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Abstract : In this paper, we follow the idea of using an invariant loss function
in a decision theoretic approach for point estimation in Bayesian mixture models
presented in [1]. Although using this approach the so-called label switching is
no longer a problem, it is difficult to assess the uncertainty. We propose a sim-
ple and accessible way for assessing uncertainty using the leaving-out idea from
the jackknife method to compute the Bayes estimates called jackknife-Bayes es-
timates, then use them to visualize the uncertainty of Bayesian point estimates.
This paper is primarily related to simulation-based point estimation using Markov
Chain Monte Carlo (MCMC) samples; hence the MCMC methods, in particular
Gibbs sampling and Metropolis Hastings method are used to approximate the pos-
terior mixture models. We also present the use of importance sampling in reduced
posterior mixture distribution corresponding to the leaving-out observation.
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1 Introduction

Bayesian approaches to mixture modeling are increasingly popular since the
advent of simulation techniques, especially Markov chain Monte Carlo (MCMC)
methods [2]. In Bayesian analysis of mixture models with known number of com-
ponents, one of inferential difficulties is the problem so-called label switching in
the MCMC output see [3] for a review. Using common practice for estimating
parameters, the ergodic average of MCMC samples could be meaningless. One of
the methods to deal with this problem suggested in [1] is to use a decision theoretic
approach that computes parameter estimates using algorithms that aim to mini-
mize the posterior expected invariant loss function. In general, point estimation
is usually combined with interval estimation such as credible intervals or confi-
dence intervals to show how reliable point estimates are. However, it is difficult
to construct credible intervals or confidence intervals because of label switching.

In this paper, we denote a point estimate obtained from the decision theoretic
approach by the Bayes estimate. We aim to provide a simple and accessible way
for assessing uncertainty of Bayes estimates without dealing with label switch-
ing which usually occurs in Bayesian mixture models. Conception of uncertainty
presenting in this paper is not the same as the interval estimation. We adopt
the leaving-out idea from the jackknife method to compute the Bayes estimates
called jackknife-Bayes estimates then use them to visualize the uncertainty
of simulation-based Bayes estimates. What is the jackknife? In statistics, the
jackknife method is often referred to as the nonparametric estimation of statisti-
cal error of a statistic of interest. It was introduced in [4] with the intention of
reducing the bias of the sample estimate. It was developed further in [5] as a gen-
eral approach for testing hypotheses and calculating confidence intervals using the
assumption that the jackknife replicates are considered identically and indepen-
dently distributed. The jackknife method is also known as a resampling method
in which the basic concept is to estimate the precision of sample statistics based
on removing data and then recalculating from subsets of available data known as
the jackknife method or drawing randomly with replacement from a set of data
points known as bootstrap method.

The paper is structured as follows. We initially study the use of MCMC
methods for point estimation using a decision theoretic approach then implement
the MCMC methods in R programming using simulated data. Then apply the
jackknife-like method to compute the jackknife-Bayes estimates based on reduced-
posterior distribution corresponding to the deleted observation. In this step, im-
portance sampling is proposed to ease the computational requirement in MCMC
simulation. Finally, we show uncertainty of Bayesian point estimation using the
simulated jackknife-Bayes estimates.
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2 Preliminaries

2.1 Bayesian Modeling on Finite Gaussian Mixture
Distributions

Assume that x = (x1, . . . , xn) is independent and identically distributed (i.i.d)
observation from the distribution

fθ(xi) =

k∑
j=1

ωj
1√

2πσ2
j

exp

{
− (xi − µj)2

2σ2
j

}
, i = 1, . . . , n, (2.1)

where θ = (ω1, . . . , ωk, µ1, . . . , µk, σ
2
1 , . . . , σ

2
k), k is fixed and known and ωj s are

the weights satisfying 0 < ωj < 1 and
∑k
j=1 ωj = 1. For convenience, we denote

the parameters in (2.1) as follows: ω = (ω1, . . . , ωk),µ = (µ1, . . . , µk), and σ2 =
(σ2

1 , . . . , σ
2
k). It is common to use the following priors in the Gaussian mixture

model,

ω ∼ Dirichlet(δ1, . . . , δk)

µj ∼ N(µ0, σ
2
0) for j = 1, . . . , k, independently

σ2
j ∼ InvGamma(α, β) for j = 1, . . . , k, independently.

Then prior probability distributions are

p(ω|k) =
Γ(δ0)

Γ(δ1) . . .Γ(δk)

k∏
j=1

ω
δj−1
j ,where δ0 = δ1 + . . . δk, (2.2)

p(µ|k) =
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0

exp

{
− 1

2σ2
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, (2.3)

p(σ2|k) =
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j=1

βα

Γ(α)

(
σ2
j

)−(α+1)
exp

{
−β
σ2
j

}
. (2.4)

In mixture modeling, latent variables are often used to represent sub-populations
where population membership is not known but is inferred from the data [6].
We define the variable z = (z1, . . . , zn) as the latent variable used for allocating
the components in the mixture model. We label the component j if zi = j,
j ∈ {1, . . . , k} for the ith observation. Suppose each zi is independently drawn
from the distribution such that

Prob{zi = j} = ωj for j = 1, . . . , k,

so the prior distribution of z is

p(z|k,ω) =

n∏
i=1

(ω1IA1
(zi) + ω2IA2

(zi) + . . .+ ωkIAk
(zi)) , (2.5)
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where IAj
is an indicator function defined by

IAj
(zi) =

{
1 if zi = j,

0 otherwise,

where Aj = {j} for j = 1, . . . , k. Define

nj =

n∑
i=1

IAj
(zi), for j = 1, . . . , k, (2.6)

then the prior distribution of z in equation (2.5) can be written as

p(z|k,ω) =

k∏
j=1

ω
nj

j . (2.7)

By using the latent variable z for allocation, we can express the likelihood function
for the Gaussian mixture distribution in the form

l(x|k, z, ω,µ, σ2) =

n∏
i=1
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2πσ2
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exp
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2σ2
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}
. (2.8)

By Bayes’ Theorem applied to the priors in equations (2.2), (2.3), (2.4) and (2.7),
and the likelihood function in equation (2.8), the posterior distribution can be
expressed in the proportional distribution as follows:

π(ω, z,µ,σ2|k,x) ∝ p(ω|k)× p(z|k,ω)× p(µ|k)× p(σ2|k)× l(x|k,z, ω,µ, σ2)

=

k∏
j=1

ω
δj−1
j ×

k∏
j=1

ω
nj

j ×
k∏
j=1

1√
2πσ2

0

exp

{
− 1

2σ2
0

(µj − µ0)2
}

×
k∏
j=1

(
σ2
j

)−(α+1)
exp

{
−β
σ2
j

}
n∏
i=1

1√
2πσ2

zi

exp

{
− 1

2σ2
zi

(xi−µzi)2
}
.

(2.9)

By using suitable priors, the conditional posterior distributions of the parameters
ω,µ and σ2 are the conjugate distributions. Therefore, we can use the standard
MCMC method, Gibbs sampling to generate the samples of the parameter ω,µ and
σ2. Meanwhile, we use the Metropolis-Hastings method to generate the samples
of the latent variable, z to allocate the components in the mixture distribution.
We derive the conditional posterior distributions from the posterior distribution
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(2.9) for each parameter as follows:

π(ω|k,z,µ,σ2,x) ∝
k∏
j=1

ω
δj+nj−1
j ,where nj ’s are from equation (2.6) , (2.10)
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As a result, the conditional posteriors are

ω|k, z,µ,σ2,x ∼ Dirichlet(δ1 + n1, . . . , δk + nk),

µj |ω, z,σ2, k ∼ N(aj , bj),

σ2
j |k,ω, z,µ ∼ InvGamma(

nj
2

+ α, β +

n∑
i=1
zi=j

(xi − µzi)2

2
)

Prob{zi = j|k,ω,µ,σ2,x} ∝ 1√
2πσ2

zi

exp

{
− 1

2σ2
zi

(xi − µzi)2
}
.

Figure 1: Histogram of simulated data from Gaussian normal mixture distribution
with the number of components k = 4 with parameters defined in equation (2.14).
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To present the use of the jackknife-Bayes estimates for assessing uncertainty,
we use the simulated data in which the true parameters are assumed known.
Consider the number of components k = 4. We independently simulate the data
x = (x1, . . . , x100) from

Xi ∼ 0.10N(10, 1) + 0.25N(15, 1) + 0.50N(20, 2) + 0.15N(30, 3), (2.14)

for i = 1, . . . , 100. Therefore, the simulated data x = (x1, . . . , x100) shown in
Figure 1 is i.i.d from the distribution

fθ(xi) =

4∑
j=1

ωj
1√

2πσ2
j

exp

{
− (xi − µj)2

2σ2
j

}
, i = 1, . . . , 100, (2.15)

where

ω = (0.10, 0.25, 0.50, 0.15),

µ = (10, 15, 20, 30),

σ2 = (1, 1, 2, 3).

Proceed the Bayesian mixture modeling explained earlier and use priors with
the following hyper-parameters;

ω ∼ Dirichlet (1, . . . , 1)︸ ︷︷ ︸
k

µj ∼ N(0, 100) for j = 1, . . . , k, independently,

σ2
j ∼ InvGamma(0.01, 0.01) for j = 1, . . . , k, independently.

We simulate the MCMC samples of parameter θ = (ω,µ,σ2) shown in Figure 2.

2.2 Bayesian Point Estimation Using Loss Function

In a Bayesian framework, parameter estimation can be done via decision theo-
retic approach. Typically, we need to specify a loss function, L(θ̂,θ) which repre-
sents the loss incurred by estimating θ with the estimate θ̂ in the parameter space
Θ. As a result, the point estimate will be to choose the value of θ̂ which mini-
mizes the expected loss function with respect to the posterior distribution, π(θ|x)
denoted by the Bayes estimate. One of well known loss functions is the quadratic
loss function where the Bayes estimate is the posterior mean. In practice, the loss
function is specified by the decision maker and can be complex, hence it is difficult
derive the Bayes estimate related to the loss function analytically. Using numeri-
cal methods or simulation is more plausible for those loss functions. Consider the
integrated squared difference,

L(θ̂, θ) =

∫
R

(fθ̂(y)− fθ(y))2dy, (2.16)
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(a) ω (b) µ

(c) σ2 (d) nj for j = 1, 2, 3 and 4

Figure 2: The trace plots of MCMC samples of parameter θ = (ω, µ, σ2) and nj
for j = 1, 2, 3 and 4
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where fθ̂(y) denotes the density of the Gaussian mixture model in equation (2.1).
As a result, the integrated squared loss function (2.16) is label invariant. The
Bayes estimate of the parameter denoted by θ∗ is the minimizer of the posterior
expected loss. That is the value of θ∗ could be found by solving the minimization
problem,

θ̂
∗

= arg min
θ̂

Eπ
[
L(θ̂,θ)

]
. (2.17)

Given a potential θ̂, we may define the posterior expected loss of a by averaging
the loss function over the unknown parameter:

Eπ
[
L(θ̂,θ)

]
=

∫
θ

L(θ̂,θ)π(θ|k, z,x)dθ

=

∫
θ

∫
R

((fθ̂(y)− fθ(y))2dy)π(θ|k, z,x)dθ

By using Bayesian sampling to obtain a Markov chain θi = (ωi,µi,σ2i

) for i =
1, . . . , N which converges to the stationary distribution π(θ|k, z, x). As a result,
we have the MCMC samples which lead to an approximation of the posterior
quantity as

Eπ
[
L(θ̂,θ)

]
≈

N∑
i=1

∫
R

(fθ̂(y)− fθ(y))2dy.

Specifically, assuming the order of integration being interchanged, the expected
posterior loss function can be written as

Eπ
[
L(θ̂, θ)

]
=

∫
R
fθ̂(y)2dy − 2

∫
R
fθ̂(y)Eπ[fθ(y)]dy +

∫
R
Eπ[fθ(y)2]dy (2.18)

By using ergodic averaging, we approximate

Eπ[fθ(y)] ≈ 1

N

N∑
i=1

fθi(y), (2.19)

Eπ[fθ(y)2] ≈ 1

N

N∑
i=1

fθi(y)2. (2.20)

We use simulated annealing as the numerical minimization technique to obtain

θ̂
∗
. For more details of simulated annealing algorithm and annealing schedule,

see [7]. The simulation based Bayes estimates of the parameter θ = (ω, µ, σ2) are
shown in Table 1.
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Table 1: Bayes estimates of parameter θ = (ω, µ, σ2)

Parameter True parameter Bayes estimate

(ω1, ω2, ω3, ω4) (0.10, 0.25, 0.50, 0.15) (0.128, 0.288, 0.430, 0.154)

(µ1, µ2, µ3, µ4) (10, 15, 20,30) (9.79, 14.94, 20.11, 30.29)

(σ2
1 , σ

2
2 , σ

2
3 , σ

2
4) (1,1,2,3) (1.465, 1.162, 2.345, 2.881)

3 Main Results

3.1 Jackknife-Like Method and Importance Sampling

The jackknife method was proposed by [4] and [5] and developed further as an
approach for testing hypotheses and calculating confidence interval (see also [8]).
The jackknife method is also known as a resampling method for variance and
bias estimation. The basic concept of jackknife resampling is to estimate the
precision of sample statistics based on removing data and then recalculate from
subsets of available data. In this work, we only adopt the idea of leaving out
observations (jackknifing) and recalculate the Bayes estimates. That is we compute
Bayes estimates with respect to the reduced posterior distributions related to
the deleted observation points. To avoid confusion, we call the Bayes estimate
obtained from the reduced posterior distributions, the jackknife-Bayes estimates.
Computing the jackknife-Bayes estimates can be computationally expensive as we
have to use n different sets of the MCMC samples corresponding to the xi-delete
posterior distributions, denoted by x(−i) for i = 1, . . . , n. We propose the use
of importance sampling to make computation less expensive. To do so, we reuse
MCMC samples generated from the full posterior distribution π which is regarded
as the instrumental distribution in importance sampling. Therefore, we express the
expected loss function with respect to each xi-delete posterior distribution as the
expected loss function with respect to the (full) posterior distribution, π(θ|x) =
p(θ)l(x|θ)∫

θ
p(θ)l(x|θ)dθ

as follows:

Eπ(−i)
[L(θ̂,θ)] =

∫
L(θ̂,θ)π(θ|x(−i))dθ

=

∫
L(θ̂,θ)

π(θ|x(−i))

π(θ|x)
π(θ|x)dθ,

Eπ(−i)
[L(θ̂,θ)] =

∫
L(θ̂,θ)

p(θ)l(x(−i)|θ)/m−i

p(θ)l(x|θ)/m
π(θ|x)dθ

=
m

m−i

∫
L(θ̂,θ)wiπ(θ|x)dθ =

m

m−i
Eπ[L(θ̂,θ)wi], (3.1)
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where

wi =
l(x(−i)|θ)

l(x|θ)
=

1

l(xi|θ)
if xi, i = 1, . . . , n are independent, (3.2)

and

m−i =

∫
p(θ)l(x(−i)|θ)dθ

m =

∫
p(θ)l(x|θ)dθ.

Consider

m−i =

∫
p(θ)l(x(−i)|θ)

π(θ|x)
π(θ|x)dθ

=

∫
p(θ)l(x(−i)|θ)

p(θ)l(x|θ)/m
π(θ|x)dθ

=

∫
l(x(−i)|θ)

l(x|θ)/m
π(θ|x)dθ.

Therefore,

m

mi
=

1∫ l(x(i)|θ)

l(x|θ)
π(θ|x)dθ

=
1∫

wiπ(θ|x)dθ

=
1

Eπ[wi]
. (3.3)

From equations (3.1) and (3.3), we therefore estimate Eπ(i)
[L(θ̂,θ)] by using

Eπ[L(θ̂,θ)wi]

Eπ[wi]
. We could use the same MCMC samples θj for j = 1, . . . , N which

are used in estimation Eπ[L(θ̂,θ)] to obtain Eπ[L(θ̂,θ)wi] and Eπ[wi] by the fol-
lowing approximations

Eπ[L(θ̂,θ)wi] ≈
1

N

N∑
j=1

L(θ,θj)wji ,

and

Eπ[wi] ≈
1

N

N∑
j=1

wji ,
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where

wji =
l(x(i)|θj)
l(x|θj)

, for i = 1, . . . , n, j = 1, . . . , N.

As a result, the expected loss function with respect to the xi-delete posterior
distribution in equation (3.1) can be computed by reusing the generated MCMC
samples from the full posterior distribution π using the weight in equation (3.2).
Importance sampling makes the estimation of the expected loss function relatively
cheaply because we do not need to generate MCMC samples corresponding to the
n xi-delete posterior distributions. Nonetheless, computing the jackknife-Bayes
estimates could still be expensive because of choices of minimization methods.

3.2 Simulation Results of Jackknife-Bayes Estimates

In this section, we present the simulation results of jackknife-Bayes estimates
corresponding to the xi-deleted points for i = 1, . . . , 100. The jackknife-Bayes
estimates of parameters ω, µ and σ2 are shown in Figures 3 - 5. Similarly to the
trace plots, black, red, green and blue points represent the first, second, third and
forth components of the jackknife-Bayes estimates of each parameter, respectively.
Meanwhile, we also use black, red, green and blue horizontal lines to indicate the
true values of the parameters corresponding to the true components. Due to the
label switching problem, the order of the components of the estimated parameters
from the simulation is not the same as the components of the true values.

Figure 3: The jackknife-Bayes estimates of ω
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Figure 4: The jackknife-Bayes estimates of µ

Figure 5: The jackknife-Bayes estimates of σ2
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Figure 3 shows the simulation of the jackknife-Bayes estimates of the parameter
ω, where the true value is (0.10, 0.25, 0.50, 0.15). It shows that the jackknife-Bayes
estimates perform fairly good, especially for the component of value 0.10 and the
component of value 0.15 as they are clustered compared with the component of
value 0.25 and 0.50. As a result, we might say that they are more certain than
the other two components. Furthermore, the components of value 0.25 is slightly
overestimated while the component of value 0.50 is slightly underestimated. For
the parameter µ in Figure 4, it is better than the parameter ω and it is the most
certain compared to the other parameters because all jackknife-Bayes estimates
are very close to each other and also close to the true values (10, 15, 20, 30). For
the parameter σ2 shown in 5, we might say that they the least certain as all
components of the jackknife-Bayes estimates are quite scattered and not as close
to the true parameter as in the parameter µ.

4 Conclusions and Discussions

Generally, uncertainty of Bayesian point estimation in a finite Gaussian mix-
ture model where the number of component is fixed and known cannot be shown
by common practice such as credible intervals because of the label switching in
MCMC output. In this paper, we can show the uncertainty by using the jackknife-
Bayes estimates. It is an alternative approach to show uncertainty of Bayes esti-
mates. The main results show that using jackknife-Bayes estimates can visualize
the uncertainty of Bayes estimates of the parameter without difficulty dealing with
label switching in MCMC output. Moreover, we show that importance sampling
gives jackknife-Bayes estimates without too much computational demanding. But
remember what we show in this paper is rely on two main methods, the MCMC
generating method and the minimization method. According to MCMC simula-
tion, we found that different hyper-parameters in priors leads to very different
MCMC output hence the estimates. Therefore, choice of hyper-parameters should
be chosen cautiously. Minimization method also plays important role in the search
of Bayes estimates. We chose to use simulated annealing as it is applicable in our
algorithm although it might be computationally expensive.
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