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1 Introduction

Let A be a nonempty set and n a natural number. The set Atn = n × A
where n := {1, . . . , n} is called the n-th copower. Dualizing the concept of n-ary
operation we obtain that of an n-ary cooperation on A is a mapping fA : A→ Atn

and the number n is called the arity of the cooperation fA. Each n-ary cooperation
fA is uniquely determined by the pair of mappings (fA1 , f

A
2 ) where fA1 : A → n,

fA2 : A → A and fA(a) = (fA1 (a), fA2 (a)). The mappings fA1 and fA2 is called the
labelling and the mapping of fA, respectively, (see, [2]). An indexed coalgebra
is a pair (A; (fAi )i∈I), where fAi is an ni-ary cooperation defined on A, and τ =
(ni)i∈I is called the type of the coalgebra, (see, [1, 3, 4]). This particular structure
was introduced by Drbohlav and the Birkhoff’s variety theorem for coalgebra was
proven [5].

Let cO
(n)
A be the set of all n-ary cooperations defined on A. In [2], Csákány

introduced the notion of superposition as follows. If fA ∈ cO
(n)
A and gA1 , . . . , g

A
n ∈

cO
(k)
A , then define a k-ary cooperation fA[gA1 , . . . , g

A
n ] : A→ Atk by

a 7→ ((gAfA
1 (a))1(fA2 (a)), (gAfA

1 (a))2(fA2 (a)))

for all a ∈ A. We call the cooperation fA[gA1 , . . . , g
A
n ] a superposition of fA and

gA1 , . . . , g
A
n . Instead of fA[gA1 , . . . , g

A
n ] we also write compnk (fA, gA1 , . . . , g

A
n ). For

example, let A = {a1, a2, a3} and fA, gA1 , g
A
2 , g

A
3 : A→ At3 by

fA(a1) = (2, a2) gA1 (a1) = (2, a2) gA2 (a1) = (2, a2) gA3 (a1) = (3, a1)
fA(a2) = (3, a1) gA1 (a2) = (3, a1) gA2 (a2) = (3, a1) gA3 (a2) = (3, a2)
fA(a3) = (1, a3) gA1 (a3) = (1, a3) gA2 (a1) = (2, a3) gA3 (a3) = (3, a2).

We can see that fA1 (ai) and fA2 (ai), 1 ≤ i ≤ 3, are a natural number in the first
and an element of A in the second component of fA(ai), respectively. The labelling
and the mapping of gA1 , g

A
2 , g

A
3 can be considered similarly. Thus,

fA[gA1 , g
A
2 , g

A
3 ](a1) = ((gA2 )1(a2), (gA2 )2(a2)) = (3, a1),

fA[gA1 , g
A
2 , g

A
3 ](a2) = ((gA3 )1(a1), (gA3 )2(a1)) = (3, a1),

and
fA[gA1 , g

A
2 , g

A
3 ](a3) = ((gA1 )1(a3), (gA1 )2(a3)) = (1, a3).

The injection ιn,Ai are special cooperations which are defined by ιn,Ai : A → Atn

with a 7→ (i, a) for 1 ≤ i ≤ n. Then we obtain a multi-based algebra

((cO
(n)
A )n≥1; (compnk )k,n≥1, (ι

n,A
i )1≤i≤n).

In [2], Csákány mentioned that it is a clone.
Coalgebras are pairs consisting of a nonempty set and a set of cooperations de-

fined on this set. In [1], K. Denecke and K. Saengsura defined terms for coalgebras,
coidentities and cohyperidentities. These concepts can be applied to give a new
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solution of the completeness problem for clones of cooperations defined on a two-
element set and to separate clones of cooperations by coidentities. The concepts
of coidentities and cohyperidentities, help to solve the functional completeness
problem, are defined by coterm.

Let τ = (ni)i∈I be an indexed family of natural numbers and let (fi)i∈I be an
indexed set of cooperation symbols. To each cooperation symbol we assign ni as
its arity. Let {enj : n ∈ N, 1 ≤ j ≤ n} be a set of symbols which is disjoint from the
set {fi : i ∈ I}. To each enj we assign the positive integer n as its arity. Coterm of
type τ are defined by the following recursion:

(i) For every i ∈ I, the cooperation symbol fi is an ni-ary coterm of type τ .

(ii) For every n ∈ N and 1 ≤ j ≤ n, the symbol enj is an n-ary coterm of type τ .

(iii) If t1, . . . , tni
are m-ary coterms of type τ , then fi[t1, . . . , tni

] is an m-
ary coterm of type τ and if t1, . . . , tn are m-ary coterms of type τ , then
enj [t1, . . . , tn] is an m-ary coterm of type τ where 1 ≤ j ≤ n.

Let cT(n)
τ be the set of all n-ary coterms of type τ and let cTτ :=

⋃
n∈N cT(n)

τ be the
set of all coterms of type τ . For simply, we write the set {enj : n ∈ N, 1 ≤ j ≤ n}
by E. Let n ∈ N, we denote the set {enj : 1 ≤ j ≤ n} by En.

Definition 1.1. For each m,n ∈ N. A superposition of coterms Snm : cT(n)
τ ×

(cT(m)
τ )n → cT(m)

τ defined inductively by the following steps;

(i) if t = eni , 1 ≤ i ≤ n, then Snm(t, t1, . . . , tn) := ti where t1, . . . , tn ∈ cT(m)
τ ,

(ii) if t = fi is an ni-ary cooperation symbol, then Sni
ni

(t, eni
1 , . . . , e

ni
ni

) := fi,

(iii) if t = gj is an nj-ary cooperation symbol, then

S
nj
m (t, t1, . . . , tnj ) := gj [t1, . . . , tnj ] where t1, . . . , tnj ∈ cT(m)

τ ,

(iv) if t = epj [s1, . . . , sp] where s1, . . . , sp are n-ary coterms and assume that

Snm(sk, t1, . . . , tn) are already defined for t1, . . . , tn ∈ cT(m)
τ , 1 ≤ k ≤ p, then

Snm(t, t1, . . . , tn) := epj [S
n
m(s1, t1, . . . , tn), . . . , Snm(sp, t1, . . . , tn)],

(v) if t = fi[s1, . . . , sni
] where fi is an ni-ary cooperation symbol, s1, . . . , sni

are n-ary coterms and assume that Snm(sk, t1, . . . , tn) are already defined for

t1, . . . , tn ∈ cT(m)
τ , 1 ≤ k ≤ ni, then

Snm(t, t1, . . . , tn) := fi[S
n
m(s1, t1, . . . , tn), . . . , Snm(sni , t1, . . . , tn)].

The above definition is defined slightly different from [1,3]. Indeed, the prop-
erty (iv) is added since an n-ary coterm of type τ can start with symbol epj for

p ∈ N, 1 ≤ j ≤ p. For instance, the binary coterm t can be written by e32[e22, e
2
1, e

2
2].

In [1], the authors proved that the multi-based algebra

((cT (n)
τ )n≥1; (Snm)m,n≥1, (e

n
j )1≤j≤n)

is a clone. That is, it satisfied the conditions
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(C1) Ŝpm(z, Ŝnm(y1, x1, . . . , xn), . . . , Ŝnm(yp, x1, . . . , xn))

≈ Ŝnm(Ŝpm(z, y1, . . . , yp), x1, . . . , xn),
(m,n, p ∈ N),

(C2) Ŝnm(eni , x1, . . . , xn) ≈ xi, m ∈ N, 1 ≤ i ≤ n,

(C3) Ŝnn(y, en1 , . . . , e
n
n) ≈ y, (n ∈ N).

Here Ŝnm, Ŝ
p
m, Ŝ

n
n and eni are operation symbols corresponding to the clone type.

The concept of cohypersubstitution was introduced in [1] as making precise
the concept of cohyperidentities.

Definition 1.2. A cohypersubstitution of type τ is a mapping σ : {fi : i ∈ I}∪E →
cTτ which maps each ni-ary cooperation symbols of type τ to an ni-ary coterm of
this type and σ(e) = e if e ∈ E. Any cohypersubstitution σ can be extended to a
mapping σ̂ : cTτ → cTτ on the set of all coterms of type τ inductively defined as
follows:

(i) σ̂[fi] := fi for all i ∈ I,

(ii) σ̂[eni ] := eni for each n ∈ N and 1 ≤ i ≤ n,

(iii) σ̂[eni [t1, . . . , tn]] := σ̂[ti] for each n ∈ N and 1 ≤ i ≤ n,

(iv) σ̂[fi[t1, . . . , tni ]] := Sni
n (σ(fi), σ̂[t1], . . . , σ̂[tni ]).

This definition is also slightly different from [1,3] by the same reason as defining
superposition of coterms. Moreover, we set σ(e) = e for all e ∈ E. We denote by
cHyp(τ) the set of all cohypersubstitutions of type τ . In [1], the authors defined
a binary operation ◦C on cTτ by σ1 ◦C σ2 := σ̂1 ◦ σ2 for all σ1, σ2 ∈ cTτ where ◦
is a usual composition of mapping. They showed that the structure cHyp(τ) :=
(cHyp(τ); ◦C, σid) is a monoid where σid is an identity cohypersubstitution defined
by σid(fi) = fi for all i ∈ I.

In semigroup theory, it is of interest to consider various type of its elements,
including regular, idempotent, completely regular, etc. In [6], the authors char-
acterized idempotent and regular elements of cHyp(2). The characterizations of
idempotent and regular elements of cohypersubstitutions of type (3) and type (n)
was given in [7] and [8], respectively, by D. Boonchari and K. Saengsura.

In this paper, we continue in this vein, by consider the submonoid of cohy-
persubstitutions of type (2, 2), so-called weak projection cohypersubstitutions and
characterize its idempotent elements.

2 Some Submonoids

In this section, we present two submonoids based on various properties of
cohypersubstitutions.

Definition 2.1. A cohypersubstitution σ of type τ is called a projection cohyper-
substitution of type τ if σ(fi) ∈ Eni

for all i ∈ I.
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Denoted by P(τ) the set of all projection cohypersubstitutions of type τ .

Proposition 2.2. An algebra (P(τ) ∪ {σid}; ◦C, σid) is a submonoid of
(cHyp(τ); ◦C, σid).

Proof. Let σ1, σ2 ∈ P(τ) ∪ {σid}.

• If σ1 ∈ P(τ) and σ2 = σid, then

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(fi) = fi = σid(fi).

• If σ1 = σid and σ2 ∈ P(τ), then σ2(fi) = enj for some n ∈ N and 1 ≤ j ≤ n.
Thus,

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(enj ) = enj .

• If σ1, σ2 ∈ P(τ), then σ2(fi) = enj for some n ∈ N and 1 ≤ j ≤ n. Thus,

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(enj ) = enj .

• If σ1 = σid = σ2, then

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(fi) = fi = σid(fi).

Therefore, σ1 ◦Cσ2 ∈ P(τ)∪{σid}. Altogether, we have that (P(τ)∪{σid}; ◦C, σid)
is a submonoid of (cHyp(τ); ◦C, σid).

Definition 2.3. A cohypersubstitution σ of type τ is called a weak projection
cohypersubstitution of type τ if there is i ∈ I such that σ(fi) ∈ Eni

.

Denoted by WP(τ) the set of all weak projection cohypersubstitutions of
type τ .

Proposition 2.4. An algebra (WP(τ) ∪ {σid}; ◦C, σid) is a submonoid of
(cHyp(τ); ◦C, σid).

Proof. Let σ1, σ2 ∈WP(τ) ∪ {σid}.

• If σ1 = σid and σ2 ∈ WP(τ), then there is i ∈ I such that σ2(fi) = enj for
some n ∈ N and 1 ≤ j ≤ n. Thus,

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(enj ) = enj .

• If σ1 ∈ WP(τ) and σ2 = σid, then there is i ∈ I such that σ1(fi) = enj for
some n ∈ N and 1 ≤ j ≤ n. Thus,

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(fi) = fi = σid(fi).
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• If σ1, σ2 ∈WP(τ), then there is i ∈ I such that σ2(fi) = enj for some n ∈ N
and 1 ≤ j ≤ n. Thus,

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(enj ) = enj .

• If σ1 = σid = σ2, then

(σ1 ◦C σ2)(fi) = σ̂1(σ2(fi)) = σ̂1(fi) = fi = σid(fi).

Therefore, σ1 ◦C σ2 ∈WP(τ) ∪ {σid}. Altogether, we have that
(WP(τ) ∪ {σid}; ◦C, σid) is a submonoid of (cHyp(τ); ◦C, σid).

Corollary 2.5. An algebra (P(τ) ∪ {σid}; ◦C, σid) is a submonoid of
(WP(τ) ∪ {σid}; ◦C, σid).

3 Idempotent Elements of Weak Projection
Cohypersubstitutions

For a semigroup S, an element e ∈ S is called an idempotent element of S if
e = ee. We consider the idempotent elements of WP(2, 2). It is clear that every
element of P(2, 2) is idempotent. Thus, we only consider the idempotent elements
of WP(2, 2)rP(2, 2). Let f and g be the binary cooperation symbols. We denote
the cohypersubstitution σ with σ(f) = t1 and σ(g) = t2 by σt1,t2 . We start with
the following proposition:

Proposition 3.1. Let σ(ti)i∈I
be a cohypersubstitution of type τ = (ni)i∈I . Then

the following statements are equivalent:

(i) σ(ti)i∈I
is idempotent;

(ii) σ̂(ti)i∈I
[tj ] = tj for all j ∈ I.

Proof. (i) ⇒ (ii): Let j ∈ I. Then

σ̂(ti)i∈I
[tj ] = σ̂(ti)i∈I

[σ(ti)i∈I
(fj)] = (σ(ti)i∈I

◦C σ(ti)i∈I
)(fj) = σ(ti)i∈I

(fj) = tj .

(ii) ⇒ (i): For each j ∈ I, we obtain

(σ(ti)i∈I
◦C σ(ti)i∈I

)(fj) = σ̂(ti)i∈I
[σ(ti)i∈I

(fj)] = σ̂(ti)i∈I
[tj ] = tj = σ(ti)i∈I

(fj).

Thus, we complete the proof.

For a cohypersubstitution σt1,t2 of WP(2, 2) r P(2, 2) we separate our consid-
eration into four cases:

(i) t1 ∈ E2, t2 6∈ E2 and co(t2) = 1,

(ii) t2 ∈ E2, t1 6∈ E2 and co(t1) = 1,



Idempotent of Weak Projection Cohypersubstitutions 65

(iii) t1 ∈ E2, t2 6∈ E2 and co(t2) > 1,

(iv) t2 ∈ E2, t1 6∈ E2 and co(t1) > 1,

where co(t1) and co(t2) denote the number of all cooperation symbols occurring
in the coterms t1 and t2, respectively. We will start with some notions that used
to prove our main results.

For n ∈ N, 1 ≤ j ≤ n and F be a variable over the two-elements alphabet
{f, g} where ar(F ) denotes the arity of F . We define M i(t), 1 ≤ i ≤ ar(F ) by

(i) if t = enj , then M i(t) = t,

(ii) if t = F , then M i(t) = F ,

(iii) if t = F [s1, . . . , sar(F)] and 1 ≤ i ≤ ar(F ), then M i(t) = M i(si),

(iv) if t = enj [s1, . . . , sn], then M i(t) = M i(sj).

For example, let f, g be binary cooperation symbols and
t = f [g[e21[f, e22], e21], e22[g, e21[e22, e

2
1]]]. Then

M1(t) = M1(f [g[e21[f, e22], e21], e22[g, e21[e22, e
2
1]]])

= M1(g[e21[f, e22], e21])

= M1(e21[f, e22])

= M1(f)

= f,

M2(t) = M2(f [g[e21[f, e22], e21], e22[g, e21[e22, e
2
1]]])

= M2(e22[g, e21[e22, e
2
1]])

= M2(e21[e22, e
2
1])

= M2(e22)

= e22.

For n ∈ N, 1 ≤ j ≤ n and F be a variable over the two-element alphabet
{f, g} where ar(F ) denotes the arity of F . For a coterm t, we let inn(t) be the set
of inner coterm of the coterm t defined inductively by the following,

(i) if t = F , then inn(t) = {F},

(ii) if t = enj , then inn(t) = {enj },

(iii) if t = enj [s1, . . . , sn], then inn(t) =
⋃n
i=1 inn(si),

(iv) if t = F [s1, . . . , sar(F)], then inn(t) =
⋃ar(F)
i=1 inn(si).
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For example, let f, g be binary cooperation symbols and
t = f [g[e21[f, e22], e21], e22[g, e21[e22, e

2
1]]]. Then

inn(t2) = inn(f [g[e21[f, e22], e21], e22[g, e21[e22, e
2
1]]])

= inn(g[e21[f, e22], e21]) ∪ inn(e22[g, e21[e22, e
2
1]])

= inn(e21[f, e22]) ∪ inn(e21) ∪ inn(g) ∪ inn(e21[e22, e
2
1])

= inn(f) ∪ inn(e22) ∪ {e21} ∪ {g} ∪ inn(e22) ∪ inn(e21)

= {f} ∪ {e22} ∪ {e21} ∪ {g} ∪ {e22} ∪ {e21}
= {e21, e22, f, g}.

For n ∈ N, 1 ≤ j ≤ n and F be variables over the two-elements alphabet {f, g}
where ar(F ) denotes the arity of F . Let 1 ≤ i ≤ ar(F ). We define P i(t) by

(i) if t = enj , then P i(t) = t,

(ii) if t = F , then P i(t) = F ,

(iii) if t = enj [s1, . . . , sn] ,then P i(t) = P i(sj)

(iv) if t = F (t1, . . . , ti, . . . , tar(F )), then P i(t) = FP i(ti).

For example, let f, g be binary cooperation symbols and
t = f [g[e21[f, e22], e21], e22[g, e21[e22, e

2
1]]]. Then

P 1(t) = P 1(f [g[e21[f, e22], e21], e22[g, e21[e22, e
2
1]]])

= fP 1(g[e21[f, e22], e21])

= fgP 1(e21[f, e22])

= fgP 1(f)

= fgf

and

P 2(t) = P 2(f [g[e21[f, e22], e21], e22[g, e21[e22, e
2
1]]])

= fP 2(e22[g, e21[e22, e
2
1]])

= fP 2(e21[e22, e
2
1])

= fP 2(e22)

= fe22.

Now, we are ready to prove our results. In the case that t1 ∈ E2, t2 6∈ E2 and
co(t2) = 1, we obtain the following propositions.

Proposition 3.2. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t1 ∈ E2, co(t2) = 1. Then the
following statements are equivalent:

(i) σt1,t2 is idempotent.
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(ii) t2 is one of the following forms;

• t2 ∈ {f, g},
• in P 1(t2) = F1 · · ·Fk where Fi ∈ {f, g} ∪ E, 1 ≤ i ≤ k, there is

the smallest positive integer l ∈ {1, . . . , k} such that Fl = g with a
subcoterm t′2 of t2 such that

– t′2 = g or

– t′2 = g[x1, x2] where x1, x2 ∈ cT
(2)
(2,2) and the following conditions

hold;

∗ if e21 ∈ inn(t2), then M1(x1) = e21,

∗ if e22 ∈ inn(t2), then M2(x2) = e22.

Proof. (i) ⇒ (ii): Assume that t2 6∈ {f, g}. Suppose that, in P 1(t2) = F1 · · ·Fk
where Fi ∈ {f, g}∪E, 1 ≤ i ≤ k, there is the smallest positive integer l ∈ {1, . . . , k}
such that Fl = f . This implies that σ̂t1,t2 ∈ E2, which is a contradiction. This
implies that in P 1(t2) = F1 · · ·Fk where Fi ∈ {f, g} ∪ E, 1 ≤ i ≤ k, there is the
smallest positive integer l ∈ {1, . . . , k} such that Fl = g with a subcoterm t′2 of

t2. Let t′2 6= g. Assume that t′2 = g[x1, x2] where x1, x2 ∈ cT
(2)
(2,2). Since σt1,t2 is

idempotent,
t2 = σ̂t1,t2 [t2] = S2(t2, σ̂t1,t2 [x1], σ̂t1,t2 [x2]).

Let e21 ∈ inn(t2). Suppose that M1(x1) = e22. Then we have to replace e21 in
inn(t2) of the coterm t2 by e22. Thus, S2(t2, σ̂t1,t2 [x1], σ̂t1,t2 [x2]) 6= t2, which is a
contradiction. Hence, if e21 ∈ inn(t2), then M1(x1) = e21. Similarly, if e22 ∈ inn(t2),
then M2(x2) = e22.

(ii) ⇒ (i): It is clear that σ̂t1,t2 [F ] = F where F ∈ {f, g}. Thus, if t2 ∈ {f, g},
then σt1,t2 is idempotent. Assume that in P 1(t2) = F1 · · ·Fk where Fi ∈ {f, g}∪E,
1 ≤ i ≤ k, there is the smallest positive integer l ∈ {1, . . . , k} such that Fl = g
with a subcoterm t′2 of t2. In this case, since t1 ∈ E2, σ̂t1,t2 [t1] = t1. If t′2 = g,
then σ̂t1,t2 [t2] = σ̂t1,t2 [t′2] = σ̂t1,t2 [g] = t2. Assume that t′2 = g[x1, x2] where

x1, x2 ∈ cT
(2)
(2,2). Let e21 ∈ inn(t2). Then σ̂t1,t2 [t2] = σ̂t1,t2 [t′2] = σ̂t1,t2 [g[x1, x2]] =

S(t2, e
2
1, σ̂t1,t2 [x2]). Thus, we have to replace e21 in inn(t2) of the coterm t2 by e21.

Similarly, if e22 ∈ inn(t2), then we have to replace e22 in inn(t2) of the coterm t2 by
e22. Therefore, σt1,t2 is idempotent.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t1 = e22 and t2 = e32[e22, e
2
1[g[e21, e

2
2], e22], e21].

• σt1,t2 is not idempotent where t1 = e22 and t2 = g[e22, e
2
1].

Similarly, in case of t2 ∈ E2, t1 6∈ E2 and co(t1) = 1, we have as follows.

Proposition 3.3. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t2 ∈ E2, co(t1) = 1. Then the
following statements are equivalent:

(i) σt1,t2 is idempotent.
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(ii) t1 is one of the following forms;

• t1 ∈ {f, g},
• in P 1(t1) = F1 · · ·Fk where Fi ∈ {f, g} ∪ E, 1 ≤ i ≤ k, there is the

smallest positive integer 1 ≤ l ≤ k such that Fl = f with a subcoterm
t′1 of t1 such that

– t′1 = f or

– t′1 = f [x1, x2] where x1, x2 ∈ cT
(2)
(2,2) and the following conditions

hold;

∗ if e21 ∈ inn(t1), then M1(x1) = e21,

∗ if e22 ∈ inn(t1), then M2(x2) = e22.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t2 = e22 and t1 = e31[f, e21, e
2
2].

• σt1,t2 is not idempotent where t2 = e22 and t1 = e21[e22, f [e22, e
2
2]].

Remark 3.4. We observe that for σt1,t2 ∈WP(2, 2)rP(2, 2), t1 ∈ E2 and co(t2) >
1, if σt1,t2 is idempotent, then inn(t2) ∩ E2 6= ∅. To see this, we suppose that
inn(t2) ∩ E2 = ∅. This implies that inn(t2) ∩ {f, g} 6= ∅. If f ∈ inn(t2), then t1 ∈
inn(t2). If g ∈ inn(t2), then the coterm σ̂t1,t2 is longer that the coterm t2. These
contradict that σt1,t2 . Hence, inn(t2) ∩ E2 6= ∅. Dually, for σt1,t2 ∈ WP(2, 2) r
P(2, 2), t2 ∈ E2 and co(t1) > 1, if σt1,t2 is idempotent, then inn(t2) ∩ E2 6= ∅.

By the above observation, we obtain the following result.

Proposition 3.5. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), tj1 ∈ E2, co(tj2) > 1 where j1
and j2 are distinct elements in {1, 2}. We have that if σt1,t2 is idempotent, then
inn(tj2) ∩ E2 6= ∅.

In case that t1 ∈ E2, t2 6∈ E2 and co(t2) > 1, we obtain the following proposi-
tions.

Proposition 3.6. Let σt1,t2 ∈WP(2, 2) r P(2, 2), t1 = e2m, m = 1, 2, co(t2) > 1,
t2 = F [s1, s2] with Pm(t2) = F1 · · ·Fk for some natural number k where F, Fi ∈
{f, g} ∪ E, 1 ≤ i ≤ k and inn(t2) ∩ E2 = {e2j}, j = 1, 2. Then the following
statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In Pm(t2), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = g with a subcoterm t′2, and one of the following conditions hold;

• if inn(t2) ∩ {f, g} 6= ∅, then t′2 = g,

• if inn(t2)∩{f, g} = ∅, then t′2 = g[s′1, s
′
2], s′1, s

′
2 ∈ cT

(2)
(2,2) such that the

set of cooperation symbols occurring in Pm(s′j) is {f} or ∅.
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Proof. (i) ⇒ (ii): Since Pm(t2) = F1 · · ·Fk where Fl ∈ {f, g} ∪ E, 1 ≤ l ≤ k
for some natural number k, then there exists q ∈ {1, . . . , k} such that Fq = g
since otherwise σ̂t1,t2 [t2] ∈ E2, which is a contradiction. Let l ∈ {1, . . . , k} be
the smallest positive integer such that Fl = g with the subcoterm t′2 of t2 where

t′2 = g or t′2 = g[s′1, s
′
2], s′1, s

′
2 ∈ cT

(2)
(2,2). Let inn(t2) ∩ {f, g} 6= ∅. Suppose that

t′2 = g[s′1, s
′
2] where s′1, s

′
2 ∈ cT

(2)
(2,2). Since σt1,t2 is idempotent, we consider

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t′2]

= σ̂t1,t2 [g[s′1, s
′
2]]

= S2
2(σt1,t2(g), σ̂t1,t2 [s′1], σ̂t1,t2 [s′2])

= S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]).

If f occurs in inn(t2), then we have to replace f in inn(t2) of the coterm t2 by
f [e2j , e

2
j ]. Thus, S2

2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) 6= t2, which is a contradiction. If g

occurs in inn(t2), then the coterm S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) must be longer that

the coterm t2. These implies that S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) 6= t2, which is a

contradiction. Thus, we obtain t′2 = g.

Let inn(t2) ∩ {f, g} = ∅. Then we have that t′2 = g[s′1, s
′
2] and s′1, s

′
2 ∈ cT

(2)
(2,2).

Suppose that the nonempty set of cooperation symbols occurring in Pm(s′j) is not
{f}. Since σt1,t2 is idempotent, we consider

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t′2]

= σ̂t1,t2 [g[s′1, s
′
2]]

= S2
2(σt1,t2(g), σ̂t1,t2 [s′1], σ̂t1,t2 [s′2])

= S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]).

This implies that the coterm S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) must be longer than the

coterm t2. This follows that σ̂t1,t2 [t2] 6= t2, which is a contradiction. Therefore

t′2 = g[s′1, s
′
2], s′1, s

′
2 ∈ cT

(2)
(2,2) such that the set of cooperation symbols occurring

in Pm(s′j) is {f} or ∅.
(ii) ⇒ (i): Without loss of generality, we assume that m, j = 1. Then, in

P 1(t2), there exists the smallest positive integer l ∈ {1, . . . , k} such that Fl = g
with a subcoterm t′2. Assume that inn(t2) ∩ {f, g} 6= ∅. Then t′2 = g. This clearly
implies that σ̂t1,t2 [t2] = t2. Assume that inn(t2) ∩ {f, g} = ∅. Then t′2 = g[s′1, s

′
2],

s′1, s
′
2 ∈ cT

(2)
(2,2) such that the set of cooperation symbols occurring in P 1(s′1) is {f}

or ∅. Since inn(t2) ∩ E2 = {e21}, we obtain that σ̂t1,t2 [t2] = t2. Therefore, σt1,t2 is
idempotent.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t1 = e21 and t2 = e22[e21, f [g[e21, e
2
1], g[e21, f [e21, e

2
1]]]].
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• σt1,t2 is not idempotent where t1 = e22 and t2 = g[e22, g[e22, e
2
2]].

Similarly, we can prove the following proposition.

Proposition 3.7. Let σt1,t2 ∈WP(2, 2) r P(2, 2), t2 = e2m, m = 1, 2, co(t1) > 1,
t1 = F [s1, s2] with Pm(t1) = F1 · · ·Fk for some natural number k where F, Fi ∈
{f, g} ∪ E, 1 ≤ i ≤ k and inn(t1) ∩ E2 = {e2j}, j = 1, 2. Then the following
statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In Pm(t1), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = f with a subcoterm t′1, and one of the following conditions hold;

• if inn(t1) ∩ {f, g} 6= ∅, then t′1 = f ,

• if inn(t1) ∩ {f, g} = ∅, then t′1 = f [s′1, s
′
2], s′1, s

′
2 ∈ cT

(2)
(2,2) such that

the set of cooperation symbols occurring in Pm(s′j) is {g} or ∅.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t2 = e21 and t1 = g[f [e22, e
2
2], f [e22, e

2
2]].

• σt1,t2 is not idempotent where t2 = e22 and t1 = f [g, g[e21, e
2
1]].

Next, we give a characterization that a weak projection cohypersubstitution
σt1,t2 is idempotent where inn(ti) = E2, i = 1, 2.

Proposition 3.8. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t1 = e21, co(t2) > 1, t2 =
F [s1, s2] with P 1(t2) = F1 · · ·Fk for some natural number k where F, Fi ∈ {f, g}∪
E, 1 ≤ i ≤ k and inn(t2) = E2. Then the following statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In P 1(t2), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = g with a subcoterm t′2 of t2, and one of the following conditions holds;

• t′2 = g,

• if t′2 = g[s′1, s
′
2] where s′1, s

′
2 ∈ cT

(2)
(2,2), then the following conditions

hold;

– the set of cooperation symbols occurring in P 1(s′1) is {f} or ∅,
and M1(s′1) = e21 or M1(s′1) = f ,

– the set of cooperation symbols occurring in P 1(s′2) is {f} or ∅ and
M1(s′2) = e22.

Proof. (i) ⇒ (ii): Since P 1(t2) = F1 · · ·Fk where Fl ∈ {f, g} ∪ E, 1 ≤ l ≤ k
for some natural number k, then there exists q ∈ {1, . . . , k} such that Fq = g
since otherwise σ̂t1,t2 [t2] ∈ E2, which is a contradiction. Let l ∈ {1, . . . , k} be
the smallest positive integer such that Fl = g with the subcoterm t′2 of t2 where

t′2 = g or t′2 = g[s′1, s
′
2], s′1, s

′
2 ∈ cT

(2)
(2,2). Assume that t′2 6= g. Then t′2 = g[s′1, s

′
2],
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s′1, s
′
2 ∈ cT

(2)
(2,2). Suppose that the nonempty set of cooperation symbols occurring

in P 1(s′1) is not {f}. Since σt1,t2 is idempotent,

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t′2]

= σ̂t1,t2 [g[s′1, s
′
2]]

= S2
2(σt1,t2(g), σ̂t1,t2 [s′1], σ̂t1,t2 [s′2])

= S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]).

This implies that the coterm S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) must be longer that the

coterm t2. This follows that σ̂t1,t2 [t2] 6= t2, which is a contradiction. Hence, the set
of cooperation symbols occurring in P 1(s′1) is {f} or ∅. Suppose that M1(s′1) = e22.
Then we have to replace e21 in inn(t2) of the coterm t2 by e22. This implies that
t2 6= σ̂t1,t2 [t2], which is a contradiction. Suppose that M1(s′1) = g. Then the
coterm S2

2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) must be longer that the coterm t2. This implies
that t2 6= σ̂t1,t2 [t2], which is a contradiction. If M1(s′1) = e21 or M1(s′1) = f , then
we replace e21 in inn(t2) of the coterm t2 by e21. Hence, M1(s′1) = e21 or M1(s′1) = f .
Similarly, we can show that the set of cooperation symbols occurring in P 1(s′2) is
{f} or ∅. Suppose that M1(s′2) = e21 or M1(s′2) = f . Then we have to replace
e22 in inn(t2) of the coterm t2 by e21. This implies that t2 6= σ̂t1,t2 [t2]. Suppose
that M1(s′2) = g. Then the coterm S2

2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]) must be longer that
coterm t2. Hence, for any cases we obtain M1(s′2) = e22.

(ii) ⇒ (i): In P 1(t2), there exists the smallest positive integer l ∈ {1, . . . , k}
such that Fl = g with a subcoterm t′2. It is clear that if t′2 = g, then σ̂t1,t2 [t2] =
σ̂t1,t2 [t′2] = σ̂t1,t2 [g] = t2. Now, if t′2 6= g we consider

σ̂t1,t2 [t2] = σ̂t1,t2 [t′2]

= σ̂t1,t2 [g[s′1, s
′
2]]

= S2
2(σt1,t2(g), σ̂t1,t2 [s′1], σ̂t1,t2 [s′2])

= S2
2(t2, σ̂t1,t2 [s′1], σ̂t1,t2 [s′2]).

If M1(s′1) = e21 and M1(s′2) = e22, then we have to replace e21, e22, f and g in
inn(t2) by e21, e22, f and g, respectively. So, σ̂t1,t2 [t2] = t2. If M1(s′1) = f and
M1(s′2) = e22, then we have to replace e21, e22, f and g in inn(t2) by e21, e22, f and
g, respectively. So, σ̂t1,t2 [t2] = t2. Therefore, σt1,t2 is idempotent.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t1 = e21 and t2 = e21[f [g[f, e22], g[f [e22, e
2
1], f ]], g[g, f ]].

• σt1,t2 is not idempotent where t1 = e21 and t2 = f [g[e22, e
2
1], f [e21, e

2
1]].

Similarly, we can prove the following propositions.
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Proposition 3.9. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t1 = e22, co(t2) > 1, t2 =
F [s1, s2] with P 2(t2) = F1 · · ·Fk for some natural number k where F, Fi ∈ {f, g}∪
E, 1 ≤ i ≤ k and inn(t2) = E2. Then the following statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In P 2(t2), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = g with a subcoterm t′2, and one of the following conditions hold;

• t′2 = g,

• if t′2 = g[s′1, s
′
2] where s′1, s

′
2 ∈ cT

(2)
(2,2), then the following conditions

hold;

– the set of cooperation symbols occurring in P 2(s′1) is {f} or ∅,
and M2(s′1) = e21,

– the set of cooperation symbols occurring in P 2(s′2) is {f} or ∅ and
M2(s′2) = e22 or M2(s′2) = g.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t1 = e22 and t2 = g[f [g, e21], f [e22, f [e21, e
2
2]]].

• σt1,t2 is not idempotent where t1 = e22 and t2 = e11[f [g, f [e21, e
2
2]]].

Proposition 3.10. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t2 = e21, co(t2) > 1, t1 =
F [s1, s2] with P 1(t1) = F1 · · ·Fk for some natural number k where F, Fi ∈ {f, g}∪
E, 1 ≤ i ≤ k and inn(t1) = E2. Then the following statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In P 1(t1), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = f with a subcoterm t′1, and one of the following conditions hold;

• t′1 = f ,

• if t′1 = f [s′1, s
′
2] where s′1, s

′
2 ∈ cT

(2)
(2,2), then the following conditions

hold;

– the set of cooperation symbols occurring in P 1(s′1) is {g} or ∅,
and M1(s′1) = e21 or M1(s′1) = f ,

– the set of cooperation symbols occurring in P 1(s′2) is {g} or ∅ and
M1(s′2) = e22.

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t2 = e21 and t1 = g[g[f, e21], f [e22, g]].

• σt1,t2 is not idempotent where t2 = e21 and t1 = g[f [e22, e
2
1], g[e21, e

2
2]].
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Proposition 3.11. Let σt1,t2 ∈ WP(2, 2) r P(2, 2), t2 = e22, co(t2) > 1, t1 =
F [s1, s2] with P 2(t1) = F1 · · ·Fk for some natural number k where F, Fi ∈ {f, g}∪
E, 1 ≤ i ≤ k and inn(t1) = E2. Then the following statements are equivalent:

(i) σt1,t2 is idempotent.

(ii) In P 2(t1), there exists the smallest positive integer l ∈ {1, . . . , k} such that
Fl = f with a subcoterm t′1, and one of the following conditions hold;

• t′1 = f ,

• if t′1 = f [s′1, s
′
2] where s′1, s

′
2 ∈ cT

(2)
(2,2), then the following conditions

hold;

– the set of cooperation symbols occurring in P 2(s′1) is {g} or ∅,
and M2(s′1) = e21,

– the set of cooperation symbols occurring in P 2(s′2) is {g} or ∅ and
M2(s′2) = e22 or M2(s′2) = f .

For example, let f and g be cooperation symbols of type (2, 2). Then we have

• σt1,t2 is idempotent where t2 = e22 and
t1 = e21[g[f [e21, e

2
1], f [e21, e

2
2]], f [g[e21, e

2
1], f [e21, e

2
2]]].

• σt1,t2 is not idempotent where t2 = e22 and
t1 = e21[g[f [e21, e

2
1], f [e22, e

2
2]], f [g[e21, e

2
1], f [e21, e

2
2]]].
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