A)_{b}$.
Subcase 1.2: $x=a$. By assumption, we have

$$
x=a \in c \Gamma b \cup c \Gamma S \Gamma b \subseteq A \Gamma A \cup A \Gamma S \Gamma A \subseteq(A)_{b}
$$

Case 2: $x \in B \Gamma B$. Then $x=b_{1} \gamma b_{2}$ for some $b_{1}, b_{2} \in B$ and $\gamma \in \Gamma$.

Subcase 2.1: $b_{1}=a$ and $b_{2}=a$. By assumption, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(c \Gamma b \cup c \Gamma S \Gamma b) \Gamma(c \Gamma b \cup c \Gamma S \Gamma b) \\
& =c \Gamma b \Gamma c \Gamma b \cup c \Gamma b \Gamma c \Gamma S \Gamma b \cup c \Gamma S \Gamma b \Gamma c \Gamma b \cup c \Gamma S \Gamma b \Gamma c \Gamma S \Gamma b \\
\subseteq & A \Gamma A \Gamma A \Gamma A \cup A \Gamma A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma A \Gamma A \\
& \cup A \Gamma S \Gamma A \Gamma A \Gamma S \Gamma A \\
\subseteq & A \Gamma S \Gamma A \\
\subseteq & (A)_{b}
\end{aligned}
$$

Subcase 2.2: $b_{1} \neq a$ and $b_{2}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(B \backslash\{a\}) \Gamma(c \Gamma b \cup c \Gamma S \Gamma b) \\
& =(B \backslash\{a\}) \Gamma c \Gamma b \cup(B \backslash\{a\}) \Gamma c \Gamma S \Gamma b \\
& \subseteq A \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.3: $b_{1}=a$ and $b_{2} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} \gamma b_{2} & \in(c \Gamma b \cup c \Gamma S \Gamma b) \Gamma(B \backslash\{a\}) \\
& =c \Gamma b \Gamma(B \backslash\{a\}) \cup c \Gamma S \Gamma b \Gamma(B \backslash\{a\}) \\
& \subseteq A \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.4: $b_{1} \neq a$ and $b_{2} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{1} \gamma b_{2} \in(B \backslash\{a\}) \Gamma(B \backslash\{a\})=A \Gamma A \subseteq(A)_{b}
$$

Case 3: $x \in B \Gamma S \Gamma B$. Then $x=b_{3} \gamma_{1} s \gamma_{2} b_{4}$ for some $b_{3}, b_{4} \in B, \gamma_{1}, \gamma_{2} \in \Gamma$ and $s \in S$.

Subcase 3.1: $b_{3}=a$ and $b_{4}=a$. By assumption, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} \in & (c \Gamma b \cup c \Gamma S \Gamma b) \Gamma S \Gamma(c \Gamma b \cup c \Gamma S \Gamma b) \\
= & c \Gamma b \Gamma S \Gamma c \Gamma b \cup c \Gamma b \Gamma S \Gamma c \Gamma S \Gamma b \cup c \Gamma S \Gamma b \Gamma S \Gamma c \Gamma b \\
& \cup c \Gamma S \Gamma b \Gamma S \Gamma c \Gamma S \Gamma b \\
\subseteq & A \Gamma A \Gamma S \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma A \\
& \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \\
\subseteq & A \Gamma S \Gamma A \\
\subseteq & (A)_{b}
\end{aligned}
$$

Subcase 3.2: $b_{3} \neq a$ and $b_{4}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{3} & \in(B \backslash\{a\}) \Gamma S \Gamma(c \Gamma b \cup c \Gamma S \Gamma b) \\
& =(B \backslash\{a\}) \Gamma S \Gamma c \Gamma b \cup(B \backslash\{a\}) \Gamma S \Gamma c \Gamma S \Gamma b \\
& \subseteq A \Gamma S \Gamma A \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.3: $b_{3}=a$ and $b_{4} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} & \in(c \Gamma b \cup c \Gamma S \Gamma b) \Gamma S \Gamma(B \backslash\{a\}) \\
& =c \Gamma b \Gamma S \Gamma(B \backslash\{a\}) \cup c \Gamma S \Gamma b \Gamma S \Gamma(B \backslash\{a\}) \\
& \subseteq A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b}
\end{aligned}
$$

Subcase 3.4: $b_{3} \neq a$ and $b_{4} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{3} \gamma_{1} s \gamma_{2} b_{4} \in(B \backslash\{a\}) \Gamma S \Gamma(B \backslash\{a\})=A \Gamma S \Gamma A \subseteq(A)_{b}
$$

This implies $(A)_{b}=S$. This is a contradiction. Therefore, $a=b$.
To characterised when a non-empty subset of a Γ-semigroup is a bi-base of the Γ-semigroup we need the quasi-order defined as follows:

Definition 2.6. Let S be a Γ-semigroup. Define a quasi-order on S by, for any $a, b \in S$,

$$
a \leqslant_{b} b: \Leftrightarrow(a)_{b} \subseteq(b)_{b} .
$$

The following examples show that the order \leqslant_{b} defined above is not, in general, a partial order.

Example 2.7. From Example 2.3, we have that $(a)_{b} \subseteq(b)_{b}$ (i.e., $a \leqslant_{b} b$) and $(b)_{b} \subseteq(a)_{b}$ (i.e., $b \leqslant_{b} a$), but $a \neq b$. Thus, \leqslant_{b} is not a partial order on S.

Example 2.8. Consider the Γ-semigroup $S=\{u, v, x, y, z\}$ with $\Gamma=\{\alpha, \beta\}$ and

α	u	v	x	y	z
u	u	u	u	u	u
v	u	z	y	x	v
x	u	y	v	z	x
y	u	x	z	v	y
z	u	v	x	y	z

β	u	v	x	y	z
u	u	u	u	u	u
v	u	y	v	z	x
x	u	v	x	y	z
y	u	z	y	x	v
z	u	x	z	v	y

We have that $(v)_{b} \subseteq(x)_{b}$ (i.e., $\left.v \leqslant_{b} x\right)$ and $(x)_{b} \subseteq(v)_{b}$ (i.e., $x \leqslant_{b} v$). But $v \neq x$. Thus, \leqslant_{b} is not a partial order on S.

Lemma 2.9. Let B be a bi-base of a Γ-semigroup S. If $a, b \in B$ such that $a \neq b$, then neither $a \leqslant_{b} b$, nor $b \leqslant_{b} a$.

Proof. Assume that $a, b \in B$ such that $a \neq b$. Suppose that $a \leqslant b b$; then

$$
a \in(a)_{b} \subseteq(b)_{b} .
$$

By assumption, we have $a \neq b$, so

$$
a \in b \Gamma b \cup b \Gamma S \Gamma b .
$$

By Lamma 2.4, $a=b$. This is a contradiction. The case $b \leqslant b a$ can be proved similarly.

Lemma 2.10. Let B be a bi-base of a Γ-semigroup S. Let $a, b, c \in B$ and $\gamma_{1}, \gamma_{2} \in$ Γ and $s \in S$:
(1) If $a \in\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} c\right\}$, then $a=b$ or $a=c$.
(2) If $a \in\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\}$, then $a=$ b or $a=c$.

Proof. (1) Assume that $a \in\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} c\right\}$, and suppose that $a \neq b$ and $a \neq c$. Let

$$
A:=B \backslash\{a\} .
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_{b} \subseteq(A)_{b}$, if suffices to show that $B \subseteq(A)_{b}$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in(A)_{b}$. If $x=a$, then by assumption we have

$$
\begin{aligned}
x=a & \in\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} c\right\} \\
& \subseteq A \Gamma A \cup A \Gamma A \Gamma A \Gamma A \cup A \Gamma A \Gamma S \Gamma A \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b} .
\end{aligned}
$$

Thus, $B \subseteq(A)_{b}$. This implies $(B)_{b} \subseteq(A)_{b}$. Since B is a bi-base of S,

$$
S=(B)_{b} \subseteq(A)_{b} \subseteq S
$$

Therefore, $S=(A)_{b}$. This is a contradiction.
(2) Assume that $a \in\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\}$, and suppose that $a \neq b$ and $a \neq c$. Let

$$
A:=B \backslash\{a\} .
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_{b} \subseteq(A)_{b}$, if suffices to show that $B \subseteq(A)_{b}$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in(A)_{b}$. If $x=a$, then by assumption we have

$$
\begin{aligned}
x=a & \in\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\} \\
& \subseteq A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma A \Gamma S \Gamma A \cup A \Gamma S \Gamma A \Gamma S \Gamma A \Gamma S \Gamma A \\
& \subseteq A \Gamma S \Gamma A \\
& \subseteq(A)_{b}
\end{aligned}
$$

Thus, $B \subseteq(A)_{b}$. This implies $(B)_{b} \subseteq(A)_{b}$. Since B is a bi-base of S,

$$
S=(B)_{b} \subseteq(A)_{b} \subseteq S
$$

Therefore, $S=(A)_{b}$. This is a contradiction.

Lemma 2.11. Let B be a bi-base of a Γ-semigroup S.
(1) For any $a, b, c \in B, \gamma_{1} \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \not{ }_{b} b \gamma_{1} c$.
(2) For any $a, b, c \in B, \gamma_{2}, \gamma_{3} \in \Gamma$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not{ }_{k} b \gamma_{2} s \gamma_{3} c$.

Proof. (1) For any $a, b, c \in B, \gamma_{1} \in \Gamma$, let $a \neq b$ and $a \neq c$. Suppose that

$$
a \leqslant_{b} b \gamma_{1} c
$$

we have

$$
a \in(a)_{b} \subseteq\left(b \gamma_{1} c\right)_{b}=\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma\left\{b \gamma_{1} c\right\} \cup\left\{b \gamma_{1} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} c\right\}
$$

By Lamma 2.10 (1), it follows that $a=b$ or $a=c$. This contradicts to assumption.
(2) For any $a, b, c \in B, \gamma_{2}, \gamma_{3} \in \Gamma$ and $s \in S$, let $a \neq b$ and $a \neq c$. Suppose that

$$
a \leqslant b b \gamma_{1} s \gamma_{2} c
$$

we have

$$
\begin{aligned}
a \in(a)_{b} & \subseteq\left(b \gamma_{1} s \gamma_{2} c\right)_{b} \\
& =\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\} \cup\left\{b \gamma_{1} s \gamma_{2} c\right\} \Gamma S \Gamma\left\{b \gamma_{1} s \gamma_{2} c\right\}
\end{aligned}
$$

By Lamma 2.10 (2), it follows that $a=b$ or $a=c$. This contradicts to assumption.

The following theorem characterizes when a non-empty subset of a Γ-semigroup S is a bi-base of S.

Theorem 2.12. A non-empty subset B of $a \Gamma$-semigroup S is a bi-base of S if and only if B satisfies the following conditions:
(1) For any $x \in S$,
(1.a) there exists $b \in B$ such that $x \leqslant_{b} b$; or
(1.b) there exist $b_{1}, b_{2} \in B$ and $\gamma \in \Gamma$ such that $x \leqslant_{b} b_{1} \gamma b_{2}$; or
(1.c) there exist $b_{3}, b_{4} \in B, s \in S$ and $\gamma_{1}, \gamma_{2} \in \Gamma$ such that $x \leqslant b b_{3} \gamma_{1} s \gamma_{2} b_{4}$.
(2) For any $a, b, c \in B, \gamma_{1} \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \not ぬ_{b} b \gamma_{1} c$.
(3) For any $a, b, c \in B, \gamma_{2}, \gamma_{3} \in \Gamma$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \nless b b \gamma_{2} s \gamma_{3} c$.
Proof. Assume first that B is a bi-base of S. Then

$$
S=(B)_{b} .
$$

To show that (1) holds, let $x \in S$. Then

$$
x \in B \cup B \Gamma B \cup B \Gamma S \Gamma B .
$$

We consider three cases:
Case 1: $x \in B$. Then $x=b$ for some $b \in B$. This implies $(x)_{b} \subseteq(b)_{b}$. Hence, $x \leqslant b b$.

Case 2: $x \in В Г В$. Then $x=b_{1} \gamma b_{2}$ for some $b_{1}, b_{2} \in B$ and $\gamma \in \Gamma$. This implies $(x)_{b} \subseteq\left(b_{1} \gamma b_{2}\right)_{b}$. Hence, $x \leqslant_{b} b_{1} \gamma b_{2}$.

Case 3: $x \in B Г S Г B$. Then $x=b_{3} \gamma_{1} s \gamma_{2} b_{4}$ for some $b_{3}, b_{4} \in B, s \in S$ and $\gamma_{1}, \gamma_{2} \in \Gamma$. This implies $(x)_{b} \subseteq\left(b_{3} \gamma_{2} s \gamma_{3} b_{4}\right)_{b}$. Hence, $x \leqslant b b_{3} \gamma_{1} s \gamma_{2} b_{4}$.

The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and Lemma 2.11 (2).

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that B is a bi-base of S. To show that $S=(B)_{b}$. Clearly, $(B)_{b} \subseteq S$. By (1),

$$
S \subseteq(B)_{b},
$$

and

$$
S=(B)_{b} .
$$

It remains to show that B is a minimal subset of S with the property: $S=(B)_{b}$. Suppose that $S=(A)_{b}$ for some $A \subset B$. Since $A \subset B$, there exists $b \in B \backslash A$. Since $b \in B \subseteq S=(A)_{b}$ and $b \notin A$, it follows that

$$
b \in A \Gamma A \cup A \Gamma S \Gamma A
$$

There are two cases to consider:
Case 1: $b \in A \Gamma A$. Then $b=a_{1} \gamma_{1} a_{2}$ for some $a_{1}, a_{2} \in A$ and $\gamma_{1} \in \Gamma$. We have $a_{1}, a_{2} \in B$. Since $b \notin A$, so $b \neq a_{1}$ and $b \neq a_{2}$. Since $b=a_{1} \gamma_{1} a_{2},(b)_{b} \subseteq\left(a_{1} \gamma_{1} a_{2}\right)_{b}$. Hence, $b \leqslant_{b} a_{1} \gamma_{1} a_{2}$. This contradicts to (2).

Case 2: $b \in A \Gamma S \Gamma A$. Then $b=a_{3} \gamma_{2} s \gamma_{3} a_{4}$ for some $a_{3}, a_{4} \in A, \gamma_{2}, \gamma_{3} \in \Gamma$ and $s \in S$. Since $b \notin A$, we have $b \neq a_{3}$ and $b \neq a_{4}$. Since $A \subset B, a_{3}, a_{4} \in B$. Since $b=a_{3} \gamma_{2} s \gamma_{3} a_{4}$, so $(b)_{b} \subseteq\left(a_{3} \gamma_{2} s \gamma_{3} a_{4}\right)_{b}$. Hence, $b \leqslant b a_{3} \gamma_{2} s \gamma_{3} a_{4}$. This contradicts to (3).

Therefore, B is a bi-base of S as required, and the proof is completed.

Theorem 2.13. Let B be a bi-base of $a \Gamma$-semigroup S. Then B is a Γ-subsemigroup of S if and only if for any $a, b \in B$ and $\beta \in \Gamma, a \beta b=a$ or $a \beta b=b$.

Proof. Let $a, b \in B$ and $\beta \in \Gamma$. If B is a Γ-subsemigroup of S, then $a \beta b \in B$. Since $a \beta b \in a \Gamma b \cup a \Gamma S \Gamma b$, it follows by Lemma 2.5 that $a \beta b=a$ or $a \beta b=b$. The opposite direction is clear.

Acknowledgements : The second author is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

[1] I. Fabrici, Two-sided bases of semigroups, Matematický časopis 3 (2009) 181188.
[2] M.K. Sen, On Γ-semigroups, Algebra and Its Applications (New Delhi, 1981), Lecture Notes in Pure and Applied Mathematics 91, Decker, New York (1984), 301-308.
[3] A. Baser, M.Y. Abbasi, On generalized bi- Γ-ideals in Γ-semigroups, Quasigroups and Related Systems 23 (2015) 181-186.
[4] R. Chinram, On quasi-gamma-ideals in gamma-semigroups, Science Asia 32 (2006) 351-353.
[5] A.H. Clifford, Totally ordered commutative semigroups, Bulletin of the American Mathematical Society 64 (1958) 305-316.
[6] R.A. Good, D.R. Hughes, Associated groups for a semigroup, Bulletin of the American Mathematical Society 58 (6) (1952) 624-625.
[7] A. Iampan, Note on bi-ideals in Γ-semigroups, International Journal of Algebra 3 (2009) 181-188.
[8] K.M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publicationes Mathematicae Debrecen 16 (1969) 179-185.
[9] S. Lajos, On the bi-ideals in semigroups, Proceedings of the Japan Academy 45 (1969) 710-712.
[10] F.E. Masat, A generalization of right simple semigroups, Fundamenta Mathematicae 101 (2) (1978) 159-170.
[11] M. Petrich, Introduction to Semigroups, Charles E Merrill Publishing Company, Ohio, 1973.
[12] P. Petro, T. Xhillari, Green's theorem and minimal guasi-ideals in Γ semigroups, International Journal of Algebra 5 (2011) 461-470.
[13] N.K. Saha, On Γ-semigroup II, Bulletin of Calcutta Mathematical Society 79 (1987) 331-335.
[14] N.K. Saha, On Γ-semigroups, Bulletin of Calcutta Mathematical Society 79 (1987) 331-335.
[15] M.K. Sen, N.K. Saha, On Γ-semigroup I, Bulletin of Calcutta Mathematical Society 78 (1986) 180-186.
[16] M. Siripitukdet, A. Iampan, On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal 48 (2008) 585-591.
[17] O. Steinfeld, Quasi-Ideals in Rings and Semigroups, Akadémiai Kiadó, Budapest, 1978.
[18] T. Tamura, One-sided bases and translations of a semigroup, Mathematica Japonica 3 (1955) 137-141.
[19] R. Chinram, C. Jirojkul, On bi- Γ-ideals in Γ-semigroups, Songklanakarin Journal of Science and Technology 29 (2007) 231-231.
(Received 4 March 2017)
(Accepted 30 July 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.

